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On estimation of insurance risk parameters
by combining local regression and

distribution fitting ideas

Meelis Käärik, Raul Kangro, and Liina Muru

Abstract. The problem of premium estimation is an essential part of
the insurance mathematics. Often the problem is divided into two parts:
estimation of claim number (or frequency) and the estimation of indi-
vidual claim amounts (severities). In this paper, we will focus on the
former. More precisely, we are looking for certain semiparametric dy-
namic regression type model to avoid the “price shock” issue of static
classification. We apply locally the regression method, use local maxi-
mum likelihood estimation for the parameters of the model and cross-
validation techniques to determine the optimal size of a neighborhood.
A case study with real vehicle casco insurance dataset is included, the
results obtained by proposed method are compared by the ones obtained
by global regression and the classification and regression trees (C&RT)
approach.

Introduction

The premium estimation problem can be divided into two parts: claim fre-
quency and claim severity estimation. In this article we focus on the former
and also try to avoid the caveats of some classical methods. In our previous
works we have considered both problems, for claim severity estimation see,
e.g., [7, 8, 6], whereas our more recent focus is on the claim frequency es-
timation [5, 9]. The current article can be considered as a follow-up to our
previous works, where the classification and regression trees (C&RT) ap-
proach and the k-nearest neighbours approach were applied to estimate the
claim frequency. For more details about the C&RT and k-nearest neighbours
methods, see, e.g., [2] or [4].
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To further describe the background let us start with some well-known
options that can be applied for the claim frequency estimation (or for pre-
mium estimation in general). As a first possible model, one can consider the
näıve approach for classical collective risk model, where we first cluster the
portfolio into homogeneous subportfolios, estimate the claim frequency (and
severity) in each subportfolio, and finally estimate the total claim amount
in each subportfolio and divide the expected claim amount (proportionally)
between policies. Various different clustering and classification methods can
be applied here (see, e.g., [4]), but the main issue of so-called “price shocks”
still remains with any static classification. In short, the problem is based
on the fact that small changes in client’s data may result in large changes
in premiums. The problem is especially large if the classification feature is
a continuous variable like client’s age or vehicle’s age. Moreover, if a risk
factor is a continuous variable, it is natural to assume that the risk premium
is also continuously changing.

One possible class of models that does not suffer from the price-shock issue
is the class of (generalized) linear models (see, e.g., [3]). On the other hand,
in case of a “global” linear model it is difficult to find reasonable parametric
forms for distribution parameters. It is not reasonable to assume that the
distribution parameters of a policy are influenced by the behavior of clients
with very different values of input parameters.

This reasoning motivates us to find a model that does not have the men-
tioned drawbacks of the classical models. Therefore we propose a combina-
tion of two widely used ideas:

• the k-nearest neighbours approach to find the neighborhood of sim-
ilar risks for each policy (based on certain risk factors),
• the Poisson regression model applied to each risk taking into account

the neighborhood corresponding to that risk.

Thus, the resulting model is a certain local regression model.
In this article we focus on the following issues.

• How to define a neighborhood in a meaningful way?
• What is the exact mathematical optimization problem behind the

setup?
• What is the precision of prediction errors, or, when can we say that

one method is really better than another?

The paper is organized as follows. In Section 1 we shall formulate the
local regression model and provide the formulas for parameter estimation.
In Section 2 we focus on the optimization problem and model comparison
principles. A practical application is described in Section 3 and the obtained
results are compared with the results of C&RT model obtained in [5]. Lastly,
concluding comments are given in Section 4.
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1. Local regression model

Let us start with the simplest case when we only have one risk factor
(regressor).

1.1. The case with one regressor. Our estimation problem can be for-
mulated as follows: we have a policy for which we would like to estimate
the claims frequency. We only have one risk factor to use, and for the given
policy, the value of that risk factor is denoted by x. We also have historical
data of several policies and, based on certain rules (specified later), we find a
neighborhood of policies that are close to our policy in the sense of given risk
factor. Let J(x) denote the set of indices of policies with regressor values in
the neighborhood of value x, and for a policy with index i (or simply policy
i) we denote

• xi – the value of the regressor variable,
• ti – number of days insured,
• ni – number of claims.

