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Results on the number of zeros in a disk for three
types of polynomials

Derek Bryant and Robert Gardner

Abstract. We impose a monotonicity condition with several reversals
on the moduli of the coefficients of a polynomial. We then consider
three types of polynomials: (1) those satisfying the condition on all of
the coefficients, (2) those satisfying the condition on the even indexed
and odd indexed coefficients separately, and (3) polynomials of the form
P (z) = a0+

∑n
j=µ ajz

j where µ ≥ 1 with the coefficients aµ, aµ+1, . . . , an
satisfying the condition. For each type of polynomial, we give a result
which puts a bound on the number of zeros in a disk (in the complex
plane) centered at the origin. For each type, we give an example showing
the results are best possible.

1. Introduction

A classical result in the study of the location of the zeros of a polynomial
in the complex plane is the Eneström–Kakeya theorem.

Theorem 1.1 (Eneström–Kakeya theorem). If P (z) =
∑n

j=0 ajz
j is a

polynomial of degree n with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤
an, then all the zeros of P lie in |z| ≤ 1.

There is a huge number of generalizations of the Eneström–Kakeya theo-
rem, most of which involve some sort of variant on the theme of monotonicity
of the coefficients. For a recent survey of such results, see [4]. One example
of such a result, which is particularly related to the results of this paper, is
due to Chattopadhyay et al. [3].
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Theorem 1.2. Let P (z) =
n∑
j=0

ajz
j where for some t > 0 and some

0 = k0 < k1 < · · · < kr < kr+1 = n we have

0 < |a0| ≤ t|a1| ≤ t2|a2| ≤ · · · ≤ tk1 |ak1 | ≥ tk1+1|ak1+1| ≥ · · ·

≥ tk2 |ak2 | ≤ tk2+1|ak2+1| ≤ · · · ≤ tk3 |ak3 | ≥ · · ·

(with inequalities reversed at indices k1, k2, . . . , kr and tn|an| is the last term
in the inequality). Also suppose |arg(aj) − β| ≤ α ≤ π/2 for 0 ≤ j ≤ n
and some real α and β. Then all zeros of P lie in R1 ≤ |z| ≤ R2, where
R1 = min{t|a0|/M1, t}, R2 = max{M2/|a0|, 1/t},

M1 = −

{
2 cosα

r∑
`=1

(−1)`|ak` |t
k` + |a0|+ (−1)`+1|an|tn

}

+ 2 sinα

n−1∑
`=0

|aj |tj + (−|a0|+ |an|tn) sinα+ |an|tn

and

M2 = − cosα

(t2 − 1)
r∑
`=0

(−1)`+1

k`+1−1∑
s=k`+1

|as|tn−s−1


− (t2 + 1)
r∑
`=1

(−1)`|ak` |t
n−k`−1 − |a0|tn−1(1 + t2) + (−1)r|an|t

+ sinα


n∑
j=1

(t|aj |+ |aj−1|)tn−j
+ |a0|tn+1.

Another related area of study is the number of zeros of a polynomial in
a disk of a certain radius. For example, Pukhta [8] put a monotonicity
condition on the moduli of the coefficients of a polynomial to prove the
following theorem.

Theorem 1.3. Let P (z) =
n∑
j=0

ajz
j where 0 < |a0| ≤ |a1| ≤ · · · ≤ |an|.

Also suppose |arg(aj)− β| ≤ α ≤ π/2 for 0 ≤ j ≤ n and some real α and β.
Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ is less
than

1

log(1/δ)
log

(
|an|(cosα+ sinα+ 1) + 2 sinα

∑n−1
j=0 |aj |

|a0|

)
.
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The purpose of this paper is to apply the r reversals hypothesis of Chat-
topadhyay, Das, Jain, and Konwar to three types of polynomials and to pro-
duce corresponding number of zeros results similar to Theorem 1.3. The first
type involves those polynomials which satisfy the multiple reversals mono-
tonicity condition on the moduli of the coefficients, as given in Theorem 1.2.
The second type involves polynomials which satisfy the same condition on
the moduli of its even indexed coefficients and on its odd indexed coefficients
separately. The third type involves those polynomials for which there is a
gap in the coefficients; that is, polynomials of the form a0 +

∑n
j=µ ajz

j for
some 1 ≤ µ ≤ n. The multiple reversals monotonicity condition is then
imposed on the moduli of coefficients aµ, aµ+1, . . . , an. These three types of
polynomials are addressed in the following three sections, respectively.

