
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 21, Number 1, June 2017
Available online at http://acutm.math.ut.ee

Pattern recognition using hidden Markov models

in �nancial time series

Sara Rebagliati and Emanuela Sasso

Abstract. Our aim consists in developing a software which can rec-
ognize M trading patterns in real time using Hidden Markov Models
(HMMs). A trading pattern is a prede�ned �gure indicating a speci�c
behavior of prices. We trained M + 1 HMMs using Baum�Welch Al-
gorithm combined with Genetic Algorithm. In particular, with HMMs
we describe M trading patterns while the other one, called threshold
model, can recognize all the not prede�ned patterns. The classi�cation
algorithm correctly recognizes 93% of the provided patterns. Thanks
to the analysis of the false positive examples, we �nally designed some
more �lters to reduce them.

1. Introduction

Automated trading systems have spread in the last years due to the ad-
vances in technologies. Before, traders usually took their investment decisions
looking at the prices graphs and recognizing some trading patterns. Since
our aim consists in replicating the behavior of a discretionary trader, we
developed a software that can recognize trading patterns in real time using
Hidden Markov Models (HMMs).

Trading patterns are prede�ned �gures indicating a speci�c behavior of
prices (see [7]). It is di�cult to recognize them because they are de�ned by
their shape and �nancial time series are strongly a�ected by noise. Hidden
Markov Models are statistical models widely applied in speech recognition
[8] and they can easily handle these patterns' characteristics.

HMMs are very good tools in simple classi�cation applications, i.e., when
we want to cluster some observations in well known classes. The big issue

Received September 29, 2016.
2010 Mathematics Subject Classi�cation. 68T10.
Key words and phrases. Pattern recognition; hidden Markov models; �nancial time

series; automated trading system.
http://dx.doi.org/10.12697/ACUTM.2017.21.02

25

26 SARA REBAGLIATI AND EMANUELA SASSO

in our application is that, in addition to the M classes referring to the in-
teresting patterns, we need to de�ne a class referring to all non reference
patterns. It is also quite evident that the patterns we are looking for occur
rarely comparing to the non reference ones. This is why it is so important to
�nd a way to deal with them. The �rst paper dealing with this problem was
published by Lee and Kim [6] in 1999. They suggested to use a HMM-based
threshold model for gesture recognition and many researchers dealing with
gesture recognition followed their idea.

Our aim is to apply a HMM-based threshold model in a di�erent �eld.
Extending the idea shown in [6] to continuous observations HMMs, we train
a threshold model to recognize all the not prede�ned patterns. Then, we
implement the classi�cation algorithm to work in real time. Since a trader has
to be fast to enter the market, we �nally modify the algorithm to recognize
forecasted scenario before they happen, as our brain does.

This paper is organized as follows. Section 2 gives a brief introduction on
Hidden Markov Models and Genetic Algorithm (GA). We will explain how
to estimate parameters of HMM combining the Expectation-Maximization
Algorithm and GA. In Section 3, we will describe the data we are working
with and the pre process needed to make our algorithm work in a general
context. In Section 4, we will explain how to train HMMs for both reference
and non reference patterns and we will present the recognition algorithms.
Section 5 deals with online recognition. We will extend our algorithm to work
in real time and to recognize trading pattern before they are completed. In
Section 6, we will apply our software to recognize four trading patterns:
double tops (�dtop�), double bottoms (�dbot�), head&shoulders (�has�) and
inverted head&shoulders (�invhas�) and we will analyze the performance of
our recognition algorithms. In Section 7, we will sum up the conclusions. We
include two Appendices in this paper. Appendices A and B focus respectively
on the Kullback�Liebler divergence and mixture reduction algorithm.

2. Introduction on Hidden Markov Model and Genetic

Algorithm

In this section we will give a brief overview of Hidden Markov Model
(HMM) [8] and explain how to estimate parameters of HMM combining the
Expectation-Maximization Algorithm and Genetic Algorithm [5].

2.1. Hidden Markov Model. A HMM is a statistical Markov Model in
which the system being modeled is assumed to be a Markov process with
unobserved (hidden) states.

