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Effect of auxiliary information in data collection
and estimation stage

Kaur Lumiste

Abstract. Responsive design is a newly emerged view focusing on re-
ducing the effects of non-response by monitoring and intervening the
data collection process. Informative measures that use auxiliary infor-
mation are used to guide the data collection process. Aspiration to a
well representative set of respondents is currently done through balanc-
ing – means of auxiliary variables have to be equal in the sample and
the set of respondents. Auxiliary variables are later used in the esti-
mation stage to improve the estimates, but assume that more auxiliary
variables are available in the estimation stage. The auxiliary vector is
split by variables (a) used in monitoring and estimation, and (b) only
used in the estimation stage. Explicit terms of calibration weights and
response propensities are developed and useful properties of those terms
are proved. Theoretical results and two emerging strategies are tested
in simulations.

1. Introduction

High levels of non-response have become an almost unavoidable part of
every survey, leading to biased results and questionable inference. National
statistics offices around the world are forced to find new ways of countering
non-response bias in their surveys. There is extensive literature on how to
reduce non-response bias of estimates in the estimation stage of the survey,
but corrective actions can and should be taken earlier – in planning and
data collection phases. With the recent development of computer-assisted
methods of data collection, survey researchers now have the ability to con-
tinuously monitor the collection of survey data and process data (paradata).
This creates the opportunity for a possible change of emphasis during the
course of data collection to achieve more precise, less biased estimates, and
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to improve survey cost efficiency. Such surveys are labeled as “responsive
designs” in the ground breaking article [3].

There is a growing number of research being done on responsive survey
designs, an extensive overview is given in [16], but some examples include
[6], [14], [15] and [8], where the goal is to get a well representative set of
respondents through planning and appropriate intervention in the data col-
lection process. One option is to monitor data collection with more advanced
response quality measures than response rate, like R-indicators [15] or frac-
tion of missing information (FMI) [1]. In the present paper we aspire to a
“representative” set of respondents through reducing the difference of auxil-
iary variable means between the response and the sample. A scalar indicator
developed in [8] is used to measure this difference.

An equivalent approach is to estimate response propensities and use their
variation as a measure of imbalance and lower variation signals for less imbal-
ance. These propensities are estimated using auxiliary variables and assess
balance with an imbalance measure discussed in [8]. This approach gives
effective methods for interventions during data collection, for example the
threshold method and the fixed proportion method proposed in [11].

Despite all efforts with monitoring data collection, a perfectly balanced
response is nearly impossible to achieve and non-response bias hard to evade.
So auxiliary variables are used also in the estimation stage to reduce non-
response bias, usually in constructing calibrated weights, but they need not
be the same variables used in monitoring. Assume that we have access to
additional calibration variables after data collection. It can be in the form
of paradata from the data collection process, like the number of contact
attempts or interviewer notes on approaching respondents [5], or data from
registers becomes available that was not present when the sample was drawn.
Another reason why the lists of monitoring and calibration stage variables
may differ is that auxiliary variables for the estimation may be updated
versions of the same variables available in the data collection.

Is the effect of additional explanation power of new auxiliary variables
affected by balancing? Should more emphasize be put on acquiring more
auxiliary variables in the estimation stage or balancing the response during
data collection? Which would have a larger effect on the bias of the final
estimates?

Answering these questions is important for budgeting, since monitor-
ing data collection and acquiring extra explaining power means extra costs
and/or extra effort. The process of monitoring response and acting accord-
ingly often means additional work for the survey agency and interviewers do-
ing fieldwork. Gathering paradata means developing universal methodology,
and train interviewers to follow that methodology to avoid large measure-
ment error. Accessing different national registries might be free of charge,
especially for national or research institutions, but gained information may



EFFECT OF AUXILIARY INFORMATION IN DATA COLLECTION 113

have incomplete or error data, meaning additional effort for imputation or
data cleaning.