2. Monotonicity condition on the moduli of all coefficients

First, we consider polynomials which satisfy the hypotheses of Theorem
1.2 and give a bound on the number of zeros in a disk.

Theorem 2.1. Let P (z) =
n∑
j=0

ajz
j where for some t > 0 and some

0 = k0 < k1 < · · · < kr < kr+1 = n we have

0 < |a0| ≤ t|a1| ≤ t2|a2| ≤ · · · ≤ tk1 |ak1 | ≥ tk1+1|ak1+1| ≥ · · ·

≥ tk2 |ak2 | ≤ tk2+1|ak2+1| ≤ · · · ≤ tk3 |ak3 | ≥ · · ·
(with inequalities reversed at indices k1, k2, . . . , kr and tn|an| is the last term
in the inequality). Also suppose |arg(aj)− β| ≤ α ≤ π/2 for 0 ≤ j ≤ n and
some real α and β. Then for 0 < δ < 1 the number of zeros of P (z) in the
disk |z| ≤ δt is less than

1

log(1/δ)
log

M

|a0|
,

where

M = |a0|t(1− cosα− sinα) + 2 cosα

r∑
`=1

(−1)`+1|ak` |t
k`+1

+ 2 sinα

n−1∑
j=0

|aj |tj+1 + |an|tn+1(1 + sinα+ (−1)r cosα).

When r = 1, Theorem 2.1 reduces to Theorem 1 of [5], which in turn
implies Theorem 1.3.

If the coefficients of polynomial P are real and nonnegative, then we can
take α = 0 in Theorem 2.1. If, in addition, we take t = 1, then we get the
following corollary.
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Corollary 2.2. Let P (z) =
n∑
j=0

ajz
j where each ai is real and nonnega-

tive, and for some 0 = k0 < k1 < · · · < kr < kr+1 = n we have

0 < a0 ≤ a1 ≤ a2 ≤ · · · ≤ ak1 ≥ ak1+1 ≥ · · · ≥ ak2 ≤ ak2+1 ≤ · · · ≤ ak3 ≥ · · ·
(with inequalities reversed at indices k1, k2, . . . , kr and an is the last term in
the inequality). Then for 0 < δ < 1 the number of zeros of P (z) in the disk
|z| ≤ δ is less than

1

log(1/δ)
log

M

a0
,

where M = 2
∑r

`=1(−1)`+1ak` + an(1 + (−1)r).

We now give an example showing that Theorem 2.1 is best possible in
certain cases. That is, there exists a polynomial P and a δ, with 0 < δ < 1,
where the number of zeros of P in |z| ≤ δt equals the number predicted by
Theorem 2.1.

Example 2.3. Consider P (z) = 1+10z+z2+1.1z3+0.1z4. The four roots
of P are approximately −10.916, −0.1001, 0.0082 + 3.0131i, and 0.0082 −
3.0131i. We can apply Corollary 2.2 to P with r = 3, ak1 = 10, ak2 = 1,
and ak3 = 1.1. We get M = 2(ak1 − ak2 + ak3) = 20.2 and with δ = 0.20,

1
log(1/δ) log

(
M
a0

)
= 1

log(1/0.2) log
(
20.2
1

)
= 1.8675. So Corollary 2.2 implies that

P has at most 1 zero in |z| ≤ 0.20 and, in fact, P has exactly 1 zero in this
disk. This example shows that Theorem 2.1 is best possible in some cases.

The next example shows that it is possible to use the number of zeros
results to actually locate all zeros of a polynomial. This can be done for a
given n degree polynomial P which satisfies the hypotheses of the result by
finding a value of δ such that the result predicts that n zeros of P lie in the
given disk.

Example 2.4. Consider P (z) = 1 + 2z + z2 + 100z3. We can apply
Corollary 2.2 to P with r = 2, ak1 = 2, ak2 = 1, and an = 100. We

get M = 2(ak1 − ak2 + an) = 202 and with δ = 0.25, 1
log(1/δ) log

(
M
a0

)
=

1
log(1/0.25) log

(
202
1

)
= 3.829. So Corollary 2.1 implies that P has at most 3

zeros in |z| ≤ 0.25. Since P is of degree 3, this means that all of the zeros of
P lie in this disk.

