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Certain Diophantine equations involving balancing
and Lucas-balancing numbers

PrasaNnTA KuMAR RAY

ABSTRACT. It is well known that if x is a balancing number, then the
positive square root of 822 + 1 is a Lucas-balancing number. Thus, the
totality of balancing number x and Lucas-balancing number y are seen to

be the positive integral solutions of the Diophantine equation 8z% 4+ 1 =

y?. In this article, we consider some Diophantine equations involving

balancing and Lucas-balancing numbers and study their solutions.

1. Introduction

The concept of balancing numbers came into existence after the paper
[2] by Behera and Panda wherein, they defined a balancing number n as a
solution of the Diophantine equation 1+2+---+(n—1) = (n+1)+(n+2)+
-+« + (n+r), calling r the balancers corresponding to n. They also proved
that, x is a balancing number if and only if 822 4 1 is a perfect square. In a
subsequent paper [7], Panda studied several fascinating properties of balanc-
ing numbers calling the positive square root of 822 + 1, a Lucas-balancing
number for each balancing number z. In [7], Panda observed that the Lucas-
balancing numbers are associated with balancing numbers in the way Lucas
numbers are attached to Fibonacci numbers. Thus, all balancing numbers z
and corresponding Lucas-balancing numbers y are positive integer solutions
of the Diophantine equation 822 + 1 = y?. Though the relationship between
balancing and Lucas-balancing numbers is non-linear, like Fibonacci and
Lucas numbers, they share the same linear recurrence z,4+1 = 6z, — Tn_1,
while initial values of balancing numbers are zop = 0, 1 = 1 and for Lucas-
balancing numbers zg = 1, 1 = 3. Demirtiirk and Keskin [3] studied certain
Diophantine equations relating to Fibonacci and Lucas numbers. Recently,
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Keskin and Karaatli [4] have developed some interesting properties for bal-
ancing numbers and square triangular numbers. Alvarado et al. [1], Liptai
[5, 6], and Szalay [20] studied certain Diophantine equations relating to bal-
ancing numbers. The objective of this paper is to study some Diophantine
equations involving balancing and Lucas-balancing numbers. The solutions
are obtained in terms of these numbers.

2. Preliminaries

In this section, we present some definitions and identities on balancing and
Lucas-balancing numbers which we need in the sequel. As usual, we denote
the n** balancing and Lucas-balancing numbers by B,, and C,,, respectively.
It is well known from [7] that C,, = \/8B2 + 1. The sequences {B,} and
{C},} satisfy the recurrence relations

Bn+1 =6B,—Bp-1, Bo=0, B1 = 1; Cn+1 = GCn_Cnfla Co = 1, C1 = 3.

The balancing numbers and Lucas balancing numbers can also be defined
for negative indices by modifying their recurrences as

B,_1 =68, — Bn+1; Ch-1 =6C,, — Cn—l—l,

and calculating backwards. It is easy to see that B_; = —1. Because By = 0,
we can check easily that all negatively subscripted balancing numbers are
negative and that B_,, = —B,,. By a similar argument, it is easy to verify

that C_,, = C,. Binet’s formulas for balancing and Lucas-balancing numbers
are, respectively,

2n _ . 2n 2n 2n
_ M Y do, =N +0¢27
4/2 2
where a1 = 14+ v/2, as = 1 — /2, which are units of the ring Z(ﬂ) The
totality of units of Z(1/2) is given by

U= {0/1170/217 —Oé?, _ag} ‘ne Z}

The set U can be partitioned into two subsets U; and Us such that U; =
{ueU:uu=1} and Uy = {u € U : vt = —1}. Since a7 = ag and ajag =
—1, it follows that

_ 2n 2n 2n 2n
U ={ai",a5", —ai", —a3" :n € Z},

_ 2n+1 2n+1 2n+1 2n+1 .,
Uy={a]"",a3", —a]"", —a5""" :n € Z}.

