
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA

Volume 20, Number 2, December 2016
Available online at http://acutm.math.ut.ee

Certain Diophantine equations involving balancing
and Lucas-balancing numbers

Prasanta Kumar Ray

Abstract. It is well known that if x is a balancing number, then the
positive square root of 8x2 + 1 is a Lucas-balancing number. Thus, the
totality of balancing number x and Lucas-balancing number y are seen to
be the positive integral solutions of the Diophantine equation 8x2 +1 =
y2. In this article, we consider some Diophantine equations involving
balancing and Lucas-balancing numbers and study their solutions.

1. Introduction

The concept of balancing numbers came into existence after the paper
[2] by Behera and Panda wherein, they defined a balancing number n as a
solution of the Diophantine equation 1+2+ · · ·+(n−1) = (n+1)+(n+2)+
· · · + (n + r), calling r the balancers corresponding to n. They also proved
that, x is a balancing number if and only if 8x2 + 1 is a perfect square. In a
subsequent paper [7], Panda studied several fascinating properties of balanc-
ing numbers calling the positive square root of 8x2 + 1, a Lucas-balancing
number for each balancing number x. In [7], Panda observed that the Lucas-
balancing numbers are associated with balancing numbers in the way Lucas
numbers are attached to Fibonacci numbers. Thus, all balancing numbers x
and corresponding Lucas-balancing numbers y are positive integer solutions
of the Diophantine equation 8x2 + 1 = y2. Though the relationship between
balancing and Lucas-balancing numbers is non-linear, like Fibonacci and
Lucas numbers, they share the same linear recurrence xn+1 = 6xn − xn−1,
while initial values of balancing numbers are x0 = 0, x1 = 1 and for Lucas-
balancing numbers x0 = 1, x1 = 3. Demirtürk and Keskin [3] studied certain
Diophantine equations relating to Fibonacci and Lucas numbers. Recently,
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Keskin and Karaatli [4] have developed some interesting properties for bal-
ancing numbers and square triangular numbers. Alvarado et al. [1], Liptai
[5, 6], and Szalay [20] studied certain Diophantine equations relating to bal-
ancing numbers. The objective of this paper is to study some Diophantine
equations involving balancing and Lucas-balancing numbers. The solutions
are obtained in terms of these numbers.

2. Preliminaries

In this section, we present some definitions and identities on balancing and
Lucas-balancing numbers which we need in the sequel. As usual, we denote
the nth balancing and Lucas-balancing numbers by Bn and Cn, respectively.
It is well known from [7] that Cn =

√
8B2

n + 1. The sequences {Bn} and
{Cn} satisfy the recurrence relations

Bn+1 = 6Bn−Bn−1, B0 = 0, B1 = 1; Cn+1 = 6Cn−Cn−1, C0 = 1, C1 = 3.

The balancing numbers and Lucas balancing numbers can also be defined
for negative indices by modifying their recurrences as

Bn−1 = 6Bn −Bn+1; Cn−1 = 6Cn − Cn+1,

and calculating backwards. It is easy to see that B−1 = −1. Because B0 = 0,
we can check easily that all negatively subscripted balancing numbers are
negative and that B−n = −Bn. By a similar argument, it is easy to verify
that C−n = Cn. Binet’s formulas for balancing and Lucas-balancing numbers
are, respectively,

Bn =
α2n
1 − α2n

2

4
√

2
and Cn =

α2n
1 + α2n

2

2
,

where α1 = 1 +
√

2, α2 = 1 −
√

2, which are units of the ring Z(
√

2). The
totality of units of Z(

√
2) is given by

U = {αn
1 , α

n
2 ,−αn

1 ,−αn
2} : n ∈ Z}.

The set U can be partitioned into two subsets U1 and U2 such that U1 =
{u ∈ U : uu = 1} and U2 = {u ∈ U : uu = −1}. Since α1 = α2 and α1α2 =
−1, it follows that

U1 = {α2n
1 , α2n

2 ,−α2n
1 ,−α2n

2 : n ∈ Z},
U2 = {α2n+1

1 , α2n+1
2 ,−α2n+1

1 ,−α2n+1
2 : n ∈ Z}.

We also write λ1 = α2
1 = 3 +

√
8, λ2 = α2

2 = 3 −
√

8 and therefore, we
have λ1λ2 = 1. Thus, the set U1 can be written as

U1 = {λn1 , λn2 ,−λn1 ,−λn2 : n ∈ Z}.
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We also need the following identities (see [9]) while establishing certain
identities and solving some Diophantine equations in the subsequent section.
The first identity is

B2
n = Bn−1Bn+1 + 1.