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 27

De�nition 1. A Hidden Markov Model (HMM) is a stochastic process
{(Xt, Yt)}t=1,2,... satisfying the following properties:

p(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1) = p(Xt = xt|Xt−1 = xt−1),

p(Yt = yt|Xt = xt, Yt−1 = yt−1, . . . , X1 = x1, Y1 = y1) = p(Yt = yt|Xt = xt).

In particular, we assume that the process {Xt}t=1,2,... is a not-observable
homogeneous and stationary Markov Chain. On the other hand, the process
{Yt}t=1,2,... is observable and thanks to it we can estimate the HMM.

In some applications, the hidden states have a clear meaning. For ex-
ample, a hidden state may correspond to a phoneme in speech recognition.
Sometimes, however, HMMs are simply used to model time series without
de�ning the hidden states a priori. In this paper, we will �rstly train HMMs
and then we will investigate the interpretation of hidden states.
In general, a HMM is characterized by the following parameters.

• N: number of states in the model;
• A: N ×N transition matrix of the hidden Markov Chain. By de�ni-
tion of Markov Chain, we have

ai,j = P(Xt+1 = j|Xt = i) i, j = 1, . . . , N, (1)

where Xt is the hidden process which describes the state visited at
time t.
• b: a set of N emission probability density functions. Given the
observation ot at time t, we have

bj(ot) = p(Yt = ot|Xt = j) j = 1, . . . , N, (2)

where Yt is the observable process at time t;
• π: initial state distribution, i.e.,

πi = P(X1 = i) i = 1, . . . , N. (3)

In this paper, we suppose that the hidden states are discrete while the ob-
servations are continuous and 2-dimensional. In particular, for each hidden
state j the emission density function bj is a Gaussian Mixture Model (GMM),
i.e.,

bj ∼
Kj∑
k=1

cj,kN (µj,k, σ
2
j,k), j = 1, . . . , N, (4)

where for all j = 1, . . . , N and for all k = 1, . . . ,Kj the function N (µj,k, σ
2
j,k)

is a bivariate Gaussian distribution with mean vector µj,k and covariance

matrix σ2
j,k and the positive weights cj,k satisfy the constraints

∑Kj

k=1 cj,k = 1
for all j = 1, . . . , N . Since the model is identi�ed with its parameters, let us
denote a HMM with λ = (π,A, b). Given an observation ot at time t, we
de�ne the likelihood p(ot;λ) as the probability of ot in the model λ.

28 SARA REBAGLIATI AND EMANUELA SASSO

There are di�erent types of HMMs depending on the structure of the
transition matrix of the hidden Markov Chain. The most common ones are
ergodic and left-to-right models. In an ergodic HMM, you can move from
one state to the others without restrictions. In a left-to-right HMM, you can
move to the next states or stay in the same state but you cannot jump into
a state you have already visited. We will consider only left-to-right HMMs.

2.2. Genetic Algorithm. Genetic Algorithm (GA) is a simulation of nat-
ural selection that can solve optimization problems. It is based on the
Darwinian Theory of Evolution and it emulates the evolution of a population
becoming �tter at each generation. Generally, a simple GA cycle consists of
four operations: �tness evaluation, selection, genetic operations (crossover
and mutation) and replacement. A simple GA cycle is shown in Algorithm
1.

Algorithm 1 A simple GA

Parents ← {randomly generated population}
while not (termination criteria) do
calculate the �tness of each parent in the population
Children ← ∅
while |Children| < |Parents| do
Use �tness to probabilistically select a pair of parents for mating
Mate the parents to create children c1 and c2

Children ← Children ∪{c1, c2}
end while

Randomly mutate some of the Children
Parents ← Children

end while

In a simple GA cycle, there exists a population pool of chromosomes. The
chromosomes are the encoded form of the potential solutions. Initially, the
population is generated randomly and the �tness values of all the chromo-
somes are evaluated by calculating the objective function. After the initializa-
tion of the population pool, the GA evolution cycles begin. At the beginning
of each iteration, the mating pool is formed by selecting some chromosomes
from the population. This pool of chromosomes is used as the parents to
generate an o�spring via the processes of crossover and mutation. The �t-
ness values of the o�spring are also evaluated. At the end of each evolution
cycle, some chromosomes of the population will be replaced by o�springs
according to the replacement scheme. The above steps to create a new gen-
eration are repeated until the termination criterion is met. By emulating
the natural selection and genetic operations, this process will hopefully lead

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 29

to the best chromosomes, corresponding to the highly optimized solutions of
the problem, in the �nal population.