We also write A\ = oz% =3+ \/g, Ay = a% =3 —+/8 and therefore, we
have AiA9 = 1. Thus, the set U; can be written as

U = {Xila 37* 1117*)‘121 ine Z}
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We also need the following identities (see [9]) while establishing certain
identities and solving some Diophantine equations in the subsequent section.
The first identity is

B2 =B, 1Bp1+ 1.
Using the recurrence relation B,,+1 = 6B, — Bj,_1, the identity reduces to
B?2 -6B,B, 1+ B> =1,

which we may call as Cassini’s formula for balancing numbers. Similar iden-
tities for Lucas-balancing numbers are

Cg = Cp-1Cp41 — 8, Cg = 6CnCrp1 + Cg_l = -8

The idea of naming the identity as Cassini’s formula comes from the lit-
erature, where this formula for Fibonacci numbers

Fp 1Fp1 — F2 = (—1)" or, equivalently, F? — F,F,y1 — F2_; = (=1)""!
is available. Some other important identities are found in [8, 9]:

Bn+1 - Bn—l = 2Cn7 Cn+1 - Cn—l = 16Bn7

Bm+n = BnCn + CmBna Bin—n = BinCpn — Cip B,

Cm+n = CnCn + 8B B, Crm—n = CnCp — 8By, B,

Cm+n = Bm+1Cn - Cnlem-

3. Some identities involving balancing and Lucas-balancing
numbers

There are several known identities involving balancing, cobalancing and
Lucas-balancing numbers. The interested readers are referred to [7]-[19]. In
this section, we only present some new identities involving balancing and
Lucas-balancing numbers.

The following two theorems are about nonlinear identities on balancing
and Lucas-balancing numbers.

Theorem 3.1. For any three integers k, m and n,
CQ

m+n

+16Bt—nCrin Bk = 8B . + C3_,,.

Proof. By virtue of the identities By,+, = B,C, £ Cpy B, and Crqp =
Cp,C,, =+ 8B,,B,,, we obtain

Bi Ci | |Bm| |Bm+tk|’
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Since Cn 8Bn| _ C),—r which never vanishes, we have
B, C;
Cnl _[Cn 8By] ' [Coin] . 1 [Cr  —8B,] [Consn
Bn]  |Br Gk Brik|  Cup |=Br Cn | |Bmtk]’

This implies that

C. — CkaJrn — SBan—I—k
'm =

Can-‘,-k - SBkaJrn
and By, = .
Cn—k " Cn—k
Since C2, — 8B2, = 1, we have
|:Ck0m+n - 8Ban-i-k:| 2 _8 |:Can+k - 8Bkcm+n:| 2 -1
Cn—k; Cn—k ’

from which the identity follows. O

Theorem 3.2. If k, m and n are three integers such that k # n, then
02

m—+n

Proof. By virtue of the identities By,4+n = BnCp £ Cp B, and Chqp =
CnC,, £ 8B,,B,,, we obtain

Cr 8Bgp| |Bm| |Bm+k]|’

= —8B,,_k, and because k # n, this determinant is non-

+C2 e+ 8B, = 2Ck—nCrinCrmsk.

C, 8B,
Cr 8By
vanishing. Therefore, we have

Cnl _[Cn 8Bu] ' [Coin] 1 [8By —8B,] [Consn
B,,|  |C. 8By Btk _Bn—k -C, —-C, Bk’

Since

which implies that

_Bkcm—i-n - BnCerk and B, — _CnCm+k - Cka+n
Sank " 8ank .

Since C2, — 8B2, = 1, we have

Bka-‘rn - BnCerk 2 _8 CnCm+k - Ckcm-I—n 2 -1
8ank 8Bn7k ,

and the required identity follows. O

Cm =

Using the matrix multiplication

Bn Cn ! Cm _ Bm+n
B, Cy Bpn| | Bmtk]|’

it is easy to prove the following theorem.
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Theorem 3.3. If k, m and n are three integers such that k # n, then
B2

m—+n

+ Br2n+k: - Bl%fn = 2Ck—nBminBm+k-

4. Some Diophantine equations involving balancing and
Lucas-balancing numbers

The identities of Section 3 induce the following three Diophantine equa-
tions:

22 +16B,zy — 8y* = C2, (4.1)
2 — 20,y + v+ C2 =1,
z? - 2C,xy + y* = B2.
Before the study of these equations, we present the Diophantine equation
22— 6ry+y® =1 (4.4)

resulting out of Casini’s formula for balancing numbers. The following the-
orem shows that all solutions of (4.4) are consecutive pairs of balancing
numbers only.