We consider an auxiliary vector divided into two parts by usage – auxil-
iary variables used for (a) both for monitoring in data collection stage and
for calibration in the estimation stage, and (b) new variables added to the
auxiliary vector in the estimation stage. A similar situation was touched in
[11], but here a more focused research is presented and calibration weights
explicitly showing the effect of both parts of the auxiliary vector are devel-
oped. The results are interpreted in the light of monitoring data collection
with the first part of the auxiliary vector. We also develop the propensity ex-
pression explicitly showing two parts of the auxiliary information. Based on
this, a measure for the balancing effect on additional auxiliary information
is given.

The article is arranged in 3 parts: Sections 2–3 give the necessary nota-
tion and concepts of imbalance and its measurement. Sections 4–6 bring in
the situation of split auxiliary variables, calibration weights and response
propensities are developed for this case. Properties and special cases of the
newfound results are studied. In Section 7 a simulation study is described,
where theoretical results are confirmed and aspects, complementary to the-
oretical part, discussed.

2. Preliminaries

Let U = {1, 2, . . . , N} denote a finite population of N units and a prob-
ability sample s of size n is selected to estimate some characteristics of U .
The probability sampling design generates for an element k a known inclu-
sion probability, P (k ∈ s) = πk > 0, and a corresponding design weight
dk = 1/πk. In case of non-response, data can only be collected from a subset
r within the sample, r ⊂ s ⊂ U , and the values yk of the study variable y
are recorded for the units k ∈ r only. It is assumed that there is access to
auxiliary information on unit level, i.e., the vector of J auxiliary variables
xk = (x1k,x2k, . . . ,xJk)′ is known for every element k ∈ U (or minimally for
every element k ∈ s) and the auxiliary variable vector satisfies

µ′xk = 1, ∀k ∈ U , for some constant vector µ. (1)

It is not a major restriction as most vectors xk of importance in prac-
tice are of this kind. For example, for a numerical auxiliary variable xk
take xk = (1, xk)′ and µ = (1, 0)′ satisfies the requirement. When xk =
(0, 0, . . . , 1, . . . , 0)′, as in coding a set of mutually exclusive and exhaustive
categories of units, then µ = (1, 1, . . . , 1)′ satisfies the requirement.

The conducted survey’s objective is to estimate the population total Y =∑
U yk using the collected data yk, k ∈ r, and auxiliary information xk ∈ s

(here
∑

A denotes a sum over all the units k in set A). The basic design
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unbiased estimator of Y from a full sample is ŶFUL =
∑

s dkyk, the Horwitz–
Thompson (HT) estimator, but in the presence of non-response this cannot
be computed. In such a situation one can use the simple expansion estimator

ŶEXP = N̂ ȳr, (2)

where N̂ =
∑

s dk estimates the population size and ȳr =
∑

r dkyk/
∑

r dk is
the design weighted mean of the study variable in r. But this estimator is
often considerably biased, so a more widely used method is to calibrate on
the auxiliary vector xk:

ŶCAL =
∑
r

dkgkyk, (3)

where

gk =

(∑
s

dkxk

)′(∑
r

dkxkx
′
k

)−1
xk (4)

are the calibration weights (g-weights for short). Notice that the weights
gk satisfy the sample level calibration requirement

∑
r dkgkxk =

∑
s dkxk,

where
∑

s dkxk are unbiased estimates for population totals
∑

U xk.

3. Measuring balance

The concept of balance has been often used in statistical literature with
reference to an equality of means of certain variables for two sets of units,
where one is the subset of the other. For example balanced sampling aims
to give a random sample so that the means of a set of auxiliary variables are
equal (or approximately equal) within the sample and the population. One
such sampling method is the Cube Method [2]. Here we look at measuring
balance of auxiliary variables in the response set and the sample, and the
desirable, but often unreachable, balance of the study variable.

3.1. Measuring balance of the response set. Auxiliary information can
be used already in the data collection phase to realize a well-balanced set of
respondents. The concept and measuring of lack of balance, i.e., imbalance,
has been thoroughly discussed in [8].