Assuming the Poisson model for the claims frequency, the likelihood func-
tion can be written as

Lx(a, b) =
∏

i∈J(x)

((a+ b(xi − x))ti)
ni

ni!
e−(a+b(xi−x))ti ,

where a and b are the regression parameters.
The derivation of log-likelihood is straightforward and we obtain

lx(a, b) =
∑

i∈J(x)

ni ln((a+ b(xi−x))ti)−
∑

i∈J(x)

ln (ni!)−
∑

i∈J(x)

(a+ b(xi−x))ti.

Now, to find the maximum likelihood estimates, we first take the derivatives
by parameters a and b

∂lx(a, b)

∂a
=
∑

i∈J(x)

ni
a+ b(xi − x)

−
∑

i∈J(x)

ti,

∂lx(a, b)

∂b
=
∑

i∈J(x)

ni(xi − x)

a+ b(xi − x)
−
∑

i∈J(x)

ti(xi − x),

from where the maximum likelihood estimates are obtained by solving
∑

i∈J(x)

ni
a+ b(xi − x)

=
∑

i∈J(x)

ti,

∑
i∈J(x)

ni(xi − x)

a+ b(xi − x)
=
∑

i∈J(x)

ti(xi − x).
(1)
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Remark 1. In case the policies in the neighborhood J(x) are such that
the risk factor has two distinct values (say, x1 and x2) only, there is an
explicit solution

a+ b(x1 − x) =
n1
t1
,

a+ b(x2 − x) =
n2
t2
,

which yields

a =
n2t1(x1 − x) + n1t2(x− x2)

t1t2(x1 − x2)
,

b =
n1t2 − n2t1
t1t2(x1 − x2)

.

1.2. The case with multiple regressors. In case of multiple regressors
the situation becomes more complicated, but the general idea stays the same.
Let us have m regressors, which means that the argument vector for a policy
has the form x = (x1, . . . , xm)T and, similarly, for the argument vector for a
policy i we write xi = (x1,i, . . . , xm,i)

T . We also need the following notation:

• J(x) – the set of indices of policies with regressor values in the neigh-
borhood of value x,
• ti – the number of days insured for policy i,
• ni – the number of claims for policy i,
• a,b = (b1, . . . , bm)T – the regression parameters.

Now, the likelihood function for the Poisson model can be expressed as

Lx(a,b) =
∏

i∈J(x)

((a+ bT (xi − x))ti)
ni

ni!
e−(a+bT (xi−x))ti

and the log-likelihood becomes

lx(a,b) =
∑

i∈J(x)

ni ln((a+ bT (xi − x))ti)

−
∑

i∈J(x)

ln(ni!)−
∑

i∈J(x)

(a+ bT (xi − x))ti

Now, the derivatives by parameters have the forms

∂lx(a,b)

∂a
=
∑

i∈J(x)

ni
a+ bT (xi − x)

−
∑

i∈J(x)

ti,

∂lx(a,b)

∂bj
=
∑

i∈J(x)

ni(xj,i − xj)
a+ bT (xi − x)

−
∑

i∈J(x)

ti(xj,i − xj), j = 1, . . . ,m,
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and the maximum likelihood estimates can be found from
∑

i∈J(x)

ni
a+ bT (xi − x)

=
∑

i∈J(x)

ti,

∑
i∈J(x)

ni(xj,i − xj)
a+ bT (xi − x)

=
∑

i∈J(x)

ti(xj,i − xj), j = 1, . . . ,m.
(2)

This system can be solved numerically, in our study we used the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [10, Section 10.7].

1.3. Determination of the neighborhood. Let us now consider the pos-
sible choices of determining the neighborhood of a policy. As we will apply
the models in the cases of one or two regressors, we will also cover these
setups here. In case of one regressor, the neighborhood can be fixed either
based on the desired radius or the desired amount of policies (insurance
years). Algorithmically, these approaches can be formulated as follows:

• fix the range of regressor values (say r), then all policies i are con-
sidered to be in the neighborhood of x whenever |xi − x| ≤ r,
• fix the minimum neighborhood size k and increase the range r until

sufficiently many policies (insurance years) are included.

We will use the combination of these two, so that a neighborhood will be
determined both by minimum radius and minimum amount of insurance
years. Notice that in this way we include both of the described approaches
as a special case. The optimal values for minimal radius and the amount of
insurance years included will be found by cross-validation.