Theorem 4.1. All solutions of the Diophantine equation (4.4) are con-
secutive pairs of balancing numbers only.

Proof. After factorization, the Diophantine equation (4.4) takes the form
(Mz —y)(Aer —y) = 1,

where A\; = 3+1/8, Ay = 3— /8. This suggests that (Mz—y) and (Aex — )
are units of Z(+/2), conjugate to each other, and are members of U;. Thus
for some integer n, we have the following four cases.

Case 1: (Max —y) = AT and (Ao — y) = A3,
Case 2: (Mx —y) = Ay and (Ao — y) = AT,
Case 3: (Mx —y) = —AT and (\ox — y) = —\3,
Case 4: (Mx —y) ==Xy and (\ex — y) = —AT.

Solving the equation for Case 1, using Cramer’s rule, we find

AD —1‘ AL AT

- )\g —1 _ A?‘—)\SL :BT“ y = )\2 )\g _ )\'il_l_)\g—l :Bn_l.
M 1] A=A N -1 M — o
Ay —1 Ay —1
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The solution in Case 2 is

A —1 Al Ap
A1 A2 AT

T = ﬁ =—-B,=B_,, y= N -1 =By = B—(n+1)'
Ao —1’ Ay —1

Finally, the solutions in Case 3 and Case 4 are, respectively,
r=DB_n, y=B_(n-1)and x = By, y = Bpy1.
Thus, in all cases, the solutions of the Diophantine equation (4.4) are con-

secutive pairs of balancing numbers only. O

Using Theorem 4.1, we can find solutions of a Diophantine equation de-
rived from the identity of Theorem 3.1.

Theorem 4.2. All solutions of the Diophantine equation (4.1) are
(1‘, y) = (Cm—m Bm), (_Cm—i-m Bm); (_Cm—ny _Bm)7 (Cm—i-m _Bm) (4-5)
form,n € Z.

Proof. The equation (4.1) can be rewritten as
(z+8Bny)* = Ca(8y” + 1),
implying that 83241 is a perfect square. Hence, y is a balancing number. So,
we may take y = £B,, (y = —B,, is equivalent to y = B_,;,),8y*> + 1 = C2,.
When y = B,,, we have ¢ = -8B,,B, + C,,,C,, or x = 8B,,B, + C,,,C,
and therefore, x = £C,,C,, — 8B, By, i.e. * = Cp—py or —Ciyyr,. When
y = — B, we have x = —C),,_, or Cp,1. Thus, the totality of solutions of
(4.1) is given by (4.5) for m,n € Z. O

Theorem 4.3. All solutions of the Diophantine equation (4.2) are given
by

(a:, y) = (_Cm—nu Cm); (_Cm-‘,-ny Cm)a (Om+n7 _Cm)a (Cm—na _Cm) (46)
form,n € Z.

Proof. The equation (4.2) can be rewritten as
(z+ Coy)® = (C7 = D(y* — 1) =8B (y* — 1),

implying that 8(y2 — 1) is a perfect square. Thus, ¥ is odd and hence 3’28—_1 is

a perfect square. Since y—gl and y%l are consecutive integers, it follows that

2
yT_l is a square triangular number. That is, it is the square of a balancing
number, say




DIOPHANTINE EQUATIONS INVOLVING BALANCING NUMBERS 171

and hence y? = 8B2 + 1 for some m, so that y = +C,,. Consequently,
(x + Chy)? = 8B2(y? — 1) is equivalent to x + Cy,C, = £8B,, B, if y = Cyp,,
and x — C,C,, = 8B, B,, if y = —C,. Thus, the totality of solutions of
(4.2) is given by (4.6) for m,n € Z. O

In the following theorem, we consider the Diophantine equation (4.3)

which may be considered as a generalization of the Diophantine equation
discussed in Theorem 4.1.