The convergence to the global solution is not guaranteed but GA can easily
reach very good solutions in few iterations.

2.3. HMM estimation through Baum�Welch Algorithm and GA.

Let λ be a HMM. The standard way to set the parameters of λ is using
the Baum�Welch algorithm (BWa), is an adaptation of the more general
Expectation-Maximization algorithm [2]. Wu [13] proved that the BWa con-
verges to a stationary point of the loglikelihood and not necessarily to the
global maxima. Starting from di�erent initial parameters, we can obtain
di�erent models.

In order to improve the performances of the BWa, we have combined it
with a Genetic Algorithm to maximize the loglikelihood following the idea
proposed by Kwong et al. [5].

The chromosomes encode the starting probability π, the transition ma-
trix A and the emission density functions b of some possible HMMs. The
�tness function is the loglikelihood, which is the same function that the
Baum�Welch Algorithm optimizes. Let us give some more details about the
algorithm.

The initial population is obtained initializing the transition matrix ran-
domly while the Gaussian Mixtures are estimated through the K-mean, a
clustering algorithm [1]. Before starting the main loop, we perform some
steps of Baum�Welch Algorithm on the initial population.

The main loop of the estimation algorithm consists of an alternation of a
GA step and a prede�ned number of iterations of BWa: every time when we
create a new population, we perform some iteration of BWa.

The last step consists in iterating BWa on the �nal population until the
convergence is reached. Finally, we choose the model with the highest log-
likelihood.

3. Data

In this section, we describe the data we are working with and the pre-
process needed to make our algorithm work in a general context.

3.1. Data set. Our data consists of daily and intraday closing prices of
some important �nancial assets such as DAX Future and EUR/USD Future.
In this paper, we will show the application of the proposed algorithm on four
trading patterns: double tops (�dtop�), double bottoms (�dbot�), head and
shoulders (�has�) and inverted head and shoulders (�invhas�). We can see
them in Figure 1. They are some well known patterns in technical analysis
and they detect an inversion in the price trend.

30 SARA REBAGLIATI AND EMANUELA SASSO

(a) Double top (b) Double bottom

(c) Head&shoulder (d) Inv. head&shoulder

Figure 1. Trading patterns.

In order to create a database containing some examples of these patterns,
we looked for them manually and we extracted them from the original time
series. The random data set has been created extrapolating pieces of graph
randomly and checking that they are not prede�ned patterns.

3.2. Pre-process. Trading patterns can occur at di�erent time scales and
have di�erent amplitudes. In order to make the recognition algorithm inde-
pendent from amplitude and time scale, we pre-process our pattern in the
following way.

Let us consider a pattern P = {Ci}i=1,...,T , where T is the length and Ci
is the closing price at time index i.

The pre-process on data includes two steps.

(1) We normalize the closing prices such that

C̃i =
Ci −minsCs

maxsCs −minsCs
∈ [0, 1], i = 1, . . . , T.

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 31

(2) We de�ne

ti =
i− 1

T − 1
∈ [0, 1], i = 1, . . . , T.

Our new data set for each pattern consists of the 2-dimensional points

P̃ = {(ti, C̃i)}i=1,...,T..

Now, P̃ ∈ [0, 1]×[0, 1]. Figure 2 shows the result of the pre-process algorithm
applied to a double top.

(a) Double top (b) Double top pre
processed

Figure 2. Pre-processing algorithm.

4. Models de�nition and static recognition

In this section, we explain how to train the HMMs for trading patterns
and for non-reference patterns. Looking at the classi�cation algorithm, we
will focus on static recognition. We suppose to have some isolated pieces of
�nancial time series and we want to answer the question if they represent an
interesting pattern or not. In the �rst part of this section, we will assume
that all the observations are trading patterns we are looking for. In the
second part, we will include some non-reference patterns. We will explain
how to de�ne a threshold model and how the classi�cation algorithm works
in this case. In Section 5, we will show how to make this algorithm to work
in real time.

4.1. Trading pattern. Let us suppose that we want to recognizeM trading
patterns and that we have a set of observations for each pattern.

