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Statistical analysis
of high-order Markov dependencies

Yu. S. Kharin and M. V. Maltsew

Abstract. The paper deals with parsimonious models of integer valued
time series. Such models are special cases of high-order Markov chain
with a small number of parameters. Two new parsimonious models are
presented. The first is Markov chain of order s with r partial connec-
tions, and the second model is called Markov chain of conditional order.
Theoretical results on probabilistic properties and statistical inferences
for these models are given.

1. Introduction

An universal model for real-world processes with discrete time t, finite
state space A = {0, 1, . . . , N − 1}, 2 ≤ N < +∞, and stochastic dependence
of high order s� 1 (in genetics, computer networks, financial markets, mete-
orology, and other fields) is the order s homogeneous Markov chain (MC(s))
xt on some probability space (Ω,F ,P) determined by an (s+1)-dimensional
matrix of one-step transition probabilities

P = (pj1,...,js+1), pj1,...,js+1 = P{xt+1 = js+1 |xt = js, . . . , xt−s+1 = j1},
where t ≥ s, j1, . . . , js+1 ∈ A. Unfortunately, the number of independent pa-
rameters for the MC(s) increases exponentially with respect to the order s:

dMC(s) = N s(N − 1),

thus we need data and computational resources of huge size to identify this
model.

To avoid this “curse of dimensionality” we propose to use parsimonious
(or “small-parametric” [8]) models for MC(s) that are determined by small
number of parameters d� dMC(s). Three known examples of parsimonious

Received October 3, 2016.
2010 Mathematics Subject Classification. 60J10.
Key words and phrases. High-order Markov chain; parsimonious model; estimator; sta-

tistical test.
http://dx.doi.org/10.12697/ACUTM.2017.21.06

79



80 YU. S. KHARIN AND M. V. MALTSEW

models are: the Jacobs–Lewis model [6] with dJL = N+s−1 parameters; the
MTD-model proposed by A. Raftery [13] with dMTD = N2 + s− 1 parame-
ters; the variable length Markov chain model proposed by P. Buhlmann [2].
In this paper we present two new parsimonious models: Markov chain of
order s with r partial connections and Markov chain of conditional order.

2. Markov chain with r partial connections

2.1. Definitions. Markov chain MC(s, r) of order s with r partial con-
nections is determined by the following small-parametric form of the ma-
trix P (see [11]):

pj1,...,js+1 = qjm1 ,...,jmr ,js+1 , j1, . . . , js+1 ∈ A, (1)

where r ∈ {1, . . . , s} is the number of connections; Mr = (m1, . . . ,mr) ∈ M
is the integer-valued vector with r ordered components 1 = m1 < m2 < · · · <
mr ≤ s, called the template of connections; M is the set of all admissible
patterns Mr; Q = (qj1,...,jr,jr+1) is a stochastic (r + 1)-dimensional matrix:

0 ≤ qj1,...,jr,jr+1 ≤ 1,
∑

jr+1∈A
qj1,...,jr,jr+1 = 1, j1, . . . , jr ∈ A.

Formula (1) means that the conditional probability distribution of the
future state xt+1 depends not on all s previous states, but it depends only
on r selected states. We need d = N r(N − 1) parameters to completely
determine MC(s, r).

Let us now present probabilistic properties and construct statistical esti-
mators for parameters of the model.

2.2. Probabilistic properties of MC(s, r). We denote by Jmn =
(jn, . . . , jm) ∈ Am−n+1, m ≥ n, the multiindex (subsequence of indices from
a sequence j1, j2, · · · ∈ A).

Theorem 1. The MC(s, r) defined by (1) is an ergodic Markov chain
if and only if there exists i ∈ N such that

min
Js
1 ,J

2s+i
s+i+1∈As

∑
Js+i
s+1∈Ai

∏s+i

k=1
qjk+m1−1,...,jk+mr−1,jk+s

> 0.

Stationary probability distribution (π∗Js
1
)Js

1∈As satisfies the equations

π∗
Js+1
2

=
∑

j1∈A
π∗Js

1
qjm1 ,...,jmr ,js+1 , J

s+1
1 ∈ As+1.

