
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 21, Number 1, June 2017
Available online at http://acutm.math.ut.ee

Downward calibration property of estimated

response propensities

Natalja Lepik and Imbi Traat

Abstract. We consider four methods for estimating response propensi-
ties: three traditional ones (linear, logistic, probit) and one more recent,
a decision tree method. We show that some but not all the methods pro-
duce estimates that calibrate sample totals of auxiliary variables down to
the response set totals. The downward calibration property reveals inter-
esting relationships between estimated propensities, auxiliary variables,
and true response probabilities. However, the property itself does not
guarantee more accurate propensity estimation. Our simulation study
shows that the accuracy of the estimation method depends primarily on
the relationship nature between true response probabilities and auxiliary
variables.

1. Introduction

Let U = {1, . . . , N} be a �nite population of N units. Let s be a sample
of size n drawn by some sampling design, so that the inclusion probability
of unit k is a known quantity πk = Pr(k ∈ s). The inverse of inclusion
probability is called the design weight, dk = π−1k . Let r denote a response
set of size m − a subset of s, where study variables are measured:

r ⊂ s ⊂ U.

A common feature of nowadays sample surveys is low response rate, i.e., the
size of r is often much less than the sample size. Since response set is usually
biased compared to the full sample s, simple estimates computed from r are
also biased. Adjustments have to be made to reduce nonresponse bias.

Received October 9, 2016.
2010 Mathematics Subject Classi�cation. 62D05.
Key words and phrases. Nonresponse; response propensity; response probability; down-
ward calibration; linear regression; logit; probit; decision tree.
http://dx.doi.org/10.12697/ACUTM.2017.21.07

93



94 NATALJA LEPIK AND IMBI TRAAT

Formation of r is subject to a response mechanism, unknown to us. Let
Rk be the response indicator for the unit k in s. Its value 1 means response
(k ∈ r), and the value 0 means nonresponse (k ∈ s−r). Denote the response
probability of unit k ∈ s by θk,

θk = Pr(Rk = 1|k ∈ s) = E(Rk|s).

Here, and later in this paper, whenever the operator E(·) is used, it means the
expectation with respect to the response mechanism, unless otherwise stated.
Sample s is assumed to be �xed in this paper. If the response probabilities
θk were known for k ∈ r then unbiased estimator for the population total
t =

∑
U yk is

t̂ =
∑
r

dkθ
−1
k yk,

where yk is the study variable value for unit k, available only in r. The
unbiasedness is shown by the usual two-phase reasoning (see, e.g., [8]). Here
and elsewhere in the paper, the notation

∑
A

means summation over k in

the set A. Unfortunately θk are not known. It is natural for a statistician to
estimate θk by θ̂k and use θ̂−1k as a nonresponse adjustment weight. A review
on nonresponse weighting adjustments is given by Brick in [2]. In this paper

we do not concentrate on the estimator ˆ̂t =
∑

r dkθ̂
−1
k yk, but rather on the

properties of θ̂k.

Usually response is modeled with available auxiliary information. Denote
by xk a J-dimensional vector of auxiliary variables, known for all k ∈ s.
Nowadays sample surveys can obtain auxiliary information from many reg-
isters and data �les, so that the dimensionality J can be considerably high.
The model is built for conditional probability

Dk = Pr(Rk = 1|xk, k ∈ s),

called response propensity (see, e.g., [10]). The response propensity is esti-
mated from the data (Rk,xk), k ∈ s and then used as an estimate for the
response probability:

θ̂k = P̂r(Rk = 1|xk, k ∈ s) = D̂k.

The response propensities are unbiased for the response probabilities θk,

θk = E(Rk|s) = EE(Rk|xk, s) = EDk,

where the �rst expectation in EE(·) is with respect to the distribution of
xk. Notice that unbiasedness cannot be claimed for the estimated response
propensities, i.e., generally ED̂k = Eθ̂k 6= θk. Many modeling methods are
available for binary variable, here Rk. Along classical old statistical methods,
like logistic and probit regression, many new methods have been developed.
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Computer science has been the driving force here. These algorithmic meth-
ods are classi�ed as machine learning or statistical learning methods (see,
e.g., [5]). The new methods like decision trees, random forests, support vec-
tor machines and others have just started to �nd their application in various
areas of statistics. For example, in sampling theory the decision tree method
has very recently been described for nonresponse weighting in [11], and for
analyzing nonresponse structure in [6].

