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Markov-modulated multivariate linear regression

Alexander Andronov

Abstract. The article concerns parameter estimation for the Markov-
modulated multivariate linear regression model. It is supposed that the
parameters of the linear regression are dependent from states of a random
environment. The last is described as a continuous-time homogeneous
irreducible Markov chain with known parameters. The procedure of
estimating the regression parameters is established.

1. Introduction

We consider the case where a process, described by multivariate linear
regression (Srivastava [6], Turkington [7], Kollo and von Rosen [4]), operates
in a random environment. The last is presented (Pacheco et al. [5]) as a
continuous-time homogeneous irreducible Markov chain J(t), t ≥ 0, with
finite state set N = {1, 2, . . . , k}. Let λi,j be the known transition rate from
state i to state j (λj,j = 0).

The following notation will be used for the η-th observation (η=1, . . . , n):
x∗(η) = (x∗η,1, . . . , x

∗
η,q) is the q-row vector of known independent variables,

Y ∗(η) = (Y ∗η,1, . . . , Y
∗
η,p) is the p-row vector of observed dependent variables,

Z(η)=(Zη,1, . . . , Zη,p) is the p-row vector of random variables, Z(η)∈Np(0,Σ),
tη is the observation time, and Tη,j is an unobserved sojourn time in the
state j ∈ N , (Tη,1 + · · ·+ Tη,k = tη). Further, B(j) = (bv,µ(j)) is the q × p-
matrix of regression parameters for the j-th state of the random environment
(j = 1, . . . , k) and B = (B(1)T , . . . , B(k)T )T is the kq × p-matrix. Let the
positive definite matrix Σ = (σv,µ)p×p be unknown and identical for all
observations.
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Thus, if T(η) = (Tη,1, . . . , Tη,k), then we have the model for the η-th ob-
servation:

Y ∗(η) =
(
Y ∗η,1, . . . , Y

∗
η,p

)
= (T(η) ⊗ x∗(η))B +

√
tηZ(η), η = 1, . . . , n.

Using notation

x(η) = x∗(η)/
√
tη, Y(η) = Y ∗(η)/η,

we rewrite this formula as

Y(η) = (Yη,1, . . . , Yη,p) = (T(η) ⊗ x(η))B + Z(η), η = 1, . . . , n. (1.1)

Further, we use the notation

Z =

Z(1)

. . .
Z(n)

 =

Z1,1 . . . Z1,p

. . . . . . . . . . .
Zn,1 . . . Zn,p

 .

Now the general model is of the form

Y =

Y1,1 . . . Y1,p
. . . . . . . . . . .
Yn,1 . . . Yn,p

 =

T(1) ⊗ x(1). . . . . . . .
T(n) ⊗ x(n)

B + Z. (1.2)

Let us use the notation

V(η) = (Vη,1, . . . , Vη,p) = T(η)−E(T(η)) = (Tη,1−E(T(η,1)), . . . , Tη,p−E(T(η,p))).

Then

Y =

Y(1). . .
Y(n)

 =

E(T(1))⊗ x(1)
. . . . . . . . . .
E(T(n))⊗ x(n)

B + Z +

V(1) ⊗ x(1). . . . . . . .
V(n) ⊗ x(n)

B. (1.3)

This expression is the main one for the statistical analysis. We note that
the rows Z(η) = (Zη,1, . . . , Zη,p) and Y(η) = (Yη,1, . . . , Yη,p) for different ob-
servations of matrices Z and Y are independent. The same property holds
for the rows V(η) = (Vη,1, . . . , Vη,p) of matrix V . Further, we get formulas for
the expectation and the covariance matrix of the response (1.1):

E(Y(η)) = (E(T(η))⊗ x(η))B,

Cov(T(η) ⊗ x(η))
= E((T(η) ⊗ x(η) − E(T(η))⊗ x(η))T (T(η) ⊗ x(η) − E(T(η))⊗ x(η)))
= E(((T(η) − E(T(η)))⊗ x(η))T ((T(η) − E(T(η)))⊗ x(η)))
= E((T(η) − E(T(η)))

T (T(η) − E(T(η))))⊗ (xT(η)x(η))

= Cov(T(η))⊗ (xT(η)x(η)),

Cov(Y(η)) = Cov((T(η) ⊗ x(η))B) + Σ

= BT (Cov(T(η))⊗ (xT(η)x(η)))B + Σ.
(1.4)
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In particular,

E(Yη,µ) = (E(t(η))⊗ x(η))B<µ>,

D(Yη,µ) = (B<µ>)T (Cov(T(η))⊗ (xT(η)x(η)))B
<µ> + σ2µ, (1.5)

where B<µ> denotes the µ-th column of matrix B. Let

Y <µ> =

Y1,µ. . .
Yn,µ

 =

T(1) ⊗ x(1). . . . . . .
T(n) ⊗ xn

B<µ> + Z<µ>. (1.6)

As Y(η) = (Yη,1, . . . , Yη,p), η = 1, . . . , n, are independent, we have

Cov(Y <µ>) = diag(D(Y1,µ), . . . , D(Yn,µ))

and we can use formula (1.5).
Now let v 6= µ. Then from (1.4) it follows that

Cov(Yη,µ, Yη,v) = Cov((T(η) ⊗ x(η))B<µ>, (T(η) ⊗ x(η))B<v>)

+ Cov(Zη,µ, Zη,v)

= (B<µ>)T Cov(T(η) ⊗ x(η))B<v> + σµ,v.