32 SARA REBAGLIATI AND EMANUELA SASSO

4.1.1. Model de�nition. For each of the M patterns, we train some left-to-
right models using di�erent numbers of hidden states (from 6 to 15) and
number of Gaussians in the mixture (from 1 to 3). The best HMMs are
�nally selected through cross validation.

We will denote λi = (πi,Ai, bi) the HMM describing the ith pattern.
Figure 3 shows a HMM dedicated to double tops. We can see that the shape
given by the Gaussians is very similar to the one of double tops.

(a) Double top (b) HMM

Figure 3. A HMM dedicated to double tops.

4.1.2. Classi�cation algorithm. Let λi = (πi,Ai, bi) be the HMM related to
the ith pattern for all i = 1, . . . ,M and let P be an example of the patterns
we are looking for. We want to recognize which one it is. P belongs to the
class λ̂(P) if

λ̂(P) = argmaxλ∈{λ1,...,λM} log p(P |λ), (5)

that is we associate the observation P to the model in which P has the
highest probability.

4.2. Non-reference pattern. Let λi = (πi,Ai, bi) be the HMM related
to the ith pattern for all i = 1, . . . ,M . In this section, we want to de�ne the

threshold model λ̃ = (π̃, Ã, b̃). We will show how to set the parameters of
the threshold model and then we will focus on a reduction algorithm which
is needed to reduce the computational cost.

4.2.1. Threshold model de�nition. A threshold model has been introduced
to handle non-reference patterns [6]. It is a weak model for all trained pat-
terns in the sense that its loglikelihood is smaller than that of the dedicated
model for a given pattern. On the other hand, it should be a stronger model
for random patterns which should be associated to it. Lee and Kim [6] de-
�ned a threshold model when both states and observations are discrete. We

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 33

will extend their de�nition to the case when the emission density functions
are Guassian Mixture Models.

In a left-to-right HMM, each state represents a subpattern of the com-
plete one. The threshold model can be built putting together all the trained
models.

In order to de�ne a HMM, we have to set the number of hidden states

Ñ , the starting probability π̃, the transition matrix Ã and the emission

probability density function b̃. The number of states of the threshold model
is the sum of the states in the trained models, that is, if N i is the number of

states of the HMM λi, then the number of states Ñ of HMM λ̃ is

Ñ =
M∑
i=1

N i.

The emission pdfs of λ̃ are

b̃ = {b1, . . . , bM}.
Previous literature suggests to connect all the states through an ergodic
model. In our application, the HMMs are left-to-right. We decided to main-

tain the temporal evolution sorting the emission pdfs b̃ and de�ning π̃ and

Ã as follows.
We calculate the mean of b̃i for all i = 1, . . . , Ñ , and then we sort the states

such that the time component of the means increases. We de�ne a uniform

tridiagonal transition matrix Ã, so we can move through the nearest states,
i.e.,

Ã =


1
3

1
3

1
3 0 . . . 0

1
3

1
3

1
3 0 . . . 0

0 1
3

1
3

1
3 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 1
3

1
3

1
3

 .

According to the de�nition of Ã, the starting probability are

π̃ = (
1

3
,
1

3
,
1

3
, 0, . . . , 0).

4.2.2. Threshold model reduction. Since the threshold model is a combina-
tion of models λi = (πi,Ai, bi) for all i = 1, . . . ,M , we have already seen
that the number of states of the threshold model is the sum of the number
of states of the patterns' model. That is, the number of states can rapidly
increase and so the time and space required to deal with this model. In or-
der to avoid this problem, we propose an algorithm to reduce the number of
states of the threshold model.

The reduction algorithm works in two steps. First, we select the state
to merge choosing the ones that have the most similar emission probability

34 SARA REBAGLIATI AND EMANUELA SASSO

density function. Then, we need to de�ne the new emission pdf and modify
the starting probability π and the transition matrix A. We repeat these two
steps until the target number of hidden states is reached.

Let us focus on the �rst step. In order to select the nearest state, we
consider the Kullback�Leibler divergence (KL divergence) [4]. We can de�ne
it as follows.

De�nition 2. Let f and g be two probability density functions over Rd.
The Kullback�Leibler (KL) divergence of g from f is de�ned as

dKL(f, g) =

∫
Rd

f(x) log
f(x)

g(x)
dx.