In case of two regressors we consider similar approach:

• construct an elliptical neighborhood with given fixed radii r1 and r2
such that all policies are considered to be in the neighborhood of
(x1, x2) if

(x1,i − x1)2

r21
+

(x2,i − x2)2

r22
≤ 1, (3)

• fix the minimum neighborhood size k and increase the ranges r1 and
r2 until sufficiently many policies (insurance years) are included.

While in the case of one single regressor the scaling of the regressor variable
does not affect the result, in the case of two or more regressors the question
of scaling is crucial. In two-regressor case one can restate the question as
how to find the proper values of r1 and r2 or, equivalently, how to fix the
ratio between r1 and r2.

Obviously, the simplest case would be to take r1 = r2 but then if the scales
of the regressor variables are very different, one variable will dominate the
other and the neighborhood is basically determined based on one regressor
only. Also, simple rescaling of one regressor variable can result in completely
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different neighborhood selection, which is certainly an undesirable property.
We propose three different scaling models here.

The first approach is based on the Euclidean distance and the regressors
are scaled based on their standard deviations. In other words, we choose
r1 = r · sd(X1) and r2 = r · sd(X2), where sd denotes the standard deviation,
and we find the smallest value of r so that the neighborhood defined by
(3) includes at least k insurance years. Notice that in this case the ellipse
defining the neighborhood is always orthogonal to the axis.

The second approach is similar, but uses the Mahalanobis distance, which
means that we also take into account the correlation between regressors X1

and X2. Thus the ellipse defining the neighborhood is no longer orthogonal
to the axis, but shifted based on the correlation.

The third approach uses again the Euclidean distance, but the scaling is
based on the span of the (local) regression line in a given neighborhood.
More precisely, for a policy with regressor values x1 and x2, we first de-
termine the optimal one-dimensional neighborhoods and the slopes of the
one-dimensional local regression model, say b1 and b2. These values will be
used to scale the regressors in the two-regressor model: we choose r1 = r/b1
and r2 = r/b2 and find the smallest value of r so that the neighborhood size
is at least k.

2. Optimization problem and model comparison principles

We assume that the number of claims in each insured day for a policy
with risk factors x is from the Poisson distribution with intensity λ(x) and
that for a given policy, the number of claims for different insured days are
independent random variables. Each method of estimating the claim fre-
quency corresponds to an estimator of that intensity, so we can think that
each method produces a function λ̂(x). Clearly the goodness of a method

should be related to how close is the prediction λ̂(x) to the actual intensity
λ(x) for all possible values of x. As there are many ways to measure the dis-
tance between two functions, we should choose one that is the most relevant
to our aims.

Let us assume that each policy corresponds to an iid realisation from a
joint distribution of a triple of random variables (T,X,N), where T denotes
the number of insured days, X denotes the vector of risk factors and N is
the number of claims. Then a possible measure of closeness of the functions
λ and λ̂ (a loss function) is

D(λ, λ̂) = E[T (λ(X)− λ̂(X))2].

Note that since we predict the average number of claims per day, it is natural
to multiply the squared prediction error by the number of insured days inside
the loss function.
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Since λ is not known, we cannot estimate the value of the loss function
directly. We shall consider the following measure of the prediction error
instead:

M(λ̂) = E[T (λ̂(X)− N

T
)2]. (4)

Lemma 1. Assume that the conditional distribution of N , given T and
X, is the Poisson distribution with intensity Tλ(X). Then

M(λ̂) = D(λ, λ̂) + Eλ(X).

Proof. By adding and subtracting λ(X) inside the parentheses on the right
hand side of (4) we get

M(λ̂) = E[T (λ̂(X)− λ(X))2] + 2E[(λ̂(X)− λ(X))(Tλ(X)−N)]

+ E[T (λ(X)− N

T
)2]

= D(λ, λ̂) + 2E[(λ̂(X)− λ(X))(Tλ(X)−N)] + E[
(Tλ(X)−N)2

T
].

Using the well-known properties of conditional expectations and the assump-
tion about the conditional distribution of N we have

E[(λ̂(X)− λ(X))(Tλ(X)−N)] = E[E[(λ̂(X)− λ(X))(Tλ(X)−N) | X,T ]]

= E[(λ̂(X)− λ(X))E[(Tλ(X)−N) | X,T ]]

= 0,

E[
(Tλ(X)−N)2

T
] = E[E[

(Tλ(X)−N)2

T
| X,T ]]

= E[
1

T
Var(N |X,T )]

= E[λ(X)].