With the given auxiliary vector x, means can be calculated for the re-
sponse, x̄r =

∑
r dkxk/

∑
r dk, and for the sample, x̄s =

∑
s dkxk/

∑
s dk. If

x̄r = x̄s, then the response set is said to be perfectly balanced on the given
x-vector. In practice this is usually not the case and the J-dimensional mean
difference x̄r − x̄s signals drift from perfect balance. A univariate indicator
of imbalance is defined as

IMB = P 2 (x̄r − x̄s)
′Σ−1s (x̄r − x̄s) ,

where Σs =
∑

s dkxkx
′
k/
∑

s dk is a J × J weighting matrix assumed non-
singular, and P =

∑
r dk/

∑
s dk. IMB is a value with 0 < IMB < P (1−P )
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and can be calculated at any point during data collection and situates r in
relation to s in respect of the chosen x-vector.

An alternative way to define an imbalance measure is by measuring the
variance of response propensities fk:

IMBalt = vars(f) =

∑
s dk

(
fk − f̄s

)2∑
s dk

,

where

fk =

(∑
r

dkxk

)′(∑
s

dkxkx
′
k

)−1
xk (5)

are response propensities (also mentioned as monitoring weights, f -weights).
Notice that

∑
r dkxk =

∑
s dkfkxk and more intensively,

f̄s =
∑
s

dkfk/
∑
s

dk =
∑
r

dk/
∑
s

dk = P.

This approach is related to the R-indicator (R for representativity) from
[15], where f -weights (5) would be linear estimates of their conditional re-
sponse probabilities.

It turns out that IMB = IMBalt as shown in, for example, [10], but both
are needed for a clearer interpretation in latter sections. Due to equality the
notation IMB will be used for both approaches.

3.2. Balance in the study variable. Full sample mean of the y-variable,
ȳs =

∑
s dkyk/dk, is not available under non-response. Although unknown,

it is essentially unbiased for the population mean, while the computable
mean of the response set ȳr =

∑
r dkyk/dk, often is not. The degree of rela-

tionship between the study variable y and the chosen x-variables is a major
influence on non-response bias. The linear regression coefficient vectors are
br (computable) for the response set fit and bs (conceptually defined) for
the full sample fit, where

br =

(∑
r

dkxkx
′
k

)−1(∑
r

dkxkyk

)
,

bs =

(∑
s

dkxkx
′
k

)−1(∑
s

dkxkyk

)
.

Using the regression coefficient vectors br and bs, imbalance for the study
variable ȳr − ȳs can be split into two terms:

ȳr − ȳs = (x̄r − x̄s)
′ br + (br − bs)

′ x̄s. (6)

Notice that x̄′rbr = ȳr and x̄′sbs = ȳs due to the property µ′xk = 1, for all

k and x̄′sbr = ŶCAL/
∑

s dk. This split illustrates two undesirable differences
associated with non-response, x̄r − x̄s caused by imbalance and br − bs
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caused by inconsistent regression. Another viewpoint is from the aspect of
calibration – the first term (x̄r − x̄s)

′ br shows how much calibration adjusts
the simple, but often biased response mean ȳr, the second term (br − bs)

′ x̄s

shows how much calibration deviates from the unbiased full sample mean
ȳs. This can be better illustrated if both sides of (6) are multiplied by

N̂ =
∑

s dk:

N̂ (ȳr − ȳs) =
(
ŶEXP − ŶCAL

)
+
(
ŶCAL − ŶFUL

)
. (7)

The effect of balancing is clear with the first term in (6), but effect on
the second term is not so straightforward. The recent article [9] showed that

balancing on the auxiliary vector increases the chance to get ŶCAL closer to
ŶFUL and therefore a smaller difference in the second term of (7).