3. Monotonicity condition on the even indexed and odd
indexed coefficients

Cao and Gardner [1] gave an Eneström–Kakeya style result by imposing
a monotonicity condition on the even indexed and odd indexed coefficients
of a polynomial separately.
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Notice that for any n ∈ N, we have:

(i) if n is even, then 2bn/2c = n and 2b(n+ 1)/2c − 1 = n− 1,
(ii) if n is odd, then 2bn/2c = n− 1 and 2b(n+ 1)/2c − 1 = n.

In either case, 2bn/2c is the largest even integer less than or equal to n
and 2b(n + 1)/2c − 1 is the largest odd integer less than or equal to n. We
need this observation when imposing the monotonicity condition on the even
indexed coefficients and odd indexed coefficients, as illustrated in the next
result.

Theorem 3.1. Let P (z) =
n∑
j=0

ajz
j where for some t > 0, for some

0 = 2ke0 < 2ke1 < · · · < 2ker1 < 2ker1+1 = 2bn/2c we have 1

0 < |a0| ≤ t2|a2| ≤ t4|a4| ≤ · · · ≤ t2k
e
1 |a2ke1 | ≥ t

2ke1+1|a2ke1+1| ≥ · · ·

≥ t2ke2 |a2ke2 | ≤ t
2ke2+1|a2ke2+1| ≤ · · · ≤ t2k

e
3 |a2ke3 | ≥ · · ·

(with inequalities reversed at indices 2ke1, 2k
e
2, . . . , 2k

e
r1 and t2bn/2c|a2bn/2c| is

the last term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · <
2kor2 − 1 < 2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

|a1| ≤ t2|a3| ≤ t4|a5| ≤ · · · ≤ t2k
o
1−2|a2ko1−1| ≥ t

2ko1 |a2ko1+1| ≥ · · ·

≥ t2ko2−2|a2ko2−1| ≤ t
2ko2 |a2ko2+1| ≤ · · · ≤ t2k

o
3−2|a2ko3−1| ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . ., 2kor2 − 1 and

t2b(n+1)/2c−2|a2b(n+1)/2c−1| is the last term in the inequality). Also suppose
|arg(aj) − β| ≤ α ≤ π/2 for 0 ≤ j ≤ n and some real α and β. Then for
0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt is less than

1

log(1/δ)
log

M

|a0|
,

where

M = (|a0|t2 + |a1|t3)(1− cosα+ sinα) + (|an−1|tn+1 + |an|tn+2)(1− sinα)

+|a2bn/2c|t2bn/2c+2(−1)r1 cosα+ |a2b(n+1)/2c−1|t2b(n+1)/2c+1(−1)r2 cosα

+2 sinα
n∑
j=0

|aj |tj+2 + 2 cosα

[
r1∑
`=1

(−1)`+1|a2ke` |t
2ke`+2

+

r2∑
`=1

(−1)`+1|a2ko`−1|t
2ko`+1

]
.

1We use a superscript of “e” on the indices ki when dealing with even indexed coeffi-
cients and use a superscript of “o” when dealing with odd indices.
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When r = 1, Theorem 3.1 reduces to Theorem 2.1 of [6].

If the coefficients of polynomial P are real and nonnegative, then we can
take α = 0 in Theorem 3.1. If, in addition, we take t = 1, then we get the
following corollary.

Corollary 3.2. Let P (z) =
n∑
j=0

ajz
j where each ai is real and nonneg-

ative, and for some 0 = 2ke0 < 2ke1 < · · · < 2ker1 < 2ker1+1 = 2bn/2c we
have

0 < a0 ≤ a2 ≤ a4 ≤ · · · ≤ a2ke1 ≥ a2ke1+1 ≥ · · · ≥ a2ke2
≤ a2ke2+1 ≤ · · · ≤ a2ke3 ≥ · · ·

(with inequalities reversed at indices 2ke1, 2ke2, . . ., 2ker1 and a2bn/2c is the
last term in the inequality), and for some 1 = 2ko0 − 1 < 2ko1 − 1 < · · · <
2kor2 − 1 < 2kor2+1 − 1 = 2b(n+ 1)/2c − 1 we have

0 ≤ a1 ≤ a3 ≤ a5 ≤ · · · ≤ a2ko1−1 ≥ a2ko1+1 ≥ · · · ≥ a2ko2−1
≤ a2ko2+1 ≤ · · · ≤ a2ko3−1 ≥ · · ·

(with inequalities reversed at indices 2ko1 − 1, 2ko2 − 1, . . ., 2kor2 − 1 and
a2b(n+1)/2c−1 is the last term in the inequality). Then for 0 < δ < 1 the
number of zeros of P (z) in the disk |z| ≤ δ is less than

1

log(1/δ)
log

M

a0
,

where

M = an−1 + an + a2bn/2c(−1)r1 + a2b(n+1)/2c−1(−1)r2

+2

[
r1∑
`=1

(−1)`+1a2ke` +

r2∑
`=1

(−1)`+1a2ko`−1

]
.