The KL divergence is not a distance because it is not symmetric and it
does not satisfy the triangular inequality. We can generalize it as follows.

De�nition 3. Let f and g be two probability density functions over Rd
and dKL the KL divergence, we de�ne the KL distance DKL as follows

DKL(f, g) =
dKL(f, g) + dKL(g, f)

2
.

For more details on the Kullback�Leibler divergence, see Appendix A.

Let λ = (π,A, b) be the HMM we want to reduce. The two states (̄i, j̄)
to merge are

(̄i, j̄) = argmini=1,...,N,j=i+1...,NDKL(bi, bj).

Now, we need to de�ne λnew = (πnew,Anew, bnew) removing the states (̄i, j̄)
and creating a new one.

Looking at the starting probability, we simply remove the components πī
and πj̄ and we add a state with starting probability πī + πj̄ , i.e.,

πnew = (π1, . . . , πī−1, πī+1, . . . , πj̄−1, πj̄+1, . . . , πī + πj̄).

It still holds
∑

i π
new
i = 1.

The states (̄i, j̄) should also be deleted in the transition matrix, which
means removing the īth and j̄th rows and columns from A and adding to it
a column and a row related to the new state. The column to be added is
obtained summing up the īth and j̄th columns of A while the row is equal to
the mean of rows īth and j̄th.

Given the two Gaussian Mixture Models bī and bj̄ , it is easy to merge them
when creating a new GMM. The only operation consists of normalizing the
weights. Let

bī =

Kī∑
k=1

cī,kN (µī,k,Σ
2
ī,k) and bj̄ =

Kj̄∑
k=1

cj̄,kN (µj̄,k,Σ
2
j̄,k).

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 35

Then

btemp =

Kī∑
k=1

cī,k
2
N (µī,k,Σ

2
ī,k) +

Kj̄∑
k=1

cj̄,k
2
N (µj̄,k,Σ

2
j̄,k)

The new emission probability density functions are

bnew = (b1, . . . , bī−1, bī+1, . . . , bj̄−1, bj̄+1, . . . , bÑ , b
temp).

However, repeating this procedure many times to reach the maximum re-
quired number of states, the number of Gaussians in a mixture can rapidly
increase.

Salmond [10] proposed a mixture reduction algorithm in which the number
of components is reduced repeatedly choosing the two components which
appear to be most similar to each other, and merging them. His criterion of
similarity is based on concepts from the statistical analysis of variance, and
seeks to minimize the increase in within-components variance resulting from
merging of the two chosen components. Once we selected the two Gaussians
to merge, we use the moment-preserving merge algorithm. It is based on
the idea that the new distribution must have the same zeroth, �rst and
second-order moment as the original one. This mixture reduction algorithm
is repeated until a target number of Gaussians per mixture is reached. For
more details on the mixture reduction algorithm considered, see Appendix
B.

The target number of states and the target number of Guassians per mix-
ture are selected through a cross validation approach and they have to be
similar to the number of states and Gaussians for mixture of the HMMs
associated to the prede�ned patterns.

4.2.3. Classi�cation including threshold model. Let λi = (πi,Ai, bi) be the

HMM related to the ith pattern for all i = 1, . . . ,M , λ̃ = (π̃, Ã, b̃) the
threshold model and let P be an observed pattern. P belongs to the class
λ̂(P) if

λ̂ = argmaxλ∈{λ1,...,λM ,λT } log p(P |λ). (6)

In particular, if λ̂(p) = λ̃, P is not a pattern we are looking for.

5. Dynamic recognition

In order to replicate how a trader acts, the recognition algorithm should be
able to work online in real time. At the end of a prede�ned time period (i.e.,
every minute), we ask the question: has a new interesting pattern appeared?
The dynamic recognition gives an answer to this question.

36 SARA REBAGLIATI AND EMANUELA SASSO

5.1. Online recognition. The online recognition algorithm developed repli-
cates how a trader looks for a pattern. Let us suppose we are at time T . We
draw an imaginary horizontal line at the last price level and we look for the
intersection between the line and the time series of prices. Once detected the
intersection, we isolate the price in that window and we send this small time
series to the static recognition algorithm.