Our interest lies in the properties of θ̂k, obtained by di�erent methods.
Primarily we are interested in the property, de�ned in the next section, which
we call downward calibration. The property is known to hold for linear
regression (see, e.g., [9]). We show that this property holds also for logistic
regression, but in general not for a probit model and not for a decision tree
method.

The three classical methods (linear, logistic, probit) produce rather simi-

lar estimates θ̂k. We show that these methods give exactly the same expres-
sion for θ̂k for special con�guration of an auxiliary vector, called the group
vector. The group vector allows to simplify many complex expressions in-
volving auxiliary variables and, in this way, do analytical comparisons. The
J-dimensional vector xk is called a group vector if it contains zeros and
only one 1, identifying the group out of J groups where the unit k belongs:
x′k = (0, . . . , 0, 1, 0, . . . , 0) with 1 in position j meaning that k belongs to
group j. In practice the group vector can be formed by crossing several cat-
egorical variables. For example, crossing variables sex with 2 categories and
education with 3 categories a 6-dimensional group vector is received.

The decision tree method is a non-parametric method. It divides sample
s into subgroups by the values of auxiliary variables, and estimates response
probabilities by the response proportions in these groups. An advantage
of the tree method is its ability to capture nonlinear dependence between
propensity to respond and auxiliary variables.

The results of the paper are illustrated in a simulation study, carried out
on real data. The two di�erent response mechanisms in a �xed sample s are
considered; the true response probabilities depending either approximately
linearly, or nonlinearly, on the auxiliary variables xk. The four methods
(linear, logistic, probit, decision tree) and two combined methods are consid-
ered. The combined methods remodel the decision tree output with logistic
regression. The downward calibration property of θ̂k and its performance in
estimation of true θk is illustrated.
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2. Downward calibration and interpretation

De�nition 2.1. We say that propensity estimates θ̂k, k ∈ s, have down-
ward calibration property if the following holds:∑

s

dkθ̂kxk =
∑
r

dkxk (J equalities). (1)

The calibration takes place downward since the bigger set s includes a
smaller set r, and the weights θ̂k applied to the design-weighted total in s
calibrate it to the design-weighted total in r. From this point of view, the
usual calibration in sample surveys is an upward calibration, from r to s or
even to U .

Note that if the calibration property (1) holds for xk, then it holds for any
linear transformation Axk.

Proposition 2.1. The following holds for the sums with true θk:

E

(∑
r

dk

)
=
∑
s

dkθk, (2)

E

(∑
r

dkxk

)
=
∑
s

dkθkxk. (3)

Proof. The proof is straightforward by using E(Rk|s) = θk, and noting
that

∑
r dk =

∑
s dkRk and

∑
r dkxk =

∑
s dkRkxk. �

The proposition says that
∑

r dk and
∑

r dkxk are unbiased for the respec-
tive sums with true probabilities.

The downward calibration property reveals a relationship between esti-
mates θ̂k and true θk.

Proposition 2.2. If θ̂k, k ∈ s, satisfy the downward calibration property
(1), then

E

(∑
s

dkθ̂kxk

)
=
∑
s

dkθkxk

Proof. The proof follows from (1) and (3). �

Let now xk be such that for a constant vector µ,

µ′xk = 1, ∀k. (4)

The condition is not too restrictive. For example in the models with intercept,
the �rst variable in xk is a constant 1, and then µ = (1, 0, . . . , 0). For xk as a
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group vector, µ is the vector of ones. For such xk, the downward calibration
property (1) states that ∑

s

dkθ̂k =
∑
r

dk. (5)

Proposition 2.3. If the downward calibration (1) holds, and xk has prop-
erty (4), then

E

(∑
s

dkθ̂k

)
=
∑
s

dkθk.

Proof. The proof follows from (5) and (2). �

Note that the unbiasedness of
∑

s dkθ̂k for
∑

s dkθk does not imply that

θ̂k is unbiased for θk.