We now give an example showing that Theorem 3.1 is best possible in
certain cases.

Example 3.3. Consider P (z) = 1 + z + 2z2 + 2z3 + z4 + z5 + 1000z6 +
2z7. The seven roots of P are approximately −499.999, −0.2666 + 0.0151i,
−0.2666− 0.0151i, −0.0145 + 0.3073i, −0.0145− 0.3073i, 0.2806 + 0.1839i,
0.2806 − 0.1839i. We can apply Corollary 3.2 to P with r1 = 2, r2 = 2,
a2ko1−1 = 1, a2ke1 = 2, a2ko2−1 = 2, and a2ke2 = 1. We get M = an−1 + an +
an−1 + an + 2[a2ke1 − a2ke2 + a2ko1−1 − a2ko2−1] = 2008, and with δ = 0.336,

1
log(1/δ) log

(
M
a0

)
= 1

log(1/0.336) log
(
2008
1

)
= 6.9728. So Corollary 3.2 implies

that P has at most 6 zeros in |z| ≤ 0.336 and, in fact, P has exactly 6 zeros
in this disk. This example shows that Theorem 3.1 is best possible in some
cases.
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4. Monotonicity condition on the moduli of the coefficients
for polynomials with a gap in the coefficients

Chan and Malik [2] introduced the class of polynomials of the form P (z) =

a0+
n∑
j=µ

ajz
j where µ ≥ 1. They proved a Bernstein inequality (in particular,

a generalization of the Erdös–Lax theorem) for this type polynomials. We
now consider these polynomials and impose a monotonicity condition on the
moduli of the coefficients in order to produce a number of zeros result.

Theorem 4.1. Let P (z) = a0 +

n∑
j=µ

ajz
j for some 1 ≤ µ ≤ n, where

a0 6= 0 and for some t > 0 and some 1 ≤ µ = k0 < k1 < · · · < kr < kr+1 = n
we have

tµ|aµ| ≤ tµ+1|aµ+1| ≤ tµ+2|aµ+2| ≤ · · · ≤ tk1 |ak1 | ≥ tk1+1|ak1+1| ≥ · · ·

≥ tk2 |ak2 | ≤ tk2+1|ak2+1| ≤ · · · ≤ tk3 |ak3 | ≥ · · ·
(with inequalities reversed at indices k1, k2, . . . , kr and tn|an| is the last term
in the inequality). Also suppose |arg(aj)− β| ≤ α ≤ π/2 for 0 ≤ j ≤ n and
some real α and β. Then for 0 < δ < 1 the number of zeros of P (z) in the
disk |z| ≤ δt is less than

1

log(1/δ)
log

M

|a0|
,

where

M = 2|a0|t+ |aµ|tµ+1(1− cosα− sinα) + 2 cosα
r∑
`=1

(−1)`+1|ak` |t
k`+1

+2 sinα
n∑
j=µ

|aj |tj+1 + |an|tn+1(1 + sinα+ (−1)r cosα).

If the coefficients of polynomial P are real and nonnegative, then we can
take α = 0 in Theorem 4.1. If, in addition, we take t = 1, then we get the
following corollary.

Corollary 4.2. Let P (z) = a0 +

n∑
j=µ

ajz
j where each ai is real and non-

negative, and for some 1 ≤ µ = k0 < k1 < · · · < kr < kr+1 = n we have

0 < aµ ≤ aµ+1 ≤ aµ+2 ≤ · · · ≤ ak1 ≥ ak1+1 ≥ · · · ≥ ak2

≤ ak2+1 ≤ · · · ≤ ak3 ≥ · · ·
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(with inequalities reversed at indices k1, k2, . . . , kr and an is the last term in
the inequality). Then for 0 < δ < 1 the number of zeros of P (z) in the disk
|z| ≤ δ is less than

1

log(1/δ)
log

M

|a0|
,

where

M = 2a0 + 2

r∑
`=1

(−1)`+1ak` + ant
n+1(1 + (−1)r).