Proof. Construct the first-order vector-valued Markov chain

{Xt = (xt, xt+1, . . . , xt+s−1) ∈ As : t ∈ N}
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with the extended state space like in [5], which is equivalent to the s-order
Markov chain {xt ∈ A : t ∈ N}. The transition matrix for Xt has the form

P̄ = (p̄J2s
1

), J2s
1 ∈ A2s, p̄J2s

1
= I{Js2 = J2s−1

s+1 }pj1,...,js,j2s .

According to [7] the Markov chain Xt is ergodic if and only if there exists
a number c ∈ N, such that the following inequality holds:

min
Js
1 ,J

s+c
1+c∈As

p̄
(c)

Js
1J

s+c
1+c

> 0,

where p̄
(c)

Js
1J

s+c
1+c

is the c-step transition probability from Js1 to Js+c1+c for the

Markov chain Xt. Using properties of probability and making some trans-
formations we get the required result. �

Corollary 1. Assume that the MC(s, r) is a stationary Markov chain.
The stationary probability distribution has the multiplicative form

π∗Js
1

=

s∏
i=1

π∗ji , J
s
1 ∈ As,

if and only if, for any Jr+1
2 ∈ Ar, we have

π∗jr+1
=
∑

j1∈A
π∗j1 qJr+1

1
,

and the normalizing condition
∑

j∈A π
∗
j = 1 holds.

2.3. Statistical inferences on Q. Introduce the notation:

Xn
1 = (x1, . . . , xn) ∈ An

is a realization of the MC(s, r) of the length n that is used for construction
of statistical inferences;

F
(
J i+s−1i ;Mr

)
= (ji+m1−1, . . . , ji+mr−1)

is the selector-function of the r-th order;

δJk
1 ,I

k
1

=
k∏
l=1

δjl,il

is the Kronecker symbol for Jk1 , Ik1 ∈ Ak;

νJr+1
1

(Xn
1 ;Mr) =

∑n−s

t=1
δ
F
(
Xt+s−1

t ;Mr

)
,Jr

1

δxt+s,jr+1 (2)

is the frequency statistic of the MC(s, r) for a connection template Mr ∈ M;

µJr+1
1

(Mr) = P
{
F
(
Xt+s−1
t ;Mr

)
= Jr1 , xt+s = jr+1

}
, 1 ≤ t ≤ n− s, (3)

is the probability distribution of the (r + 1)-tuple; the dot used instead of
any index means summation on all its values: µJr

1 ·(Mr) =
∑

jr+1∈A
µJr+1

1
(Mr).
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Theorem 2. Let the connection template Mr be known. The maximum
likelihood estimator (MLE) for the matrix Q is

Q̂ = (q̂Jr+1
1

)Jr+1
1 ∈Ar+1 ,

q̂Jr+1
1

=

{
µ̂Jr+1

1
(Mr)/µ̂Jr

1 ·(Mr) if µ̂Jr
1 ·(Mr) > 0,

1/N if µ̂Jr
1 ·(Mr) = 0,

(4)

where

µ̂Jr+1
1

(Mr) = νJr+1
1

(Xn
1 ;Mr)/(n− s)

is the frequency estimator for the probability µJr+1
1

(Mr), J
r+1
1 ∈ Ar+1, Mr ∈

M.

Proof. Estimators (4) are the solution of the following maximization prob-
lem:

l(Q̂,Mr)→ max
Q̂
,
∑

jr+1∈A
q̂j1,...,jr,jr+1 = 1, j1, . . . , jr ∈ A,

where l(Q̂,Mr) is the loglikelihood function for the Markov chain with partial
connections:

l(Q,Mr) = lnπXs
1

+
∑

Jr+1
1 ∈Ar+1

νJr+1
1

(Xn
1 ;Mr) ln(qj1,...,jr+1), (5)

πXs
1

is the initial probability distribution. �

Theorem 3 (see [11]). For the stationary MC(s, r) the statistics {q̂Jr+1
1

:

Jr+1
1 ∈ Ar+1}, defined by (4), are asymptotically (n → ∞) unbiased and

consistent estimators with covariances

Cov{q̂Jr+1
1

, q̂Kr+1
1
} = σq̂

Jr+1
1 ,Kr+1

1

/(n− s) +O(1/n2),

σq̂
Jr+1
1 ,Kr+1

1

= δJr
1 ,K

r
1

qJr+1
1

(δjr+1,kr+1 − qKr+1
1

)

µJr
1 ·(Mr)

, Jr+1
1 , Kr+1

1 ∈ Ar+1.