The above results can be stated for the weighted averages, just by dividing
sums by

∑
s dk. We state the following corollary.

Corollary 2.1. The generalized response rate
∑

r dk/
∑

s dk is unbiased
for the weighted average of true response probabilities,

E

(∑
r dk∑
s dk

)
=

∑
s dkθk∑
s dk

.

If the downward calibration and the property (4) for xk hold, then∑
s dkθ̂k∑
s dk

=

∑
r dk∑
s dk

,

and further, the average of estimates θ̂k is unbiased for the average of true
probabilities,

E

(∑
s dkθ̂k∑
s dk

)
=

∑
s dkθk∑
s dk

.

For self-weighting designs when dk is constant for each k, we get from (5)
that sample sum of propensity estimates is the number of respondents m and
generalized response rate is just the ordinary response rate m/n.
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Let now xk be the group vector. It divides the sample s into J non-
overlapping and exhaustive groups sj with equal xk inside the groups. Sim-
ilarly, it divides r into groups rj . In group vector case, the downward cali-
bration property (1) takes the form

J∑
j=1

∑
sj

dkθ̂kxk =

J∑
j=1

∑
rj

dkxk,

or, alternatively, ∑
sj

dkθ̂k =
∑
rj

dk, j = 1, . . . J.

Since θ̂k = P̂r(Rk = 1|xk, k ∈ s) is computed for given xk, it is constant

inside the group, i.e., θ̂k ≡ θ̂j for k ∈ sj . Next, we summarize the result.

Proposition 2.4. For the group vector case, and for the methods with
downward calibration property, the estimated response propensities are gen-
eralized response proportions (rates) in the groups, i.e., for each unit in sj,

θ̂j =

∑
rj
dk∑

sj
dk
. (6)

It is easy to check that inverted θ̂j in (6) are calibration weights in the
traditional (upward) sense for a group vector xk,

∑
r

dkθ̂
−1
k xk =

J∑
j=1

θ̂−1j
∑
rj

dkxk =
∑
s

dkxk,

and the estimator ˆ̂t =
∑

r dkθ̂
−1
k yk is the calibration estimator for t =

∑
U yk.

But in general the inverted propensity estimate θ̂−1k does not have the cali-
bration property.

More general xk-vectors (not necessarily group vectors), can be also used
to divide s into J non-overlapping and exhaustive groups sj with xk sat-
isfying certain criterion inside the groups. For example, the decision tree
method creates such groups by certain optimization algorithm, and com-
putes propensities as response proportions (6) inside the groups, the same

for each unit in the group. In this situation, the bias statements for θ̂j are
not so clear, because for given s the partition into sj is random, it depends
on the realized response set r. But, anyway, the following holds for the sum
of weighted propensity estimates:
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E

 J∑
j=1

θ̂j(
∑
sj

dk)

 = E

(∑
r

dk

)
=
∑
s

dkθk.

Not all estimation methods obey downward calibration property. Let θ̂k be
estimated by such a method. If the downward calibration is the aim, then an
appropriate re-modeling method can be applied on Rk with θ̂k as a covariate.
Due to (1), the resulting new propensity estimates θ̂k,new = P̂r(Rk = 1|θ̂k, s)
will be related to the original ones by∑

s

dkθ̂k,newθ̂k =
∑
r

dkθ̂k.

Similarly, the extended auxiliary vector (θ̂k,xk) can be used for the secondary
modeling.

3. Linear, logistic and probit methods

In this section we consider three parametric methods for estimating re-
sponse propensities − linear, logistic, and probit methods. It has been shown
earlier, e.g., in [9] that downward calibration property, although not named

so, holds for the propensity estimates θ̂k,lin received from the linear regres-
sion. We show that the downward calibration property holds for the propen-
sity estimates θ̂k,log computed from the logistic regression, in spite of the

fact that no analytical form exists for θ̂k,log. We also show that, in general,
the property does not hold for the probit model. The logistic regression and
probit models are well explained in [1].