We now give an example showing that Theorem 3.1 is best possible in
certain cases.

Example 4.3. Consider P (z) = 1+8z2+8z3+z4+1.1z5+0.1z6. The six
roots of P are approximately −10.6988, −1.0925, 0.0526 + 0.3347i, 0.0526−
0.3347i, 0.3430 + 2.7088i, and 0.3430 − 2.7088i. We can apply Corollary
4.2 to P with r = 3, ak1 = 8, ak2 = 1, and ak3 = 1.1. We get M =

2a0 + 2(ak1 − ak2 + ak3) = 18.2 and with δ = 0.35, 1
log(1/δ) log

(
M
a0

)
=

1
log(1/0.35) log

(
18.2
1

)
= 2.7637. So Corollary 4.2 implies that P has at most

2 zeros in |z| ≤ 0.35 and, in fact, P has exactly 2 zeros in this disk. This
example shows that Theorem 4.1 is best possible in some cases.

5. Proofs of theorems

We need as a lemma a result which appears in Titchmarsh’s book [9], page
171.

Lemma 5.1. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤M in the disk
|z| ≤ R and suppose F (0) 6= 0. Then for 0 < δ < 1 the number of zeros of
F (z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|F (0)|
.

The following is due to Govil and Rahman and appears in [7].

Lemma 5.2. Let z, z′ ∈ C with |z| ≥ |z′|. Suppose |arg(z∗−β)| ≤ α ≤ π/2
for z∗ ∈ {z, z′} and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cosα+ (|z|+ |z′|) sinα.

We now give proofs of our three main theorems.

Proof of Theorem 2.1. Consider

F (z) = (t− z)P (z) = (t− z)
n∑
j=0

ajz
j =

n∑
j=0

(ajtz
j − ajzj+1)
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= a0t+
n∑
j=1

ajtz
j −

n∑
j=1

aj−1z
j − anzn+1 = a0t+

n∑
j=1

(ajt− aj−1)zj − anzn+1.

For |z| = t we have

|F (z)| ≤ |a0|t+
n∑
j=1

|ajt− aj−1|tj + |an|tn+1

= |a0|t+

k1∑
j=1

|ajt− aj−1|tj +

k2∑
j=k1+1

|aj−1 − ajt|tj

+

k3∑
j=k2+1

|aj−1 − ajt|tj +

k4∑
j=k3+1

|aj−1 − ajt|tj +

· · ·+
kr−1∑

j=kr−2+1

|aj−1 − ajt|tj +

kr∑
j=kr−1+1

|aj−1 − ajt|tj

+
n∑

j=kr+1

|aj−1 − ajt|tj + |an|tn+1

= |a0|t+

r∑
`=0

 k`+1∑
j=k`+1

|aj + aj−1|tj
+ |an|tn+1

≤ |a0|t+
r∑
`=0

` even

 k`+1∑
j=k`+1

{(|aj |t− |aj−1|) cosα

+(|aj−1|+ |aj |t) sinα}tj
)

+

r∑
`=0
` odd

 k`+1∑
j=k`+1

{(|aj−1| − |aj |t) cosα

+(|aj |t+ |aj−1|) sinα}tj
)

+ |an|tn+1

by Lemma 5.2 with z = ajt and z′ = aj−1 for ` even;

and z = aj−1 and z′ = ajt for ` odd

= |a0|t+
r∑
`=0

` even

(−1)`
[
−|ak` |t

k`+1 + |ak`+1
|tk`+1+1

]
cosα

+

r∑
`=0
` odd

(−1)`
[
−|ak` |t

k`+1 + |ak`+1
|tk`+1+1

]
cosα
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+|a0|t sinα+ 2
n−1∑
j=1

|aj |tj+1 sinα+ |an|tn+1 sinα+ |an|tn+1

= |a0|t(1 + sinα) +
[
−|ak0 |tk0+1 + |ak1 |tk1+1

]
cosα+

[
|ak1 |tk1+1

−|ak2 |tk2+1
]

cosα+ · · ·+ (−1)r
[
−|akr |tkr+1 + |akr+1 |tkr+1+1

]
cosα

+2
n−1∑
j=1

|aj |tj+1 sinα+ |an|tn+1(1 + sinα)

= |a0|t(1− cosα− sinα) + 2 cosα
r∑
`=1

(−1)`+1|ak` |t
k`+1

+2 sinα

n−1∑
j=0

|aj |tj+1 + |an|tn+1(1 + sinα+ (−1)r cosα) = M.