Moreover, the probability distribution of the N r+1-dimensional random vec-
tor
(√
n− s(q̂Jr+1

1
−qJr+1

1
)
)
Jr+1
1 ∈Ar+1 at n→∞ converges to the normal prob-

ability distribution with zero mean and the covariance matrix

Σq̂ =
(
σq̂
Jr+1
1 ,Kr+1

1

)
Jr+1
1 ,Kr+1

1 ∈Ar+1.

The consistent statistical test for the hypotheses H0: Q = Q0 of the
matrix Q0 = (q0

Jr+1
1

)Jr+1
1 ∈Ar+1 , against H1 = ¬H0 consists of the following

steps.
1. Computation of the statistics νJr+1

1
(Xn

1 ;Mr), J
r+1
1 ∈ Ar+1, by (2).
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2. Computation of the statistic

ρ =
∑

Jr
1∈Ar, jr+1∈DJr

1

νJr
1 ·(X

n
1 ;Mr)

(
q̂Jr+1

1
− q0

Jr+1
1

)2
/q0
Jr+1
1

,

where DJr
1

= {jr+1 ∈ A : q0
Jr+1
1

> 0}.
3. Computation of the P-value: P = 1 − GU (ρ), where GU (·) is the

probability distribution function of the standard χ2 distribution with U =∑
Jr
1∈Ar(|DJr

1
| − 1) degrees of freedom.

4. The decision rule (ε — asymptotic significance level ): if P ≥ ε, then
to stay with the hypothesis H0 is true; otherwise, the alternative H1 is true.

2.4. Statistical estimation of the connection template Mr. Introduce
the notation:

H(Mr) = −
∑

Jr+1
1 ∈Ar+1

µJr+1
1

(Mr) ln
(
µJr+1

1
(Mr)/µJr

1 ·(Mr)
)
≥ 0

is the conditional entropy of the future symbol xt+s ∈ A relative to the past
derived by the selector

F
(
Xt+s−1
t ; Mr

)
∈ Ar, Mr ∈ M;

Ĥ(Mr) is the “plug-in” estimator of the conditional entropy generated by
substitution in (3) estimators µ̂Jr+1

1
(Mr), J

r+1
1 ∈ Ar+1, instead of true prob-

abilities µJr+1
1

(Mr).

Theorem 4. If the order s and the number of connections r are known,
then the maximum likelihood estimator for the true connection template Mr

is expressed in terms of the conditional entropy

M̂r = arg minMr∈M Ĥ(Mr). (6)

Proof. We get estimator (6) by maximization of the loglikelihood func-
tion (5) introduced in Theorem 2. �

Theorem 5 (see [11]). If MC(s, r) is stationary, then the estimator M̂r

defined by (6), at n→∞, is consistent:

M̂r
P−→Mr.

2.5. Statistical estimation of the order s and the number of con-
nections r. Let s ∈ [s−, s+] , r ∈ [r−, r+], 1 ≤ s− < s+ < ∞, 1 ≤ r− <
r+ < s+. Estimating the order and the number of connections by maximum
likelihood method leads to a problem known as overfitting [3]. Therefore for
estimation s and r we use the Bayesian Information Criterion [4], which in
our case has the form:

BIC(s, r) = 2(n− s)Ĥ(M̂r) + U ln(n− s) ,
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where

U =
∑
Jr
1∈Ar

(|GJr
1
| − 1 + δµ̂Jr

1 ·
(M̂r),0

), GJr
1

= {jr+1 ∈ A : µ̂Jr+1
1

(M̂r) > 0}.