3.1. Linear method. In linear modeling, Rk is assumed to depend linearly
on xk. Regression coe�cients β′ = (β1, . . . , βJ) are estimated by minimizing
the design-weighted sum of squares

Q(β) =
∑
s

dk(Rk − β′xk)2.

The design weight dk = 1/πk expresses the importance of unit k ∈ s. The
minimum over β is received for

β̂ =

(∑
s

dkxkx
′
k

)−1∑
s

dkxkRk.

With β̂ we get the prediction for Rk given xk, it is the estimated response
propensity:

θ̂k,lin = β̂
′
xk. (7)



100 NATALJA LEPIK AND IMBI TRAAT

It is easy to check by inserting (7) into (1) that downward calibration holds

for θ̂k,lin: ∑
s

dkθ̂k,linxk =
∑
r

dkxk.

The drawback of the linear method is that θ̂k,lin may sometimes obtain im-
proper values, negative or greater than one. The positive side is the explicit
formula for θ̂k,lin which allows further analytical studies.

Since the downward calibration holds, the propensity estimates for the
group vector xk are response proportions in groups, θ̂k,lin = θ̂j , k ∈ sj ,

where θ̂j is in (6). On the other hand, (7) says for the group vector xk that

β̂j = θ̂k,lin, k ∈ sj .
Consequently, estimated regression coe�cients are also response proportions
(6) in the groups.

3.2. Logistic method. For logistic modeling, we assume Rk ∼ B(1, Dk),
where Dk = P (Rk = 1|xk, s) has the form

Dk =
exp(β′xk)

1 + exp(β′xk)
. (8)

Proposition 3.1. Modeling Rk on the auxiliary vector xk with logistic
regression method, the maximum likelihood estimates of the response propen-

sities Dk, denoted by θ̂k,log, satisfy the downward calibration property:∑
s

dkθ̂k,logxk =
∑
r

dkxk. (9)

Proof. We have data (Rk,xk) with weights dk, k ∈ s. With the usual
interpretation of dk (it shows how many population units the sample unit k
represents), the following likelihood function is natural:

L(β) =
∏
s

DdkRk
k (1−Dk)

dk(1−Rk).

We maximize the log-likelihood

l(β) =
∑
s

[dkRk log(Dk) + dk(1−Rk) log(1−Dk)]. (10)

Matrix di�erentiation gives

∂l

∂β
=
∑
s

[
dkRk
Dk

∂Dk

∂β
− dk(1−Rk)

1−Dk

∂Dk

∂β

]
, (11)

where

∂Dk

∂β
= Dk(1−Dk)xk. (12)
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Inserting (12) into (11) and equating to 0 gives the equations∑
s

[dkRk − dkDk]xk = 0. (13)

A numerical solution forDk is the estimated propensity θ̂k,log, satisfying (13),
where we then observe the downward calibration property (9). �

Similarly to the linear regression case, we have for the group vector xk the
propensity estimates as response proportions in groups, θ̂k,log = θ̂j , k ∈ sj ,
where θ̂j is given by (6). The estimated regression coe�cients follow from

(8), which now has the form Dk =
exp(βj)

1+exp(βj)
, k ∈ sj . Replacing Dk by

θ̂k,log = θ̂j , we get

β̂j = log
θ̂j

1− θ̂j
, k ∈ sj ,

where θ̂j is given by (6).

3.3. Probit method. For probit modeling, we also assume that Rk ∼
B(1, Dk), where Dk = P (Rk = 1|xk, s). But now, instead of being the
logistic function (8), Dk is the probit function:

Dk = Φ(β′xk),

where Φ(·) is the standard normal distribution function.

Proposition 3.2. Modeling Rk on the auxiliary vector xk with probit

method, the response propensities Dk, k ∈ s, are estimated by θ̂k,prb =

Φ(β̂
′
xk), where β̂ is the maximum likelihood estimate of β. The estimated

propensities θ̂k,prb satisfy∑
s

dkθ̂k,prbĈkxk =
∑
r

dkĈkxk, (14)

where

Ĉk =
φ(β̂

′
xk)

Φ(β̂
′
xk)[1− Φ(β̂

′
xk)]

with φ(·) being the density function of standard normal distribution.