Now F (z) is analytic in |z| ≤ t, and |F (z)| ≤ M for |z| = t. So by Lemma
5.1 and the Maximum Modulus Theorem, the number of zeros of F (and
hence of P ) in |z| ≤ δt is less than or equal to

1

log 1/δ
log

M

|a0|
.

The result now follows. �

Proof of Theorem 3.1. Consider

G(z) = (t2 − z2)P (z) = (t2 − z2)
n∑
j=0

ajz
j

= a0t
2 + a1t

2z +
n∑
j=2

(ajt
2 − aj−2)zj − an−1zn+1 − anzn+2.

For |z| = t we have

|G(z)| ≤ |a0|t2 + |a1|t3 +
n∑
j=2

|ajt2 − aj−2t|tj + |an−1|tn+1 + |an|tn+2

= |a0|t2 + |a1|t3 +

2bn/2c∑
j=2

j even

|ajt2 − aj−2|tj +

2b(n+1)/2c−1∑
j=3

j odd

|ajt2 − aj−2|tj

+|an−1|tn+1 + |an|tn+2
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= |a0|t2 + |a1|t3 +

r1∑
`=0


2ke`+1∑
j=2ke

`
+2

j even

|ajt2 − aj−2|tj



+

r2∑
`=0


2ko`+1−1∑
j=2ko

`
+1

j odd

|ajt2 − aj−2|tj

+ |an−1|tn+1 + |an|tn+2

≤ |a0|t2 + |a1|t3

+

r1∑
`=0

` even


2ke`+1∑
j=2ke

`
+2

j even

{
(|aj |t2 − |aj−2|) cosα+ (|aj−2|+ |aj |t2) sinα

}
tj



+

r1∑
`=1

` odd


2ke`+1∑
j=2ke

`
+2

j even

{
(|aj−2| − |aj |t2) cosα+ (|aj−2|+ |aj |t2) sinα

}
tj



+

r2∑
`=0

` even


2ko`+1−1∑
j=2ko

`
+1

j odd

{
(|aj |t2 − |aj−2|) cosα+ (|aj−2|+ |aj |t2) sinα

}
tj



+

r2∑
`=1

` odd


2ko`+1−1∑
j=2ko

`
+1

j odd

{
(|aj−2| − |aj |t2) cosα+ (|aj−2|+ |aj |t2) sinα

}
tj


+|an−1|tn+1 + |an|tn+2

by Lemma 5.2 with z = ajt and z′ = aj−2 for ` even;

and z = aj−2 and z′ = ajt for ` odd

= |a0|t2(1− cosα+ sinα) + |a1|t3(1− cosα+ sinα)

+2

r1∑
`=1

(−1)`+1|a2ke` |t
2ke`+2 cosα+ 2

r1∑
`=1

|a2ke` |t
2ke`+2 sinα

+2 sinα

r1∑
`=0


2ke`+1−2∑
j=2ke

`
+2

j even

|aj |tj+2

+ 2

r2∑
`=1

(−1)`+1|a2ko`−1|t
2ko`+1 cosα
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+2

r2∑
`=1

|a2ko`−1|t
2ko`+1 sinα+ 2 sinα

r2∑
`=0


2ko`+1−3∑
j=2ko

`
+1

j odd

|aj |tj+2


+|an−1|tn+1(1 + sinα) + |an|tn+1(1 + sinα)

+|a2bn/2c|t2bn/2c+2(−1)r1 cosα

+|a2b(n+1)/2c−1|t2b(n+1)/2c+1(−1)r2 cosα

= |a0|t2(1− cosα+ sinα) + |a1|t3(1− cosα+ sinα)

+|a2bn/2c|t2bn/2c+2(−1)r1 cosα

+|a2b(n+1)/2c−1|t2b(n+1)/2c+1(−1)r2 cosα

+|an−1|tn+1(1 + sinα) + |an|tn+2(1 + sinα)

+2 sinα

2bn/2c−2∑
j=2

j even

|aj |tj+2

+ 2 sinα

2b(n+1)/2c−3∑
j=3

j odd

|aj |tj+2


+2 cosα

[
r−1∑
`=1

(−1)`+1|a2ke` |t
2ke`+2 +

r2∑
`=1

(−1)`+1|a2ko`−1|r
2ko`+1

]
= (|a0|t2 + |a1|t3)(1− cosα+ sinα) + (|an−1|tn+1 + |an|tn+2)(1− sinα)