(1.7)

The last formulas determine the covariance matrix Cov(Y <µ>, Y <v>) for
arbitrary µ and v.

We consider estimators B̃ and Σ̃ of B and Σ = (σ2v,µ) for the following data
on n observations, η = 1, ..., n: the vectors Y(η) and x(η) denote dependent
and independent variables, respectively, observation time is tη, the initial
state of Markov chain is J(0) and finite state is J(tn). It is supposed that
all n observations are independent.

Note that a case of multiple regression was considered by Andronov [1].

We need to know expressions for E(T(η)) and Cov(T(η)) for statistical
inference. Therefore a random environment must be considered.

2. Random environment as Markov chain

Let λ = (λi,j) be a k×k matrix, Λ = diag
(∑

j λi,j

)
be a diagonal matrix,

Pi,j(t) = P{X(t) = j|X(0) = i} be the transition probability of Markov
chain X(t), and let P (t) = (Pi,j(t))k×k denote the corresponding matrix.
If all eigenvalues of the matrix A = λ − Λ are different, then probabilities
P (t) = (Pi,j(t))k×k can be represented simply. Let γη and χη, η = 1, ..., k,
be the eigenvalue and the corresponding eigenvector of A, χ = (χ1, ..., χk)
be the matrix of the unit length eigenvectors, and χ̄ = χ−1 = (χ̄T1 , ..., χ̄

T
k )

be the corresponding inverse matrix (here χ̄η is the η-th row of Z̄). Then
(Bellman [3], Pacheco et al. [5])
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P (t) = exp(tA) = χdiag(exp(γ1t), . . . , exp(γkt))χ
−1

=
k∑
η=1

χη exp(γηt)χ̄η.

It is known that for the considered Markov chain one eigenvalue equals 0 (let
it be the first), and other eigenvalues (with numbers 2,. . . ,k) are negative.

Let us fix the initial state i and the final state j of the Markov chain X(t)
and consider the sojourn time Tv(t) in the state v ∈ N on the interval (0, t).
Then for the conditional expectation

τv(t, i, j) = E(T (t)v|X(0) = i, X(t) = j)

we have

τv(t, i, j) =
1

Pi,j(t)

t∫
0

Pi,v(u)Pv,j(t− u)du, v = 1, . . . , k. (2.1)

Further,

t∫
0

Pi,v(u)Pv,j(t− u)du

=

t∫
0

m∑
η=1

χi,η exp(γηu)χ̄η,v

m∑
θ=1

χv,θ exp(γθ(t− u))χ̄θ,jdu

=

m∑
η=1

χi,ηχ̄η,v

m∑
θ=1,θ 6=η

χv,θχ̄θ,j exp(γθt)
1

γθ − γη

× (1− exp(−t(γθ − γη))) + t
m∑
η=1

χi,ηχ̄η,vχv,ηχ̄η,j exp(γηt)

= t

m∑
η=1

χi,ηχ̄η,vχv,ηχ̄η,j exp(γηt)

+

m∑
η=1

χi,ηχ̄η,v

m∑
θ=1,θ 6=η

χv,θχ̄θ,j
1

γθ − γη
(exp(γθt)− exp(γηt)).

Now we can apply formula (2.1). The conditional mixed second order
moments

τv,v∗(t, i, j) = E(Tv(t)Tv∗(t)|X(0) = i, X(t) = j)

and conditional covariance

Cv,v∗(t, i, j) = Cov(Tv(t), Tv∗(t)|X(0) = i, X(t) = j)
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of the sojourn time in the states v, v∗ ∈ N on the interval (0, t) are calculated
as

τv,v∗(t, i, j) =
1

Pi,j(t)

 t∫
0

Pi,v(u)Pv,j(t− u)τv∗(t− u, v, j)du

+

t∫
0

Pi,v∗(u)Pv∗,j(t− u)τv(t− u, v∗, j)du

 ,

Cv,v∗(t, i, j) = τv,v∗(t, i, j)− τv(t, i, j, )τv∗(t, i, j).

3. Method of least squares

We begin with the estimation of the regression coefficients bς,µ(j), j =
1, . . . , k, ς = 1, . . . , q, µ = 1, . . . , p. Let

H =

E(T(1))⊗ x(1)
. . . . . . . . . .
E(T(n))⊗ x(n)


n×kq

. (3.1)

The ordinary-least-squares (OLS) estimator for the multivariate linear re-
gression (1.3) is the following (Srivastava [6], p. 279):

B̃ = (HTH)−1HTY.