Proof. The log-likelihood is again given by (10), and the derivative with
respect to β by (11). A di�erence from the logistic method comes in the
term

∂Dk

∂β
=
∂(Φ(β′xk))

∂β
= φ(β′xk)xk. (15)
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Inserting (15) into (11) and equating it to zero gives∑
s

[dkRk − dkDk]xkCk = 0, (16)

where Ck = φ(β′xk)/[Φ(β′xk)[1−Φ(β′xk)]]. A solution for β gives a solution

for Dk which is the estimated response propensity θ̂k,prb. With solutions in
(16) we recognize the relationship (14), and the proposition is proved. �

We see that the downward calibration property does not generally hold
for θ̂k,prb. There is an additional factor Ĉk.

For xk as a group vector, the equality (14) can be written in the form

J∑
j=1

∑
sj

[dkRk − dkθ̂k,prb]xkĈk = 0. (17)

Since xk is a constant vector in sj having 1 in the position j and zeros

elsewhere, also Ĉk as well θ̂k,prb are constants in sj , denoted respectively by

cj and θ̂j,prb. The vector equality (17) breaks down to J equalities

cj
∑
sj

[dkRk − dkθ̂j,prb] = 0, j = 1, . . . , J. (18)

Finally, we see from (18) that the estimated propensities are just generalized

response rates in the groups, θ̂j,prb = θ̂j , j = 1, . . . , J , given by (6). In
the group vector case, also the coe�cients βj have simple estimates. Since

θ̂k,prb = θ̂j,prb = Φ(β̂j) for k ∈ sj , one has

β̂j = Φ−1(θ̂j), j = 1, . . . , J,

where θ̂j is in (6).

Considering all three methods, we can say that for a group vector case, they
all produce the same propensity estimates, equal to the generalized response
rates in the groups, though the regression coe�cients β̂j are di�erent for each
method.

3.4. Decision tree method. The decision tree method is a non-parametric
method. Depending on the type of the modeled variable, there are regression
trees and classi�cation trees (see, e.g., [5]). In nonresponse case we model the
categorical, more precisely, the binary Rk, and thus have the classi�cation
tree. The tree is grown using data (Rk,xk), k ∈ s. In each step one variable
from auxiliary vector x = (x1, . . . , xJ), say xj is chosen, and a split is made
xj < a and xj ≥ a. In the �rst step, this divides all units of s into 2 nodes s1
and s2 (subsets). In each of these nodes the response proportion is found by

θ̂sj =
∑

sj
dkRk/

∑
sj
dk; the same for all units in sj , j = 1, 2. The splitting
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point a is chosen from the purity of the node criterion. The Gini index Gsj
or the deviance criterion Dsj is used (see [4]). The often default choice is
Dsj which for binary Rk takes the form

Dsj = −θ̂sj log θ̂sj − (1− θ̂sj ) log(1− θ̂sj ).
It gives small values for the pure nodes, i.e., for those which consist preva-
lently from respondents or from non-respondents. The smallest possible Dsj

is searched for choosing the splitting point and the variable to split. In the
next step the nodes from the �rst splitting are split again by a new choice of
a variable and a splitting point. The procedure runs until some stopping rule
is ful�lled. Sometimes it is a small value d of Dsj . The new node is created
if the within node deviance is at least d times of that of the root node. Af-
ter stopping, in each �nal node the response proportions are computed and
taken as the estimated response probabilities θ̂k,tree equal for each unit k in
that node (or alternatively said, equal for a con�guration of the auxiliary
vector x realized for that node).

The tree method has some advantages compared to other modeling meth-
ods. It decides automatically which variables and which interactions enter
the model.

4. Simulation set-up

In this section we study numerically downward calibration property of the
linear, logistic, probit and decision tree models. In addition, we consider
combined modeling, where the quantities θ̂k,tree estimated by the decision
tree method are taken as covariates for the logistic regression model. Two
cases for subsequent logistic regression are considered, θ̂k,tree as the only co-

variate, and (θ̂k,tree,x
′
k) as the covariate vector.