+|a2bn/2c|t2bn/2c+2(−1)r1 cosα

+|a2b(n+1)/2c−1|t2b(n+1)/2c+1(−1)r2 cosα

+2 sinα

n∑
j=0

|aj |tj+2 + 2 cosα

[
r1∑
`=1

(−1)`+1|a2ke` |t
2ke`+2

+

r2∑
`=1

(−1)`+1|a2ko`−1|t
2ko`+1

]
= M.

The result now follows as in the proof of Theorem 2.1. �

Proof of Theorem 4.1. Consider

F (z) = (t−z)P (z) = (t−z)

a0 +
n∑
j=µ

ajz
j

 = a0(t−z)+
n∑
j=µ

(ajtz
j−ajzj+1)

= a0(t− z) +

n∑
j=µ

ajtz
j −

n+1∑
j=µ+1

aj−1z
j
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= a0(t− z) + aµtz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1.

For |z| = t we have

|F (z)| ≤ 2|a0|t+ |aµ|tµ+1 +

n∑
j=µ+1

|ajt− aj−1|tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +

k1∑
j=µ+1

|ajt− aj−1|tj +

k2∑
j=k1+1

|aj−1 − ajt|tj

+

k3∑
j=k2+1

|ajt− aj−1|tj +

k4∑
j=k3+1

|aj−1 − ajt|tj

+ · · ·+
kr−1∑

j=kr−2+1

|ajt− aj−1|tj +

kr∑
j=kr−1+1

|ajt− aj−1|tj

+
n∑

j=kr+1

|ajt− aj−1|tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +
r∑
`=0

 k`+1∑
j=k`+1

|ajt− aj−1|tj
+ |an|tn+1

≤ 2|a0|t+ |aµ|tµ+1 +
r∑
`=0

` even

 k`+1∑
j=k`+1

{(|aj |t− |aj−1|) cosα

+(|aj−1|+ |aj |t) sinα}tj
)

+
r∑
`=0
` odd

 k`+1∑
j=k`+1

{(|aj−1| − |aj |t) cosα+ (|aj |t+ |aj−1|) sinα}tj


+|an|tn+1

by Lemma 5.2 with z = ajt and z′ = aj−1 for ` even;

and z = aj−1 and z′ = ajt for ` odd

= 2|a0|t+ |aµ|tµ+1(1 + sinα)

+

r∑
`=0

` even

(−1)`
[
−|ak` |t

k`+1 + |ak`+1
|tk`+1+1

]
cosα



148 DEREK BRYANT AND ROBERT GARDNER

+
r∑
`=0
` odd

(−1)`
[
−|ak` |t

k`+1 + |ak`+1
|tk`+1+1

]
cosα

+|aµ|tµ+1 sinα+ 2

n−1∑
j=µ+1

|aj |tj+1 sinα+ |an|tn+1 sinα+ |an|tn+1

= 2|a0|t+ |aµ|tµ+1(1 + sinα)

+
r∑
`=0

(−1)`
[
−|ak` |t

k`+1 + |ak`+1
|tk`+1+1

]
cosα

+2

n−1∑
j=µ+1

|aj |tj+1 sinα+ |an|tn+1(1 + sinα)

= 2|a0|t+ |aµ|tµ+1(1− cosα− sinα) + 2

r∑
`=1

(−1)`+1|ak` |t
k`+1 cosα

+2
n−1∑
j=µ

|aj |tj+1 sinα+ |an|tn+1(1 + sinα+ (−1)r cosα).

The result now follows as in the proof of Theorem 2.1. �
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(2) 20 (1968), 126–136.



RESULTS ON THE NUMBER OF ZEROS OF POLYNOMIALS 149

[8] M. S. Pukhta, On the zeros of a polynomial, Appl. Math. 2 (2011), 1356–1358.
[9] E. C. Titchmarsh, The Theory of Functions, 2nd Edition, Oxford University Press,

London, 1939.

Wythe County Public Schools, Wytheville, VA 24382, USA

Department of Mathematics and Statistics, East Tennessee State Univer-
sity, Johnson City, Tennessee 37614, USA

E-mail address: gardnerr@etsu.edu