In order to improve the performance, we do not look for the intersection
using the price directly but we consider a moving average of prices. This
is because the prices are very noisy and we prefer to use a smooth series to
avoid false signals. Moreover, we �x a minimum temporal distance between
the present time and intersection: we �x a minimum time amplitude for the
patterns. Finally, once we recognize a pattern, we wait for a prede�ned time
before attempting to recognize a new one.

5.2. Forecasted recognition. Since a trader needs to be fast to enter the
market, we have �nally modi�ed the algorithm to recognize forecasted sce-
nario before they happen, as our brain does.

Let P = {(ti, Ci)}i=1,...,T be the price series available at time T . Before
applying the online recognition explained in the previous section, we add a
forecasted value to the time series. We repeat this procedure for a prede�ned
tick variation. If we �nd a prede�ned pattern, we will pay attention if the
price will reach the forecasted level in the following time interval before a
new point is available.

6. Experimental Results

In this section we test the recognition algorithms explained in Section
4. We start investigating the performance of the classi�cation algorithm
applied to the four trading patterns shown in Figure 1. Then, we insert some
non-reference patterns into our analysis and �nally we look at the dynamic
recognition working in real time.

6.1. Classi�cation. Table 1 shows the results of a simple classi�cation al-
gorithm. Our data set is made up of 60 Double Tops, 41 Head&Shoulders, 59
Double Bottoms and 38 Inverse Head&Shoulders. For each of the provided
observation, we classify it according to equation (5). In order to analyze
the performance of our classi�cation algorithm, we display the number of
true positive, true negative and false positive values. We can see that the
algorithm recognizes correctly 97% of the provided patterns.

6.2. Classi�cation including non-reference pattern. In this section,
we want to test a more realistic situation which includes non-reference pat-
terns. We add 89 random patterns to our data set and we classify them

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 37

Table 1. Recognition results.

PATTERN N. TRUE FALSE FALSE

TOT POSITIVE NEGATIVE POSITIVE

Double top 60 58 2 3
Head & shoulder 41 38 3 2
Double bottom 59 58 1 0

Inv. head & shoulder 38 38 0 1

Tot 198 192 6 �

through equation (6). Table 2 shows the number of true positive, true neg-
ative and false positive values. We can see that the algorithm recognizes
correctly 93% of the provided patterns.

Table 2. Recognition results.

PATTERN N. TRUE FALSE FALSE

TOT POSITIVE NEGATIVE POSITIVE

Double top 60 57 3 5
Head & shoulder 41 38 3 2
Double bottom 59 54 5 2

Inv. head & shoulder 38 37 1 2
Random 89 82 7 8

Tot 287 268 19 �

Remark 1. Thanks to the analysis of the false positive examples, we de-
signed some more �lters to reduce them. We will not explain in details the
�lters in this paper but we will use them in combination with the recognition
algorithm previously exposed to obtain the results shown in the next section.

6.3. Dynamic recognition. In this section, we will show the performance
we can reach with our recognition algorithm working in real time in combi-
nation with some �lters designed to reduce the false positive patterns. We
look for our four patterns in intraday data of DAX Future with timeframe 1
minute from 1st January 2012 to 30th June 2015. In particular, our algorithm
correctly detects 428 double tops, 181 head&shoulders, 418 double bottoms
and 217 inverse head&shoulders. Looking at the prices graphs, we can see
that there are some patterns which occur and that we are not able detect but
we preferred to eliminate the false positives to avoid investing money due to
false signals.

7. Conclusions

In this paper we explained how to develop a software which can identify
M trading patterns in �nancial time series in real time. In particular, we
de�ned M Hidden Markov Models, one for each prede�ned pattern. Then,

38 SARA REBAGLIATI AND EMANUELA SASSO

we explained how to de�ne a HMM-based threshold model to handle non-
reference pattern. Starting from the idea proposed in [6], we extended their
algorithm to a more general one.

The simple classi�cation algorithm can recognize properly 97% of the ex-
amples while the precision of the algorithm including non-reference patterns
is 93%. Moreover, analyzing the false positive examples, we designed some
�lters to eliminate them. In this way, we increased the false negative cases
but we preferred to eliminate the false positive cases to avoid investing money
due to false signals. The algorithm proposed can actually work in real time
and a recognition step takes less than 2 seconds.