This estimator is unbiased, because it follows from (1.2) and (3.1) that

E(Y ) = HB.

The iterative joint-generalized-least-squares estimator takes into account
unequal weights of the observations (Turkington [7]). The iterative proce-
dure estimates alternately the regression parameters B and the covariance
matrices Cov(Y(η)), η = 1, ..., n, Cov(Y <µ>), µ = 1, ..., p, of the responses Y
and Σ of the random term Z.

The procedure begins with the OLS B̃. On the first step, estimation of

the covariance matrices is based on B̃. For that, let us consider residuals
from (1.3):

U(B)(η) = Y(η) − (E(T(η))⊗ x(η))B
= (V(η) ⊗ x(η))B + Z(η), η = 1, . . . , n,

Cov(U(B)(η)) = Cov((V(η) ⊗ x(η))B) + Cov(Zη).

The estimator C̃ov(Y(η)) of Cov(Y(η)) is calculated as follows. If y(η) and

u(B)(η) = y(η) − (E(T(η))⊗ x(η))B
are the observed values of Y(η) and

U(B)(η) = Y(η) − (E(T(η))⊗ x(η))B,
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then

C̃ov(Y(η)) = Cov(U(B̃)(η)) = (u(B̃)(η))
Tu(B̃)(η),

Σ̃(B̃, η) = Cov(U(B̃)(η))− Cov((V(η) ⊗ x(η))B̃),

where Σ̃(B̃, η) is the estimator of Σ calculated for fixed B̃ and the η-th
observation.

As

Cov(V(η) ⊗ x(η)) = Cov(T(η))⊗ (xT(η)x(η)),

we get that

Σ̃(B̃, η) = (u(B̃)(η))
T (u(B̃)(η) − B̃T (Cov(T(η))⊗ (xT(η)x(η)))B̃

and

Σ̃(B̃) =
1

n

n∑
η=1

Σ̃(B̃, η)

=
1

n

n∑
η=1

[(u(B̃)(η))
Tu(B̃)(η) − B̃T Cov(T(η))⊗ (xT(η)x(η))B̃].

Finally we correct the previous estimator of Cov(Y(η)) with respect to (1.4):

C̃ov(Y(η)) = B̃T (Cov(T(η))⊗ (xT(η)x(η)))B̃ + Σ̃(B̃).

The second step consists in estimation of B. Let us describe the corre-
sponding procedure suggested by Turkington [7] , p. 114. We remind that
if A is an m × n-matrix and ai is its i-th column, then vecA denotes the
mn-column vector

vecA =

a1. . .
an

 .

Let y = vecY , z = vecZ be the np-column vectors, and let β = vecB be the

qkp-column vector. Let ~Hnp×kqp and ~Vnp×kqp be the block-diagonal matrices
(Kollo and von Rosen [4], p. 73) with H and V , respectively, in the all p
diagonal positions. Here H is given in (3.1) and

V =

(T(1) − E(T(1)))⊗ x(1)
. . . . . . . . . . . . . . . .
(T(n) − E(T(n))⊗ x(n)


n×kq

.

Then the model (1.3) is presented as

y = ~Hβ + ~V β + z.
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Further, let C(B̃)µ,v = C̃ov(Y <µ>, Y <v>). It is a diagonal n × n matrix
with the estimators of Cov(Yη,µ, Yη,v), η = 1, ..., n, on the main diagonal (see
formula (1.7)). The covariance matrix of the vector y is represented as a

partitioned np× np matrix with C(β̃)µ,v on the (µ, ν)-th position:

C̃ov(y) =


C(β̃)1,1 C(β̃)1,2 . . . C(β̃)1,p−1 C(β̃)1,p
C(β̃)2,1 C(β̃)2,2 . . . C(β̃)2,p−1 C(β̃)2,p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C(β̃)p−1,1 C(β̃)p−1,2 . . . C(β̃)p−1,p−1 C(β̃)p−1,p
C(β̃)p,1 C(β̃)p,2 . . . C(β̃)p,p−1 C(β̃)p,p

 .

The joint-generalized-least-squares estimator is the following (Turkington
[7], p. 114):

β̃ = [ ~HT C̃ov(y) ~H]−1 ~HT C̃ov(y) y.

The next iteration begins from the first step using the last estimate β̃
and so on. The iterative procedure ends when the estimate changes become
small.

4. Discussion

Our previous experience (Andronov [2]) has shown that the obtained esti-
mates converge to the true values of the parameters very slowly. We cannot
use maximum likelihood method because the density of the distribution of
these sojourn times is unknown. We know only the Laplace transforma-
tion. In future we plan to use this transformation for parameter estimation
directly as we have done in the paper Andronov [2].
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