4. Splitting the auxiliary vector

Thus far the same auxiliary vector is used throughout the entire survey
process, now the auxiliary vector used in the estimation stage is split up to
two parts. Let the auxiliary vector comprise of

xk =

(
xMk

xCk

)
, (8)

where xMk : p× 1 is an auxiliary vector used earlier for monitoring response
and xCk : q × 1 is an auxiliary vector of extra set of variables that are later
added to compute the calibration estimator in the estimation stage. Assume
that xMk satisfies

µ′MxMk = 1,∀k ∈ U (9)

for some constant vector µM . Note that if (9) is satisfied, then, for example,

µ =

(
µM

0q

)
satisfies (1) for any xCk, where 0q : q × 1 is a vector of zeros.

A split up of auxiliary vector is discussed in [12, pp. 53–56], but only in
the context of post-weighting and the split is done by the level of detail of
auxiliary information – for some auxiliary variables, values are known for
the whole population and for the remaining, only for sampled elements.

4.1. Calibration weights. Calibration weights gk, defined in (4), for the
long vector in (8) can be expressed using partitioned matrices (the indexes
M and C indicate whether the auxiliary vector xMk or xCk is used, and the
following r or s indicates the summation set of units)

gk =

(
TMs

TCs

)′(
TMMr TMCr

TCMr TCCr

)−1(xMk

xCk

)
,
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where TMs =
∑

s dkxMk, TCs =
∑

s dkxCk are design weighted totals of
M - and C-information auxiliary variables in the response set and

TMMr =
∑

r dkxMkx
′
Mk; TMCr =

∑
r dkxMkx

′
Ck;

TCCr =
∑

r dkxCkx
′
Ck; TCMr = T′MCr.

Proposition 1. When the auxiliary vector (8) is split into two, calibration
weights gk can be separated into two terms:

gk = gMk + hk,

where

gMk = T′MsT
−1
MMrxMk, (10)

hk = T′εsT
−1
εεrεk. (11)

and Tεs =
∑

s dkεk is a sum of the residuals εk = xCk − B′rxMk over the

sample units, Br = T−1MMrTMCr is a matrix of coefficients, and Tεεr =∑
r dkεkε

′
k is a q-dimensional square matrix of residuals and assumed non-

singular.

The proof is presented in the Appendix.

When distinguishing auxiliary information according to usage, one can
see that the calibration weights gk can be divided into two, one part depen-
dent only on auxiliary information available or used for monitoring response,
the other uses both M - and C-information – residual information from
C-information not linearly explained by M -information. The gM and h-
weights are uncorrelated over the response set as the following result shows.

Proposition 2. The h-weights in a response set r have the following
properties:

h̄r =

∑
r dkhk∑
r dk

= 0, (12)

varr (h) =

∑
r dk

(
hk − h̄r

)2∑
r dk

= P−1h̄s, (13)

covr(gM , h) =

∑
r dk (gMk − ḡMr)

(
hk − h̄r

)∑
r dk

= 0, (14)

covr(fM , h) =

∑
r dk

(
fMk − f̄Mr

) (
hk − h̄r

)∑
r dk

= 0, (15)

where h̄s =
∑

s dkhk/
∑

s dk and

ḡMr =
∑
r

dkgMk/
∑
r

dk, f̄Mr =
∑
r

dkfMk/
∑
r

dk, fMk = T′MrT
−1
MMsxMk
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are response propensities using only M -information and

TMr =
∑
r

dkxMk, TMMs =
∑
s

dkxMkx
′
Mk.

Proof. The design weighted mean of h-weights over the response set r
gives

h̄r = T′εsT
−1
εεr

∑
r dkεk∑
r dk

and since
∑

r dkεk is a vector of zeros, we arrive at (12).
Using (12) one can show that

varr (h) =

∑
r dkh

2
k∑

r dk
= T′εsT

−1
εεr

∑
r dkεkε

′
k∑

r dk
T−1εεrTεs

=
1∑
r dk

T′εsT
−1
εεrTεs

=

∑
s dk∑
r dk

∑
s dkε

′
kT
−1
εεrTεs∑

s dk

= P−1h̄s.