Statistical estimators for s and r are determined by minimization:

(ŝ, r̂) = arg min
s−≤ s′≤s+, r−≤ r′≤r+

BIC(s′, r′). (7)

Theorem 6 (see [11]). If MC(s, r) is stationary, then the BIC-estimators
r̂, ŝ defined by (7), at n→∞, are consistent.

3. Markov chain of conditional order

3.1. Definitions. Let us introduce the notation: L ∈ {1, 2, . . . , s − 1} is

some positive integer, K = NL− 1; Q(1), . . . , Q(M) are M (1 ≤M ≤ K + 1)
different square stochastic matrices of the order N :

Q(m) = (q
(m)
i,j ), 0 ≤ q(m)

i,j ≤ 1,
∑
j∈A

q
(m)
i,j ≡ 1, i, j ∈ A, 1 ≤ m ≤M ;

< Jmn >=
m∑
k=n

Nk−njk ∈ {0, 1, . . . , Nm−n+1 − 1} is the numeric representa-

tion of the multiindex, Jmn ∈ Am−n+1; I{C} is the indicator function of the
event C. Further 1 ≤ mk ≤ M , 1 ≤ bk ≤ s − L, 0 ≤ k ≤ K. It is assumed
that sequences {mk} and {bk} are fixed, min

0≤k≤K
bk = 1 and all elements of

the set {1, 2, . . . ,M} occur in the sequence m0, . . . ,mK .
The Markov chain {xt ∈ A : t ∈ N} is called the Markov chain of condi-

tional order (MCCO(s, L)) (see [10]), if its one-step transition probabilities
have the following parsimonious form:

pJs+1
1

=
K∑
k=0

I{< Jss−L+1 >= k}q(mk)
jbk ,js+1

. (8)

The sequence of elements Jss−L+1 is called the base memory fragment (BMF)
of the random sequence, L is the length of BMF; the value sk = s − bk +
1 is called the conditional order of Markov chain. Thus the conditional
probability distribution of the state xt+1 at time point t+ 1 depends not on
all s previous states, but it depends only on L+1 selected states (jbk , J

s
s−L+1).

Note that if L = s− 1, s0 = s1 = · · · = sK = s, we have the fully-connected
Markov chain of the order s: MC(s). If M = K + 1, then each transition
matrix corresponds to only one value of the BMF, otherwise there exists a
common matrix which corresponds to several values of BMF.

Hence the transition matrix P of the Markov chain of conditional order
is determined by

d = 2(NL + 1) +MN(N − 1) (9)
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independent parameters. For example, for N = 2 we need no more than
66 parameters for the Markov chain of conditional order if s = 10, L = 2,
whereas the fully-connected Markov chain of this order requires dMC(s) =
1024 parameters.

3.2. Probabilistic properties of MCCO. The following theorem, which
is proved similarly to Theorem 1, gives ergodicity conditions for the Markov
chain of conditional order.

Theorem 7. The Markov chain of conditional order is ergodic if and
only if there exists a number m ∈ N, s ≤ m < ∞, such that the following
inequality holds:

min
Js
1 ,J

s+m
1+m∈As

∑
Jm
s+1∈Am−s

m∏
i=1

K∑
k=0

I{< J i+s−1i+s−L >= k}q(mk)
jbk+i−1,ji+s

> 0. (10)

In the sequel we will consider ergodic Markov chains. It is known, that
the probability distribution of an ergodic Markov chain tends to a stationary
probability distribution. The next theorem determines conditions under
which the stationary distribution is uniform.

Theorem 8. If the Markov chain of conditional order is ergodic, then its
stationary distribution is uniform if and only if the following equalities hold
(k = 0, 1, . . . ,K): q

(mk)
ij = 1/N,∀i, j ∈ A if sk ∈ {L+ 1, . . . , s− 1},∑
i∈A

q
(mk)
ij = 1,∀j ∈ A if sk = s.