The six methods are compared in a simulation study. The downward cal-
ibration property is characterized by the calibration distance. The accuracy
and relative bias of the estimated response propensities are also measured.
1000 response sets are simulated from a �xed sample s. In every simulation
step (response set) i, i = 1, 2, . . . , 1000, and for all methods we compute the
following quantities:

• calibration distance CDi =
√
v′iΣ

−1
s vi, where vi =

∑
s dkθ̂kxk −∑

r dkxk and Σs =
∑

s dkxkx
′
k (vi = 0 for θ̂k with property (1));

• accuracy Qi =
√

1
n

∑
s(
θ̂k−θk
θk

)2;

• relative bias RBi = 1
n

∑
s
θ̂k−θk
θk

.

For �nal illustration we use means and standard deviations of these measures
over all simulations.
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In the simulation experiment we use real Estonian data taken from the
European Social Survey (see [3]). Speci�cally, our vector xk consists of four
variables: gender (coded as 1 for males and 2 for females), age (measured
in full years), and total income of the individual k (expressed as a decile).
Those individuals who did not respond to at least one variable were deleted
from the data. The �nal sample consists of 1762 individuals. We assume
here equal design-weights for every individual k.

We generate two sets of true response probabilities θk, k ∈ s, using dif-
ferent logistic regression procedures. Below we refer to these sets as the
linear and the nonlinear case. In obtaining the �rst set we relate the logit of
primary response probabilities θ∗k, k ∈ s, linearly on age, income and gender:

logit(θ∗k) = ln

(
θ∗k

1− θ∗k

)
= −0.1 · incomek + 0.007 · agek + 0.2 · genderk.

Then, primary response probabilities θ∗k are normalized and taken as values
of θk so that the equality

∑
s θk = m holds, where m is the �xed size of the

response set.

Figure 1. Linear case. Distribution of true response proba-
bilities by age group, income decile, and gender.
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The distribution of θk is depicted on Figure 1. We see that the response
probability for female is generally higher than for male, marginal means
being 0.63 vs 0.55. Younger people respond with lower probability than
older, and average response probability (marked by cross) changes nearly
linearly with age groups. Income is also related with response probability,
but in decreasing manner: the higher income decile brings lower probability
to respond.
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The second set of true probabilities θk is generated by relating logit(θ∗k)
non-linearly on age, income and gender. With some manipulation the prob-
abilities θk, as seen on Figure 2, are obtained.

Figure 2. Nonlinear case. Distribution of true response
probabilities by age group, income decile, and gender.
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On average (see Figure 2), the response probabilities are lower for the
young and elderly people, but are higher for the middle age groups. Individ-
uals with higher income respond with lower probability as for the �rst set, but
the relationship between income and θk is non-linear. For this set, the aver-
age response probability is also higher for female than for male (0.63 vs 0.56).

Data is treated as a �xed sample s, for which response set of �xed sizem =
1057 (approximately 60 % of a sample size) is generated in every simulation
step i, i = 1, 2, . . . , 1000. Every response set is drawn by the following order
sampling method:

• the value uk is generated for every individual k ∈ s:

uk ∼
U(0, 1)

θk
;

• then the data is sorted into ascending order by uk and the �rst
m = 1057 units are coded by ones (respondents) and others by zeros
(nonrespondents).

As a result, the unit k responds with probability θ0k, very close to θk. As

shown by Rosén in [7], lim
m→∞

θk
θ0k
→ 1.
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5. Simulation results

Simulation results are presented in two tables; for linearly constructed θk
in Table 1, and for nonlinearly constructed θk in Table 2. A more detailed
picture is presented on Figure 3. Simulation experiment con�rmed that the
linear regression and the logistic regression both satisfy the downward cali-
bration property (1). We have vi = 0 for these methods in every simulated
response set. Therefore average calibration distance CD = 0 and standard
deviation sCD = 0. For the combined methods we also have CD = 0 and
sCD = 0.

For probit and decision tree methods, the average calibration distance
di�ers from zero, which means that downward calibration property does not
hold for these methods. But for the probit model the distance is much smaller
than for the decision tree model.

Table 1. Linear case. Means and standard deviations of
performance measures.