Thus, indeed, the equality

M(λ̂) = D(λ, λ̂) + Eλ(X)

holds. �

Corollary 1. If λ̂1 and λ̂2 are two prediction functions and the assump-
tion of Lemma 1 hold, then for any strictly increasing function g : [0,∞)→
IR we have

g(M(λ̂1)) < g(M(λ̂2))⇔ D(λ, λ̂1) < D(λ, λ̂2).

This means that if we want to get the best predictor λ̂ in a given class
of prediction methods, we should aim to minimize an increasing function of

M(λ̂), for example c

√
M(λ̂) for an appropriate scaling factor c.
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If we have a sufficiently large sample of n policies, for which the claim
numbers are known and which were not used in the process of constructing
the prediction functions λ̂1 and λ̂2, we can use the estimates

M̂(λ̂j) =
1

n

n∑
i=1

ti(λ̂j(xi)−
ni
ti

)2, j = 1, 2,

σ̂ =

√√√√ 1

n− 1

n∑
i=1

t2i

(
(λ̂1(xi)−

ni
ti

)2 − (λ̂2(xi)−
ni
ti

)2
)2

,

and since, by the construction, the estimates M̂(λ̂j) are means of iid samples

of the random variables T (λj(X)+ N
T )2, they are asymptotically normal (see,

for example, [1, p. 139]). This allows us to construct an approximate 95%
confidence interval

(M̂(λ̂1)− M̂(λ̂2)− 1.96
σ̂√
n
, M̂(λ̂1)− M̂(λ̂2) + 1.96

σ̂√
n

) (5)

for M(λ̂1) −M(λ̂2). If this confidence interval does not contain 0, then we
consider proved that one method is better than the other one.

3. Case study: Estonian casco insurance

In this section we will apply the proposed methods to real data.

3.1. Description of the data. The dataset used is obtained from an Es-
tonian insurance company. The data covered 7 years of claim history, and
the claims were classified by risk types (glass breakage risk, traffic accident
risk, theft risk and more). Several important characteristics about the vehi-
cle like the value, type, make, model and year of manufacture were available.
Several characteristics about the owner of the vehicle (including sex, age and
more) were also typically available.

Based on the earlier studies, the most important factors for claim fre-
quency in case of traffic accident claims were the owner’s age and the vehi-
cle’s age. For other risk types, the correlations to risk factors were weaker.
Hence, in the numerical calculations we include owner’s age and vehicle’s age
as arguments, and the traffic accident risk as the dependent variable. The
owner’s age ranged from 18 to 94 years and the vehicle’s age ranged from 0
to 15 years.

3.2. Competing models. Based on the number of arguments we have two
simple setups to estimate the frequency of traffic accident claims:

• Setup 1: age of the owner as the argument.
• Setup 2: age of the owner and age of the vehicle as arguments.

The competing models (for both setups) are:
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• C&RT/Poisson model,
• local regression model (with minimal radius and neighborhood size

determined by cross-validation),
• “global” regression model.

In case of Setup 2, there are actually three different local regression mod-
els, based on different scaling methods of the regressors (see Section 1.3).

For comparison of different models, the dataset was divided into two parts:
training data and test data. All proposed models were calibrated on training
data and then the model with same parameters was applied to test data.
Optimal values for neighborhood size and minimal radius were determined
by 10-fold cross-validation, the regression parameters were found by solving
the MLE equations (1) or (2). The “goodness” of a model was measured by
the error characteristic

e =

√∑n
i=1 ti(365ni

ti
− 365λ̂(xi))2∑n

i=1 ti
,

where n is the number of policies in test data, ti is the number of days
insured for policy i, ni is the actual number of claims for policy i, and λ̂(xi)
is the predicted daily frequency of claims for policy i. Note that, using the
notation of Section 2, we have

e = 365

√
n∑n
i=1 ti

M̂(λ̂),

so we are comparing different prediction functions by the method proposed
in Section 2. This form of the goodness measure was chosen for the compat-
ibility with the earlier studies.

3.3. Results, one regressor. To determine the optimal neighborhood size
and minimal radius 10-fold cross-validation was used. The results for age of
owner as the regressor variable and different choices of radius r and neigh-
borhood size k are shown in Figure 1. As one can see from the figure, the
optimum is reached when minimal radius is 7 years and neighborhood size
is 500 insurance years.