In this paper we dealt with a speci�c application but the proposed algoritm
can be easily applied to other research �elds such as gesture recognition, for
instance.

Appendix A. The Kullback�Leibler divergence

The Kullback�Leibler divergence [4], also known as relative entropy, is
commonly used in statistics as a measure of similarity between two density
functions.

A.1. De�nition of KL divergence.

De�nition 4. Let f and g be two probability density functions over Rd.
The Kullback�Leibler (KL) divergence of g from f is de�ned as

dKL(f, g) =

∫
Rd

f(x) log
f(x)

g(x)
dx.

The Kullback�Leibler divergence satis�es three properties.

(1) Self similarity: dKL(f, f) = 0.
(2) Self identi�cation: dKL(f, g) = 0 only if f = g.
(3) Positivity: dKL(f, g) ≥ 0 for all f , g.

The KL divergence is not a distance because it is not symmetric and it does
not satisfy the triangular inequality. We can generalize it as follows.

De�nition 5. Let f and g be two probability density functions over Rd
and dKL the KL divergence, we de�ne the KL distance DKL as follows

DKL(f, g) =
dKL(f, g) + dKL(g, f)

2
.

The following proposition holds.

Proposition 1. The KL distance DKL is a distance.

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 39

A.2. Calculation of KL divergence. We want to calculate the KL diver-
gence for Gaussian Mixture Models. Unfortunately, there is a closed formed
expression for Gaussian distributions but not for GMMs. In this section, we
show the closed formula for a Gaussian distribution and an approximation
algorithm for GMMs.

Proposition 2. Let f and g be two d-dimensional Gaussian distributions,

i.e., f ∼ N (µf ,Σf) and g ∼ N (µg,Σg). The Kullback�Leibler divergence of

g from f is

dKL(f, g) =
1

2
[log
|Σg|
|Σf |

+ Tr[Σ−1
g Σf]− d+ (µf − µg)TΣ−1

g (µf − µg)].

Now, we will focus on GMMs. We consider an approximation algorithm
based on Monte Carlo sampling. This algorithm and other ones are described
in [3].

Let f and g be two d-dimensional GMMs, i.e.,

f(x) =
∑
a

ωaN (x;µa; Σa) =
∑
a

ωafa(x),

g(x) =
∑
b

ωbN (x;µb; Σb) =
∑
b

ωbgb(x).

The idea is to draw a sample xi from the pdf f such that Ef [log f(xi)/g(xi)] =
dKL(f, g). Using n i.i.d. samples {xi}i=1,...,n, we have

dMC(f, g) =
1

n

n∑
i=1

log
f(xi)

g(xi)
→ dKL(f, g), n→ +∞.

The variance of the estimation error is 1
nVf [log f/g].

To compute dMC(f, g), we need to generate the i.i.d. samples {xi}i=1,...,n

from f . We use the following algorithm.
For each i = 1, . . . , n,

• we select a Gaussian ai randomly according to ωa;
• we sample a point xi from fai .

Once we have a sample {xi}i=1,...,n, we can calculate dMC(f, g) which is a
good approximation for dKL(f, g).

Appendix B. Mixture reduction algorithms

A common problem is to approximate a Gaussian Mixture by a model
containing fewer components.

Salmond [10] proposed a mixture reduction algorithm in which the number
of components is reduced repeatedly by choosing the two components which
appear to be most similar to each other, and merging them. His criterion of
similarity is based on concepts from the statistical analysis of variance, and
seeks to minimize the increase in within-components variance resulting from

40 SARA REBAGLIATI AND EMANUELA SASSO

merging the two chosen components. Once we selected the two Gaussians to
merge, we use the moment-preserving merge algorithm. It is based on the
idea that the new distribution must have the same zeroth, �rst and second-
order moment of the original one.

B.1. Salmond's criterion. Let f be a GMM. We use notation

{(ω1, µ1,Σ1), (ω2, µ2,Σ2), . . . , (ωn, µn,Σn)}

to denote a mixture of n such components.
Given the single components of the GMM we have

µ =
n∑
i=1

ωiµi,

Σ =
n∑
i=1

ωiΣi +
n∑
i=1

ωi(µi − µ)(µi − µ)T

= W +B.