With (12) the covariance of g and h-weights in r simplifies to

covr(gM , h) =

∑
r dkgMkhk∑

r dk
.

Expanding the weight terms, the residuals εk, and Br gives

covr(gM , h) =
1∑
r dk

T′MsT
−1
MMr

[∑
r

dkxMk

(
xCk −B′rxMk

)′]
T−1εεrTεs

=
1∑
r dk

T′MsT
−1
MMr

[
TMCr −TMMrT

−1
MMrTMCr

]
T−1εεrTεs

= 0

since TMCr −TMMrT
−1
MMrTMCr is a p× q matrix of zeros.

Analogously

covr(fM , h) =
1∑
r dk

T′MrT
−1
MMs

[∑
r

dkxMk

(
xCk −B′rxMk

)′]
T−1εεrTεs

=
1∑
r dk

T′MrT
−1
MMs

[
TMCr −TMMrT

−1
MMrTMCr

]
T−1εεrTεs

= 0.

�

Remark. Note that the residuals εk in Tεs in (11) are summed over the
sample and in fact Tεs =

∑
s dkεk =

∑
s−r dkεk, since

∑
r dkεk = 0q.
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When there is perfect balance on the monitoring variable, i.e., x̄Mr =
x̄Ms, then by using (9), calibration weights gMk and h-weights simplify

to gMk = P−1 for all k, and hk = N̂
(
x̄Cs − x̄Cr

)′
T−1εεrεk, because ε̄s =∑

s dkεk/
∑

s dk =
(
x̄Cs − x̄Cr

)
. The calibration estimator in this case is

the simple expansion estimator of the study variable (2) plus a correction
term dependent on the balance of C-information and the regression of xCk

on xMk:

ŶCAL = P−1
∑
r

dkyk + N̂ (x̄Cs − x̄Cr)
′T−1εεr

∑
r

dkykεk

= ŶEXP + N̂ (x̄Cs − x̄Cr)
′T−1εεr

∑
r

dkykεk.

Notice that with perfect balance the explaining power of M -variables is
depleted and calibrating on these variables is equivalent to the expansion
estimator (2).

4.2. Monitoring weights. With the same setup of xk =
(
xMk
xCk

)
, the moni-

toring weights fk, defined by (5), can be expressed using partitioned matrices

fk =

(
TMr

TCr

)′(
TMMs TMCs

TCMs TCCs

)−1(xMk

xCk

)
,

where TMr =
∑

r dkxMk, TCr =
∑

r dkxCk are design weighted M - and
C-information auxiliary totals in the response set and

TMMs =
∑

s dkxMkx
′
Mk; TMCs =

∑
s dkxMkx

′
Ck;

TCCs =
∑

s dkxCkx
′
Ck; TCMs = T′MCs.

Proposition 3. Using the same steps and logic as splitting calibration
weights gk we arrive at

fk = fMk + h∗k,

where

fMk = T′MrT
−1
MMsxMk, (16)

h∗k = T∗′εrT
∗−1
εεs ε

∗
k. (17)

Here T∗εεs =
∑

s dkε
∗
kε
∗′
k and T∗εr =

∑
r dkε

∗
k, where ε∗k = xCk −B′sxMk are

residuals of linear estimates of xCk regressed on xMk over the sample and

the matrix of coefficients is Bs = T−1MMsTMCs.

Remark. Note that the residuals are summed over the response set and
in fact T∗εr =

∑
r dkε

∗
k =

∑
s−r dkε

∗
k, since

∑
s dkε

∗
k = 0q.
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Proposition 4. The h∗ weights in a response set r have the following
properties:

h̄∗s =

∑
s dkh

∗
k∑

s dk
= 0;

vars (h∗) =

∑
s dk

(
h∗k − h̄∗s

)2∑
s dk

= Ph̄∗r ;

covs(gM , h
∗) =

∑
s dk (gMk − ḡMs)

(
h∗k − h̄∗s

)∑
s dk

= 0;

covs(fM , h
∗) =

∑
s dk

(
fMk − f̄Ms

) (
h∗k − h̄∗s

)∑
s dk

= 0,

where fMk = T′MrT
−1
MMsxMk and

ḡMr =
∑
r

dkgMk/
∑
r

dk, f̄Mr =
∑
r

dkfMk/
∑
r

dk.