(11)

Proof. As in the proof of Theorem 1, consider the first-order vector Markov
chain Xt. The stationary distribution for Xt is uniform if and only if tran-
sition matrix P̄ is a doubly stochastic matrix, that is∑

Js
1∈As

p̄J2s
1

= 1, ∀J2s
s+1 ∈ As. (12)

Define k =< J2s−1
2s−L > and transform (12):∑

Js
1∈As

p̄J2s
1

=
∑
Js
1∈As

I{Js2 = J2s−1
s+1 }q

(mk)
jbk ,j2s

=
∑
j1∈A

q
(mk)
jbk ,j2s

= 1. (13)

If sk = s, then bk = 1 and
∑
j1∈A

q
(mk)
j1,j2s

= 1. Hence Q(mk) is a doubly stochastic

matrix, and we have the second row in (11). If sk < s, then 1 < bk ≤ s− L
and q

(mk)
jbk ,j2s

in sum (13) does not depend on j1: 1 =
∑
j1∈A

q
(mk)
jbk ,j2s

= Nq
(mk)
jbk ,j2s

,

and we have the first row in (11). �
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3.3. Statistical inferences on transition probabilities. Let us now
construct statistical estimators for parameters of the Markov chain of con-
ditional order. Introduce the notation: Xn

1 ∈ An is the observed time series
of length n, π0Js

1
= P{x1 = j1, . . . , xs = js}, Js1 ∈ As, is the initial probability

distribution of the Markov chain of conditional order (8);

νsl,y(J
l
1) =

n−s∑
t=1

I{xt+s−l−y+1 = j1, X
t+s
t+s−l+2 = J l2}, l ≥ 2, 0 ≤ y ≤ s− l + 1,

is the frequency of the state J l1 ∈ Al with the time gap of length y between
the values j1 and J l2;

νs+1(J
s+1
1 ) = νss+1,0(J

s+1
1 )

is the frequency of (s+ 1)-tuple Js+1
1 .

Let us construct now maximum likelihood estimators (MLEs) for the ma-

trices of transition probabilities {Q(mk) : k = 0, . . . ,K}.
The loglikelihood function for the Markov chain of conditional order has

the form

ln(Xn
1 , {Q(i)}, L, {sk}, {mk}) = lnπXs

1
+

+
∑

JL+1
0 ∈AL+2

K∑
k=0

I{< JL1 >= k}νsL+2,sk−L−1(J
L+1
0 ) ln q

(mk)
j0,jL+1

. (14)

Theorem 9. If the true values s, L, {sk : k = 0, . . . ,K} and {mk : k =
0, . . . ,K} are known, then the MLEs for the one-step transition probabilities

{q(mk)
j0,jL+1

, j0, jL+1 ∈ A : k = 0, . . . ,K} are

q̂
(mk)
j0,jL+1

=



∑
JL
1 ∈Mmk

νsL+2,g(sk,L)
(JL+1

0 )

∑
JL
1 ∈Mmk

νsL+1,g(sk,L)
(JL0 )

if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)
(JL0 ) > 0,

1/N if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)
(JL0 ) = 0,

(15)

where Mi = {JL1 ∈ AL : m<JL
1 >

= i}, i = 1, . . . ,M ,
M⋃
i=1

Mi = AL, g(i, j) =

i− j − 1.

Proof. In order to construct the MLEs we need to maximize the loglikeli-
hood funciton ln(Xn

1 , {Q̂(i)}, L, {sk}, {mk}) with respect to Q̂(mk), 1 ≤ mk ≤
M , subject to the following equality constraints:∑

jL+1∈A
q̂
(mk)
j0,jL+1

= 1, j0 ∈ A, 1 ≤ mk ≤M.
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This maximization problem splits into NM subproblems (j0 ∈ A, JL1 ∈ AL):∑
jL+1∈A

K∑
k=0

I{< JL1 >= k}νL+2,g(sk,L)(J
L+1
0 ) ln q̂

(mk)
j0,jL+1

→ max
q̂
(mk)

j0,jL+1

,

∑
jL+1∈A

q̂
(mk)
j0,jL+1

= 1.