Using the recurrence relation Bn+1 = 6Bn −Bn−1, the identity reduces to

B2
n − 6BnBn−1 +B2

n−1 = 1,

which we may call as Cassini’s formula for balancing numbers. Similar iden-
tities for Lucas-balancing numbers are

C2
n = Cn−1Cn+1 − 8, C2

n − 6CnCn+1 + C2
n−1 = −8.

The idea of naming the identity as Cassini’s formula comes from the lit-
erature, where this formula for Fibonacci numbers

Fn−1Fn+1 − F 2
n = (−1)n or, equivalently, F 2

n − FnFn+1 − F 2
n−1 = (−1)n−1

is available. Some other important identities are found in [8, 9]:

Bn+1 −Bn−1 = 2Cn, Cn+1 − Cn−1 = 16Bn,

Bm+n = BmCn + CmBn, Bm−n = BmCn − CmBn,

Cm+n = CmCn + 8BmBn, Cm−n = CmCn − 8BmBn,

Cm+n = Bm+1Cn − Cn−1Bm.

3. Some identities involving balancing and Lucas-balancing
numbers

There are several known identities involving balancing, cobalancing and
Lucas-balancing numbers. The interested readers are referred to [7]–[19]. In
this section, we only present some new identities involving balancing and
Lucas-balancing numbers.

The following two theorems are about nonlinear identities on balancing
and Lucas-balancing numbers.

Theorem 3.1. For any three integers k, m and n,

C2
m+n + 16Bk−nCm+nBm+k = 8B2

m+k + C2
k−n.

Proof. By virtue of the identities Bm±n = BmCn ± CmBn and Cm±n =
CmCn ± 8BmBn, we obtain[

Cn 8Bn

Bk Ck

] [
Cm

Bm

]
=

[
Cm+n

Bm+k

]
.



168 PRASANTA KUMAR RAY

Since

∣∣∣∣Cn 8Bn

Bk Ck

∣∣∣∣ = Cn−k which never vanishes, we have[
Cm

Bm

]
=

[
Cn 8Bn

Bk Ck

]−1 [
Cm+n

Bm+k

]
=

1

Cn−k

[
Ck −8Bn

−Bk Cn

] [
Cm+n

Bm+k

]
.

This implies that

Cm =
CkCm+n − 8BnBm+k

Cn−k
and Bm =

CnBm+k − 8BkCm+n

Cn−k
.

Since C2
m − 8B2

m = 1, we have[
CkCm+n − 8BnBm+k

Cn−k

]2
− 8

[
CnBm+k − 8BkCm+n

Cn−k

]2
= 1,

from which the identity follows. �

Theorem 3.2. If k, m and n are three integers such that k 6= n, then

C2
m+n + C2

m+k + 8B2
k−n = 2Ck−nCm+nCm+k.

Proof. By virtue of the identities Bm±n = BmCn ± CmBn and Cm±n =
CmCn ± 8BmBn, we obtain[

Cn 8Bn

Ck 8Bk

] [
Cm

Bm

]
=

[
Cm+n

Bm+k

]
.

Since

∣∣∣∣Cn 8Bn

Ck 8Bk

∣∣∣∣ = −8Bn−k, and because k 6= n, this determinant is non-

vanishing. Therefore, we have[
Cm

Bm

]
=

[
Cn 8Bn

Ck 8Bk

]−1 [
Cm+n

Bm+k

]
=

1

Bn−k

[
8Bk −8Bn

−Ck −Cn

] [
Cm+n

Bm+k

]
,

which implies that

Cm = −BkCm+n −BnCm+k

8Bn−k
and Bm = −CnCm+k − CkCm+n

8Bn−k
.

Since C2
m − 8B2

m = 1, we have[
BkCm+n −BnCm+k

8Bn−k

]2
− 8

[
CnCm+k − CkCm+n

8Bn−k

]2
= 1,

and the required identity follows. �

Using the matrix multiplication[
Bn Cn

Bk Ck

]−1 [
Cm

Bm

]
=

[
Bm+n

Bm+k

]
,

it is easy to prove the following theorem.
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Theorem 3.3. If k, m and n are three integers such that k 6= n, then

B2
m+n +B2

m+k −B2
k−n = 2Ck−nBm+nBm+k.

4. Some Diophantine equations involving balancing and
Lucas-balancing numbers

The identities of Section 3 induce the following three Diophantine equa-
tions:

x2 + 16Bnxy − 8y2 = C2
n, (4.1)

x2 − 2Cnxy + y2 + C2
n = 1, (4.2)

x2 − 2Cnxy + y2 = B2
n. (4.3)

Before the study of these equations, we present the Diophantine equation

x2 − 6xy + y2 = 1 (4.4)

resulting out of Casini’s formula for balancing numbers. The following the-
orem shows that all solutions of (4.4) are consecutive pairs of balancing
numbers only.