Method Q sQ RB sRB CD sCD
Linear regression 0.040 0.0138 0 0.0032 0 0
Logistic regression 0.041 0.0139 0 0.0032 0 0
Probit 0.041 0.0139 0 0.0032 0.012 0.0047
Decision tree 0.236 0.0398 0.001 0.0033 0.443 0.2001

Logistic by θ̂k,tree 0.231 0.0401 -0.001 0.0034 0 0

Logistic by (xk, θ̂k,tree) 0.236 0.0415 0 0.0033 0 0

As we see from Table 1, all six methods are nearly unbiased. The average
relative bias of estimated propensities (RB) is close to zero. The average ac-
curacy (Q) is near zero for the classical statistical methods. For the decision
tree model and for its combinations with logistic regression, the mean accu-
racy is around 0.23, which says that these methods are 5 times less accurate
than the �rst three methods, for the current set of true probabilities θk.

We see from Table 2 that linear, logistic, and probit methods are not
able to capture nonlinear structure of response probabilities. The value of
average accuracy (Q) is quite large (around 5.2 � 5.6) for these methods. It
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Table 2. Nonlinear case. Means and standard deviations of
performance measures.

Method Q sQ RB sRB CD sCD
Linear regression 5.164 0.666 0.956 0.143 0 0
Logistic regression 5.644 0.562 1.083 0.112 0 0
Probit 5.423 0.588 1.033 0.118 0.141 0.017
Decision tree 1.116 0.793 0.041 0.077 0.360 0.161

Logistic by θ̂k,tree 1.805 0.393 0.294 0.056 0 0

Logistic by (xk, θ̂k,tree) 1.793 0.401 0.291 0.057 0 0

is considerably smaller for the three last methods, where the decision tree
model is used. The average relative bias is high, near one, for the classical
methods, and it is close to zero for the decision tree method. Thus, decision
tree method was the winner here to estimate response probabilities, in spite
of the fact that the calibration property did not hold.

From both tables, we see that combined modeling, where estimates from
the decision tree method θ̂k,tree are used as covariates for the logistic model,
makes the downward calibration property to hold true, but does not guar-
antee more accurate propensity estimates. However, comparing the numbers
sQ, it makes propensity estimates more stable.

For all six methods, using 1000 simulated response sets, boxplots of di�er-
ences θk− θ̂k are presented for selected values of θk in Figure 3. The selected
values are the �ve Tukey numbers (minimum, lower quartile, median, upper
quartile, and maximum of θk, k ∈ s). The horizontal dashed line is drawn
at zero and corresponds to the ideal situation, where the true response prob-
ability and its estimate are equal.

On the left column of Figure 3, the true θk were nearly linearly related to
the covariates. We see that in this case all 6 methods estimate unbiasedly θk
for 5 selected values. The variation is smaller for classical methods.

On the right column of Figure 3, the true θk were nonlinearly related to the
covariates. We notice that linear regression, logistic regression, and probit
models are biased for all selected θk. This is in line with results in Table 2,
where classical methods had large Q and RB. In contrast to this, the tree
method and its combinations perform with smaller biases, but with much
higher variance.
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Figure 3. Distribution of θk− θ̂k over simulations for Tukey
numbers of θk, k ∈ s, on horizontal axes.

●
●

●

●●

●

●

●

●●
●●●

●●

●

●●●

●

●●●

●

●●

●

●●●●

●●●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

Li
ne

ar
 r

eg
re

ss
io

n

0.354 0.536 0.611 0.669 0.758

●

●●●●

●

●

●●

●

●

●

●●●●

●●

●

●●●

●●

●●●

●

●●

●

●

●

●●●●

●●●

●●

●●●

●●

●

−
0.