After solving these subproblems with Lagrange multiplier method we come
to the estimators (15). �

In the rest of the paper we will assume that M = K + 1, i.e. K + 1
independent matrices correspond to K + 1 different values of BMF, and
mk = k + 1, k = 0, 1, . . . ,K. In this case estimators (15) have the form

q̂
(k+1)
j0,jL+1

=


∑

JL
1 ∈AL

I{< JL1 >= k}
νsL+2,g(sk,L)

(JL+1
0 )

νsL+1,g(sk,L)
(JL0 )

if νsL+1,g(sk,L)
(JL0)>0,

1/N if νsL+1,g(sk,L)
(JL0)=0.

(16)
We will also use the following notation for transition probabilities and

their estimators:

q(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q(k+1)
j0,jL+1

, q̂(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q̂(k+1)
j0,jL+1

.

3.4. Statistical estimators for sk, s, L. Now let us construct estimators
for the conditional orders {sk}.

Theorem 10. If s and L are known, then the MLEs for conditional orders
{sk : k = 0, . . . ,K} are

ŝk = arg max
L+1≤y≤s

∑
JL
1 ∈AL

I{< JL1 >= k}
∑

j0,jL+1∈A
νsL+2,g(y,L)(J

L+1
0 ) ln(q̂

(k+1)
j0,jL+1

).

(17)

Proof. We get estimators (17) by maximization of the loglikelihood func-
tion (14). �

In order to estimate the order s and the BMF length L we use Bayesian
information criterion (BIC) as in Subsection 2.5 of this paper:

(ŝ, L̂) = arg min
2≤s′≤S+, 1≤L′≤L+

BIC(s′, L′), (18)

BIC(s′, L′) = −2
∑

JL′+1
0 ∈AL′+2

K∑
k=0

I{< JL
′

1 >= k}lkj0,jL′+1
+ d ln(n− s′),
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where lkj0,jL′+1
= νs

′

L′+2,g(ŝk,L′)
(JL

′+1
0 ) ln q̂

(k+1)
j0,jL′+1

, S+ ≥ 2, 1 ≤ L+ ≤ S+ − 1,

are maximal admissible values of s and L respectively, d is the number of
independent parameters of the model (8) defined by formula (9).

3.5. Asymptotic properties of statistical estimators. Let us assume
that the Markov chain (8) satisfies the stationarity condition. Define the
probability distribution of the l-tuple Xt

t+l−1 ∈ Al, l ∈ N:

πl(J
l
1) = P{xt = j1, . . . , xt+l−1 = jl}, J l1 ∈ Al, t = 1, 2, . . . .

It can be proved [10] that at n → ∞ all constructed estimators are con-
sistent:

q̂
(k+1)
ij

P−→ q
(k+1)
ij , i, j ∈ A, k = 0, . . . ,K,

ŝk → sk,

(ŝ, L̂)
P−→ (s, L).

Now let us analyze the asymptotic normality property for estimators (16).
Next theorem establishes asymptotic probability distribution of the normal-
ized deviations of the statistical estimators for transition probabilities:

q̄(JL+1
0 ) =

√
n− s(q̂(JL+1

0 )− q(JL+1
0 )) , JL+1

0 ∈ AL+2.

Theorem 11 (see [10]). If Markov chain of conditional order (8) is sta-

tionary, then as n→∞ the normalized deviations {q̄(JL+1
0 ) : JL+1

0 ∈ AL+2}
have joint asymptotically normal probability distribution with zero mean and
covariance matrix Σq = Σq(H

L+1
0 , JL+1

0 ), HL+1
0 , JL+1

0 ∈ AL+2:

Σq(H
L+1
0 , JL+1

0 ) = I{HL
0 = JL0 }q(HL+1

0 )
I{hL+1 = jL+1} − q(HL

0 jL+1)

π(HL
0 )

.