Theorem 4.4. All solutions of the Diophantine equation (4.3) are given
by
(.I, y) = (Bm*na Bm)7 (_Berna _Bm)a (—Bm,n, _Bm)a (Cm+n> _Bm)
(4.7)
form,n € Z.

Proof. The equation (4.3) can be rewritten as
(z+ Coy)? = (Ch = D(y* — 1) = Ba(8y* + 1),

which suggests that 8y? + 1 is a perfect square. Thus, y = +B,, (as usual
y = —B,, is equivalent to y = B_,;,) and hence 8y> + 1 = C2. Now z can
be obtained from x + C, = +£C,,B,, and therefore, the totality of solutions
is given by (4.7) for m,n € Z. O

In the remaining theorems, we present some Diophantine equations where
the proofs require certain divisibility properties of balancing and Lucas-
balancing numbers.

Theorem 4.5. The solutions of the Diophantine equation
22 +2C,zy +yt =1 (4.8)
are given by
(z,y) = (Bg:l)n, l;?) ) <B(chn—1)n’ lj;f) (m,n € Z). (4.9)
Proof. The equation (4.8) can be rewritten as
(x+Cuy)* = (Cr = 1)(y* — 1) = 8By’ + 1,

which suggests that B,y is a balancing number. Letting B,y = B,,, we have
Yy = %:, and since y is an integer, it follows that B,, divides B,,. Hence by
Theorem 2.8 in [7] (see also [4]), n divides m. Thus, m = nk for some integer

kand y = B,ﬁ’;’“. Further,
(z+ Coy)? = 8B2y* +1=8B%, +1=C2,
and hence = + C,y = £C);. It follows that,

an -B n —B(x— n
C Ep, = ZDk+) (k=1)n

YT 7B, B, ' B
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Thus, the totality of solutions of (4.8) is given by (4.9). O

The following theorem that resembles Theorem 4.2 deals with a Diophan-
tine equation whose proof requires conditions under which a Lucas-balancing
numbers divides balancing and Lucas-balancing numbers.

Theorem 4.6. The solutions of the Diophantine equation x>+ 16B,xy —
8y% =1 are given by

—Cletyn Baktn Corn Bk+1)n

Proof. The equation 22 4+ 16 B2y — 8y> = 1 can be rewritten as
(z + 8Bny)? = 8C*y* +1,
implying that 8C2y? + 1 is a perfect square and C,y is a balancing number,
say Cny = B, hence C,, divides B,,. It is easy to see that this is possible if

and only if m is an even multiple of n, and hence m = 2kn for some integer
k. Thus, y = Bc%—fl". Further,

(x4 8Bny)*> =8B3,, +1=C%,,

and hence SB. B
r = _8Bny + Can - %M + Can'
n
Therefore, the totality of solutions is given by (4.10). O

Lastly, we present a theorem which is a variant of Theorems 3.1 and 4.5.
Theorem 4.7. The solutions of the Diophantine equation
x? —2C,zy +y* = —8B2 (4.11)
are given by
(2,y) = (Cn—n, Cn); (Cimsns Cm), (—Crmtny —=Cm), (—Crn, —C)  (4.12)
form,n € Z.

Proof. The equation (4.11) can be rewritten as (z — Cpy)? = 8B2(y* — 1),
which suggests that 8(y? — 1) is a perfect square. Hence y is odd and

1 -1 1
8(y2_1):645.y7.%.
Since nyl and yTH are consecutive integers, it follows that % - nyl . y—;rl is

a square triangular number and hence is equal to the square of a balancing

number (see [2]), say,
1 y—1 y+1 9
A SN >
2 2 2 m
for some m and we have 8(y* — 1) = 64B2,. Thus, y?> = 8B2, +1 = C?,

implying that y = +C,,, and the equation (z — Chy)? = 8B2(y?> — 1) is
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reduced to (x — Cpy)? = 64B2 B2. Therefore, x — Cp,y = +8B,,B,, and the
solutions of the equation (4.11) are given by (4.12) for m,n € Z. O
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