Similar calculations are carried out for the model where age of the vehicle
is the regressor variable. Notice that these calculations are only needed for
the two-regressor model of third type, where the slopes of one-dimensional
local regression models are used for scaling. The results are presented in
Figure 2. As one can see from the figure, the minimal model error is obtained
when minimal radius is 10 years and neighborhood size is 3200 insurance
years. One can also notice that the choice of neighborhood size barely affects
the outcome, which hints that the age of the vehicle is not very informative
in the sense of determining the claim frequency.
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Figure 1. Cross-validation errors using age of the owner as
the regressor.
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Figure 2. Cross-validation errors using age of the vehicle as
the regressor.

Now, the regressor model with age of the owner as the regressor with
above obtained parameters is compared with the results from C&RT model
[5] and with the “global” Poisson regression model. The results are shown
in the following table. We see that our proposed local regression model was
the best in the sense of the model error on test data.

Model Error
C&RT 0.67204

Local regression 0.65723
”Global” regression 0.65747

Table 1. Comparison of models, Setup 1.
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The pairwise construction of confidence intervals (5) for given methods
showed that the difference between either regression method and C&RT was
significant, i.e., we can say that the regression methods work better than
C&RT in this setup. On the other hand, the difference between results of
the two regression methods was not significant (by the same criterion).

3.4. Results, two regressors. Similarly to the one-regressor model, the
optimal neighborhood size for two-regressor model is determined by 10-fold
cross-validation. In all cases the regressor variables were the age of the owner
(X1) and the age of the vehicle (X2), and the following three different models
were proposed based on the scaling of individual regressor variables:

• Model 1: Euclidean distance is used and both regressor variables are
scaled by their variance, i.e., in Formula (3) we choose r1 = r ·sd(X1)
and r2 = r · sd(X2);
• Model 2: Mahalanobis distance is used, i.e., besides scaling by vari-

ance also the correlation between regressors is taken into account;
• Model 3: scaling is based on slopes of one-regressor models obtained

in previous subsection, i.e., in Formula (3) we choose r1 = r/b1 and
r2 = r/b2, where b1 is the slope of the one-regressor model with age
of the owner and b2 is the slope of the one-regressor model with age
of the vehicle.

The covariance matrix and correlation matrix for the regressor variables
are the following:

Cov

(
X1

X2

)
=

(
151.6 −3.98
−3.98 7.57

)
and Corr

(
X1

X2

)
=

(
1 −0.117

−0.117 1

)
.

As is seen from the covariance matrix, the variability of the age of the
owner is much bigger than the variability of the age of the vehicle, which
means that the ellipse (3) defining the neighborhood allows more variability
within the age of the owner. Notice also that there is only mild correlation
between regressor variables, which indicates that the results for Models 1
and 2 are expected to be quite similar.

The cross-validation results are shown in Figure 3. Based on cross-valida-
tion, the optimal values for neighborhood size k are:

• k = 900 for Model 1,
• k = 1000 for Model 2,
• k = 2300 for Model 3.

Finally, all these models are applied to test data, and the results of pro-
posed models together with the C&RT model and with the “global” Poisson
regression model are shown in the following table.
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Figure 3. Cross-validation results for different 2-regressor models.

Model Error
C&RT 0.67202

Local regression, model 1 (Euclidean dist.) 0.65720
Local regression, model 2 (Mahalanobis dist.) 0.65714
Local regression, model 3 (scaling by slope) 0.65744

”Global” regression 0.65777

Table 2. Comparison of models, Setup 2.

The pairwise construction of confidence intervals (5) gave similar results to
one argument setup: the performance of all the proposed regression methods
was significantly better than the performance of C&RT (in the sense of
(5)), but none of the differences between different regression methods was
significant.

4. Summary

In the paper we proposed various ideas that can be used for implementing
a local regression model for premium estimation. Although the theory was
presented only in the context of estimating the claim frequency for different
risk factors, the ideas can be easily extended also to the estimation of the
expected claim severity (and thus to the estimation of the expected losses).
We also provide clear principles for model selection and comparison. These
principles are quite general and valid for a broader class optimization prob-
lems. The empirical study confirms that local regression models may have a
clear advantages over the classical methods of dividing the insurance port-
folio into homogeneous classes with similar risk factors. The competitive
advantages/disadvantages of various implementation setups proposed in the
paper clearly deserve further research.
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