Theorem 4.1. All solutions of the Diophantine equation (4.4) are con-
secutive pairs of balancing numbers only.

Proof. After factorization, the Diophantine equation (4.4) takes the form

(λ1x− y)(λ2x− y) = 1,

where λ1 = 3 +
√

8, λ2 = 3−
√

8. This suggests that (λ1x−y) and (λ2x−y)
are units of Z(

√
2), conjugate to each other, and are members of U1. Thus

for some integer n, we have the following four cases.

Case 1 : (λ1x− y) = λn1 and (λ2x− y) = λn2 ,

Case 2 : (λ1x− y) = λn2 and (λ2x− y) = λn1 ,

Case 3 : (λ1x− y) = −λn1 and (λ2x− y) = −λn2 ,
Case 4 : (λ1x− y) = −λn2 and (λ2x− y) = −λn1 .

Solving the equation for Case 1, using Cramer’s rule, we find

x =

∣∣∣∣λn1 −1
λn2 −1

∣∣∣∣∣∣∣∣λ1 −1
λ2 −1

∣∣∣∣ =
λn1 − λn2
λ1 − λ2

= Bn, y =

∣∣∣∣λ1 λn1
λ2 λn2

∣∣∣∣∣∣∣∣λ1 −1
λ2 −1

∣∣∣∣ =
λn−1
1 − λn−1

2

λ1 − λ2
= Bn−1.
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The solution in Case 2 is

x =

∣∣∣∣λn2 −1
λn1 −1

∣∣∣∣∣∣∣∣λ1 −1
λ2 −1

∣∣∣∣ = −Bn = B−n, y =

∣∣∣∣λ1 λn2
λ2 λn1

∣∣∣∣∣∣∣∣λ1 −1
λ2 −1

∣∣∣∣ = −Bn+1 = B−(n+1).

Finally, the solutions in Case 3 and Case 4 are, respectively,

x = B−n, y = B−(n−1) and x = Bn, y = Bn+1.

Thus, in all cases, the solutions of the Diophantine equation (4.4) are con-
secutive pairs of balancing numbers only. �

Using Theorem 4.1, we can find solutions of a Diophantine equation de-
rived from the identity of Theorem 3.1.

Theorem 4.2. All solutions of the Diophantine equation (4.1) are

(x, y) = (Cm−n, Bm), (−Cm+n, Bm), (−Cm−n,−Bm), (Cm+n,−Bm) (4.5)

for m,n ∈ Z.

Proof. The equation (4.1) can be rewritten as

(x+ 8Bny)2 = C2
n(8y2 + 1),

implying that 8y2+1 is a perfect square. Hence, y is a balancing number. So,
we may take y = ±Bm (y = −Bm is equivalent to y = B−m), 8y2 + 1 = C2

m.
When y = Bm, we have x = −8BmBn ± CmCn or x = 8BmBn ± CmCn

and therefore, x = ±CmCn − 8BmBn, i.e. x = Cm−n or −Cm+n. When
y = −Bm, we have x = −Cm−n or Cm+n. Thus, the totality of solutions of
(4.1) is given by (4.5) for m,n ∈ Z. �

Theorem 4.3. All solutions of the Diophantine equation (4.2) are given
by

(x, y) = (−Cm−n, Cm), (−Cm+n, Cm), (Cm+n,−Cm), (Cm−n,−Cm) (4.6)

for m,n ∈ Z.

Proof. The equation (4.2) can be rewritten as

(x+ Cny)2 = (C2
n − 1)(y2 − 1) = 8B2

n(y2 − 1),

implying that 8(y2−1) is a perfect square. Thus, y is odd and hence y2−1
8 is

a perfect square. Since y−1
2 and y+1

2 are consecutive integers, it follows that
y2−1
8 is a square triangular number. That is, it is the square of a balancing

number, say

y2 − 1

8
= B2

m
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and hence y2 = 8B2
m + 1 for some m, so that y = ±Cm. Consequently,

(x+Cny)2 = 8B2
n(y2− 1) is equivalent to x+CmCn = ±8BmBn if y = Cm,

and x − CmCn = ±8BmBn if y = −Cm. Thus, the totality of solutions of
(4.2) is given by (4.6) for m,n ∈ Z. �

In the following theorem, we consider the Diophantine equation (4.3)
which may be considered as a generalization of the Diophantine equation
discussed in Theorem 4.1.