In the moment preserving merge, we keep Σ as constant, increasing W and
decreasing B. Salmond's idea is to choose two components i and j such that
W is minimized. The change in W when components i and j are merged is

∆Wij =
ωiωj
ωi + ωj

(µi − µj)(µi − µj)T .

∆Wij is a matrix. Salmond proposed to use the dissimilarity measure

D2
S(i, j) = Tr(Σ−1)∆Wij .

Other possible selection algorithms for mixture reduction are explained in
[11], [12], and [9].

B.2. Moment-preserving merge. Suppose we have a GMM with just two
Gaussian components and we want to merge them. The moment-preserving
merge is based on the idea that the new distribution must have the same
zeroth, �rst and second-order moment as the original one. In particular,

µ = ω1µ1 + ω2µ2,

Σ = ω1(Σ1 + (µ1 − µ)(µ1 − µ)T) + ω2(Σ2 + (µ2 − µ)(µ2 − µ)T)

= ω1Σ1 + ω2Σ2 + ω1ω2(µ1 − µ2)(µ1 − µ2)T .

It has been proved that this is the Gaussian distribution whose Kullback�
Leibler discrimination from the original distribution is minimal.

In general, given two weighted Gaussian components (ωi, µi,Σi) and
(ωj , µj ,Σj), their moment-preserving merge is the Gaussian component

PATTERN RECOGNITION USING HIDDEN MARKOV MODELS 41

(ωij , µij ,Σij) as follows:

ωij = ωi + ωj ,

µij = ωi|ijµi + ωj|ijµj ,

Σij = ωi|ijΣi + ωj|ijΣj + ωi|ijωj|ij(µi − µj)(µi − µj)T ,

where ωi|ij = ωi
ωi+ωj

and ωj|ij =
ωj

ωi+ωj
.

Acknowledgement. The authors wish to thank the referees for the re-
marks which helped to improve the version of the paper.

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete

data via the em algorithm, J. Roy. Statist. Soc. Ser. B 39(1) (1977), 1�38.
[3] J. R. Hershey and P. A. Olsen, Approximating the Kullback-Leibler divergence between

Gaussian mixture models, in: IEEE International Conference on Acoustics, Speech
and Signal Processing-ICASSP'07, IEEE 4 (2007), pp. 317�320.

[4] S. Kullback, Information Theory and Statistics, Dover Publication Inc., Mineola, NY,
1968.

[5] S. Kwong, C. W. Chan, K. F. Man, and K. S. Tang, Optimisation of hmm topology

and its model parameters by genetic algorithm, Pattern Recognition 34(2) (2001),
509�522.

[6] H. K. Lee and J. H. Kim, An hmm-based threshold model approach for gesture recog-

nition, IEEE Trans. Pattern Anal. Machine Intell. 21(10) (1999), 961�973.
[7] M. J. Pring, Technical Analysis Explained: The Successful Investor's Guide to Spotting

Investment Trends and Turning Points, McGraw-Hill Education, 2014.
[8] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech

recognition, in: Proceedings of IEEE, IEEE 77 (1989), pp. 257�286.
[9] A. R. Runnals, Kullback-Leibler approach to Gaussian mixture reduction, IEEE Trans.

Aerospace Electron. Syst. 43(3) (2007), 989�999.
[10] D. J. Salmond, Mixture reduction algorithms for target tracking in clutter, in: Signal

and Data Processing of Small Targets 1990, SPIE 1305 (1990), pp. 434�445.
[11] J. L. Williams, Gaussian mixture reduction for tracking multiple maneuvering targets

in clutter, M.S.E.E. Thesis, Air Force Institute of Technology, Wright-Patterson Air
Force Base, OH, 2003.

[12] J. L. Williams and P. S. Maybeck, Cost-function-based Gaussian mixture reduction,
in: Sixth International Conference on Information Fusion0, ISIF, 2003, pp. 1047�1054.

[13] C. F. Wu, On the convergence properties of the em algoritm, Ann. Statist. 11(1)
(1983), 95�103.

Università degli Studi di Genova, Dipartimento di Matematica, Via Dode-
caneso 35, 16146 Genova, Italy

E-mail address: rebagliati@dima.unige.it
E-mail address: sasso@dima.unige.it