6
−

0.
2

0.
2

0.
6

Li
ne

ar
 r

eg
re

ss
io

n

0.003 0.559 0.6 0.772 0.933

●●

●

●

●

●

●

●●
●
●●

●●

●

●●●

●

●●●
●

●

●●

●●●

●

●

●
●●●●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 r
eg

re
ss

io
n

0.354 0.536 0.611 0.669 0.758

●●●●●●

●

●●●●●

●
●

●●●●

●

●

●
●●●

●●

●●●

●●

●

●

●

●

●

●●●●

●●●

●●

●●●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 r
eg

re
ss

io
n

0.003 0.559 0.6 0.772 0.933

●
●

●

●

●

●

●

●
●●●

●●

●

●●●

●

●●●●

●

●●●

●●●●

●

●

●
●●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

P
ro

bi
t

0.354 0.536 0.611 0.669 0.758

●●●●●●●●●●●

●

●●●●

●●

●●

●●●

●●

●●●

●●

●

●

●

●

●

●●●●

●●

●●

●●

●

−
0.

6
−

0.
2

0.
2

0.
6

P
ro

bi
t

0.003 0.559 0.6 0.772 0.933

●●●●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●●

●

●●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●
●

●●

●
●

●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

D
ec

is
io

n 
tr

ee

0.354 0.536 0.611 0.669 0.758

●●

●●●●

●

●●
●

●

●

●
●●
●

●
●

●

●●●

●●●●

●

●●
●
●

●

●

●

●

●

●

●
●●

●

●

●
●●●
●●
●
●

●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●●

●

●
●
●

●

●

●
●●●●

●
●

●

●

●

●

●

●
●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●
●●●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●
●
●

●

●●●

●●
●

●●

●
●●
●
●

●

●●●●
●

●

●

●

●

●●

●●
●

●●●

●

●

●
●
●●
●
●
●●

●

●

●
●

●
●●

●

●
●
●
●

●

●

●
●

●

●

●
●
●

●

●●●
●
●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●
●

●

●●●●

●

●●●●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●●●

●

●●●●●●

●

−
0.

6
−

0.
2

0.
2

0.
6

D
ec

is
io

n 
tr

ee

0.003 0.559 0.6 0.772 0.933

●●
●●●●●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●
●

●

●●
●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●●

●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

● ●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 w
ith

 θ
k

0.354 0.536 0.611 0.669 0.758

●

●
●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●
●
●

●
●

●●

●

●●●
●
●

●

●

●
●
●
●
●

●

●

●

●

●●

●

●●
●●●
●
●
●
●

●

●●●●
●●

●

●●
●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 w
ith

 θ
k

0.003 0.559 0.6 0.772 0.933

●●
●
●●●●●

●●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●

●

●

●●

●●●

●

●

●

●
●●

●
●●

●

●

●
●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●
●●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 w
ith

 (
θ k

 , 
x k

)

0.354 0.536 0.611 0.669 0.758

●

●
●●
●

●

●●

●

●

●●●

●

●
●

●
●
●●
●●

●

●●●●
●

●●

●●●●
●

●

●

●

●●

●

●●
●●
●●●●

●

●●

●

●

●●

●

●

●

●●●

●

●●●●●
●
●
●
●

●

●●●
●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−
0.

6
−

0.
2

0.
2

0.
6

Lo
gi

st
ic

 w
ith

 (
θ k

 , 
x k

)
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6. Conclusions

In this paper we de�ned the downward calibration property of the esti-
mated response probabilities θ̂k. The estimates from linear regression are
known to have this property. We showed analytically that logistic regression
produces estimates with the downward calibration property as well, whereas
the probit modeling does not do it. Simulation showed that the decision tree
method does not do it either. However, in a special case (auxiliary vector

being a group vector) all the methods produce the same θ̂k, expressed as
weighted response proportions in groups.

In a simulation experiment, the accuracy and bias of θ̂k with respect to the
true θk was measured for all the considered methods. This was done under
two di�erent response mechanisms. For the linear response mechanism, the
classical methods (linear, logistic and probit) performed better than the tree
method, whereas for the nonlinear case, the tree method was much less biased
and had much better accuracy. We learned that the downward calibration
property itself does not guarantee more accurate propensity estimation. The
accuracy and bias of the estimation method depend on the relationship nature
between true response probabilities and auxiliary variables. Our Figure 3
shows a detailed behavior of θ̂k for selected values of the true θk for all the
methods and for both response mechanisms. An important issue for the
future research is the e�ect of the downward calibration property on the

estimator ˆ̂t =
∑

r dkθ̂
−1
k yk.
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