Theorem 4.4. All solutions of the Diophantine equation (4.3) are given
by

(x, y) = (Bm−n, Bm), (−Bm+n,−Bm), (−Bm−n,−Bm), (Cm+n,−Bm)
(4.7)

for m,n ∈ Z.

Proof. The equation (4.3) can be rewritten as

(x+ Cny)2 = (C2
n − 1)(y2 − 1) = B2

n(8y2 + 1),

which suggests that 8y2 + 1 is a perfect square. Thus, y = ±Bm (as usual
y = −Bm is equivalent to y = B−m) and hence 8y2 + 1 = C2

m. Now x can
be obtained from x + Cy = ±CmBn and therefore, the totality of solutions
is given by (4.7) for m,n ∈ Z. �

In the remaining theorems, we present some Diophantine equations where
the proofs require certain divisibility properties of balancing and Lucas-
balancing numbers.

Theorem 4.5. The solutions of the Diophantine equation

x2 + 2Cnxy + y2 = 1 (4.8)

are given by

(x, y) =

(−B(k+1)n

Bn
,
Bnk

Bn

)
,

(−B(k−1)n

Bn
,
Bnk

Bn

)
(m,n ∈ Z). (4.9)

Proof. The equation (4.8) can be rewritten as

(x+ Cny)2 = (C2
n − 1)(y2 − 1) = 8B2

ny
2 + 1,

which suggests that Bny is a balancing number. Letting Bny = Bm, we have
y = Bm

Bn
, and since y is an integer, it follows that Bn divides Bm. Hence by

Theorem 2.8 in [7] (see also [4]), n divides m. Thus, m = nk for some integer

k and y = Bnk
Bn

. Further,

(x+ Cny)2 = 8B2
ny

2 + 1 = 8B2
nk + 1 = C2

nk,

and hence x+ Cny = ±Cnk. It follows that,

x = −CnBnk

Bn
± Cnk =

−B(k+1)n

Bn
,
−B(k−1)n

Bn
.
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Thus, the totality of solutions of (4.8) is given by (4.9). �

The following theorem that resembles Theorem 4.2 deals with a Diophan-
tine equation whose proof requires conditions under which a Lucas-balancing
numbers divides balancing and Lucas-balancing numbers.

Theorem 4.6. The solutions of the Diophantine equation x2 +16Bnxy−
8y2 = 1 are given by

(x, y) =

(−C(k+1)n

Cn
,
B(2k+1)n

Cn

)
,

(
C2kn

Cn
,
B(2k+1)n

Bn

)
(m,n ∈ Z). (4.10)

Proof. The equation x2 + 16Bnxy − 8y2 = 1 can be rewritten as

(x+ 8Bny)2 = 8C2
ny

2 + 1,

implying that 8C2
ny

2 + 1 is a perfect square and Cny is a balancing number,
say Cny = Bm, hence Cn divides Bm. It is easy to see that this is possible if
and only if m is an even multiple of n, and hence m = 2kn for some integer
k. Thus, y = B2kn

Cn
. Further,

(x+ 8Bny)2 = 8B2
2kn + 1 = C2

2kn,

and hence

x = −8Bny ± C2kn =
−8BnB2kn

Cn
± C2kn.

Therefore, the totality of solutions is given by (4.10). �

Lastly, we present a theorem which is a variant of Theorems 3.1 and 4.5.

Theorem 4.7. The solutions of the Diophantine equation

x2 − 2Cnxy + y2 = −8B2
n (4.11)

are given by

(x, y) = (Cm−n, Cm), (Cm+n, Cm), (−Cm+n,−Cm), (−Cm−n,−Cm) (4.12)

for m,n ∈ Z.

Proof. The equation (4.11) can be rewritten as (x−Cny)2 = 8B2
n(y2−1),

which suggests that 8(y2 − 1) is a perfect square. Hence y is odd and

8(y2 − 1) = 64 · 1

2
· y − 1

2
· y + 1

2
.

Since y−1
2 and y+1

2 are consecutive integers, it follows that 1
2 ·

y−1
2 ·

y+1
2 is

a square triangular number and hence is equal to the square of a balancing
number (see [2]), say,

1

2
· y − 1

2
· y + 1

2
= B2

m

for some m and we have 8(y2 − 1) = 64B2
m. Thus, y2 = 8B2

m + 1 = C2
m

implying that y = ±Cm, and the equation (x − Cny)2 = 8B2
n(y2 − 1) is
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reduced to (x− Cny)2 = 64B2
mB

2
n. Therefore, x− Cny = ±8BmBn and the

solutions of the equation (4.11) are given by (4.12) for m,n ∈ Z. �
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