(19)

Using this result let us construct a statistical test for two hypotheses:

H0 = {Q(1) = Q
(1)
0 , . . . , Q(K+1) = Q

(K+1)
0 }, H1 = ¬H0, (20)

where Q
(1)
0 , . . . , Q

(K+1)
0 are some fixed K+1 stochastic matrices of the order

N .
For the decision making we will use the statistic

ρ = ρ(n) =
∑

JL
0 ∈AL+1

∑
jL+1∈Q(JL

0 )

q̄20(JL+1
0 )πL+1(J

L
0 )/q(JL+1

0 ),

Q(JL0 ) = {jL+1 ∈ A : q(JL+1
0 ) > 0}.
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Theorem 12. Under conditions of Theorem 11 as n→∞ the probability
distribution of the random variable ρ(n) tends to the standard χ2-distribution
with u degrees of freedom,

u =
∑

JL
0 ∈AL+1

(
|Q(JL0 )| − 1

)
.

Proof. Let us give only a scheme of the proof. Complete proof can be
found in [9]. Since normalized deviations {q̄(JL+1

0 ) : JL+1
0 ∈ AL+1} have the

joint asymptotically normal distribution according to Theorem 11, we can
establish the probability distribution of ρ(n) using the theorem on quadratic
forms for multidimensional Gaussian vectors and the Second Continuity The-
orem from [1]. �

Now we can construct the statistical test for the hypotheses (20) based
on the statistic ρ(n):

accept the hypothesis

{
H0 if ρ(n) ≤ ∆,
H1 if ρ(n) > ∆,

(21)

where ∆ = G−1u (1−α) is the (1−α)-quantile of the standard χ2-distribution
with u degrees of freedom, α ∈ (0, 1) is the given significance level.

Corollary 2. Under conditions of Theorem 11 the asymptotic size of the
test (21) is equal to the given significance level α ∈ (0, 1):

αn = P{ρ(n) > ∆|H0} −−−→
n→∞

α.

Let us consider now the alternative hypothesis of the following special
type:

H1n = {Q(1) = Q
(1)
1 , . . . , Q(K+1) = Q

(K+1)
1 }, (22)

Q
(k)
1 = Q

(k)
0 +

1√
n− s

γ(k), γ(k) = (γ
(k)
i,j ), i, j ∈ A, k = 1, . . . ,K + 1,

where {γ(k)} are some fixed square matrices of the order N , such that∑
j∈A

γ
(k)
i,j = 0,

∑
i,j∈A

(γ
(k)
i,j )2 > 0. Formula (22) means that the alternative

hypothesis H1n tends to the null hypothesis H0 as n→∞; such a family of
hypotheses {H1n : n = 1, 2, . . . } is called the family of contigual hypothe-
ses [14]. For this case we can obtain the asymptotic power of the test (21).
The next theorem is proved similarly to Theorem 12.

Theorem 13. If the Markov chain of conditional order (8) is stationary
and the contigual family of alternatives (22) holds, then as n → ∞ the
probability distribution of the random variable ρ(n) tends to the noncentral
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χ2-distribution with u degrees of freedom and the noncentrality parameter λ:

λ =
∑

JL
0 ∈AL+1,

jL+1∈Q(JL
0 )

πL+1(J
L
0 )

q(JL+1
0 )

γ2(JL+1
0 ),

where γ(JL+1
0 ) =

K+1∑
k=1

I{< JL1 >= k}γ(k)j0,jL+1
.

Corollary 3. Under conditions of Theorem 9 the power of the test (21)
as n→∞ tends to the limit

w = 1−Gu,λ(G−1u (1− α)), (23)

where Gu,λ is the distribution function of the noncentral χ2-distribution with
u degrees of freedom and the noncentrality parameter λ, and α ∈ {0, 1} is
the given significance level.

Let us note that the power does not tend to 1 because the alternative
hypothesis H1n tends to the null hypothesis as n→∞.

4. Conclusions

Using of high-order Markov chains for modeling of long memory integer
valued processes leads to the hard “dimensionality problem”, and construc-
tion of small-parametric models is necessary for practice. Convenient models
for modeling in the indicated situation are the models considered in this pa-
per: the Markov chain with partial connections MC(s, r) and the Markov
chain of conditional order MCCO(s, L). Probabilistic properties of MC(s, r),
MCCO(s, L) are investigated, statistical inferences on the model parameters
are constructed. Practical implementation of MCCO(s, L) can be found
in [12].

Acknowledgement. The authors thank the anonymous referee for care-
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our paper.
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