In case of perfect balance on the monitoring variables, response propen-
sities fMk and h∗-weights simplify to fMk = P for all k, and

h∗k = N̂ (x̄Cr − x̄Cs)
′T∗−1εεs ε

∗
k

because

ε̄∗r =
∑
r

dkε
∗
k/
∑
r

dk = (x̄Cr − x̄Cs) .

The imbalance measure in this case (and using Proposition 4) takes the form

IMB = vars(fM ) + vars(h
∗) = (x̄Cr − x̄Cs)

′Σ∗−1εεs (x̄Cr − x̄Cs)

and imbalance is thereby the balance of C-information weighted by a matrix
of residual information from regressing xMk on xCk.

5. Measuring balance with the split auxiliary vector

With the distinction of auxiliary variables by usage, the imbalance mea-
sure used in the monitoring phase of a survey is

IMBM = vars(fM ).

It can be calculated at any step of the survey process. Following Proposition
4 and (14), the effect of added auxiliary variables in the overall imbalance
measure can be separated:

IMB = vars(f) = vars(fM ) + vars(h
∗) = IMBM + IMBC .

One can see that additional variables in the imbalance measure always
increases the IMB value because vars(h

∗) ≥ 0. Indication of extra imbalance
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from the additional variables gives a ratio

Q =
vars (h∗)

IMB
. (18)

The ratio is large, i.e., closer to 1, if the response set is balanced on the
monitoring variables, but the M -information does not explain the
C-information, and there is extra imbalance in the response with regard
to C-information.

Remark. Currently the auxiliary vector is split by usage of the auxiliary
variables, but this can be done arbitrarily with other purposes, for example
to separate variables that contribute the most to IMB. Similarly, when the
auxiliary vector produces mutually exclusive and exhaustive groups, pop-
ulation groups with the highest influence to the overall imbalance can be
identified; the ideas have been discussed in [14] and in [11].

Plugging the new form of g-weights back into the the calibration estimator
reveals that using both types of information can be divided into two parts:

ŶCAL =
∑
r

dkyk (gMk + hk) =
∑
r

dkykgMk +
∑
r

dkykhk

= ŶM,CAL +
∑
r

dkykhk.

The difference in study variable means (6) can now be broken down by
the distinction of auxiliary variables

ȳr − ȳs =
[
(x̄Mr − x̄Ms)

′ bMr − P covr (y, h)
]

+
[
(bMr − bMs)

′ x̄Ms + P covr (y, h)
]
, (19)

since, because of (12),
∑

r dkykhk can be interpreted as the covariance be-
tween the study variable and h-weights:∑

r

dkykhk =

(∑
r

dk

)
covr (y, h) .

Since h-weights are formed from residuals, the covariance shows that extra
auxiliary information that is highly correlated with the study variable, but
not well explained by M -information, is a good candidate for the effective
C-information.

The distinction of auxiliary variables by their role in the whole survey
process leads to considering the following strategies:

(1) put effort into collecting more auxiliary information and focus on
post-weighting correction;

(2) put effort into monitoring response to get a representative set of
respondents.
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These strategies are studied in the following simulation study.

6. Simulations

The effects of additional auxiliary information was studied in a simulation
study. A population was composed on real data from the Estonian Household
Survey, with 14 139 households. The database had the following variables
for every household (HH) or head of the household (HHH):

• HH net income (study variable);
• Employment status of HHH (0 – not employed, 1 – employed);
• Gender – gender of HHH (0 – male, 1 – female);
• Education level – highest obtained education level of HHH (lower,

middle, higher education);
• Number of children in HH;
• HH size, i.e., number of persons belonging to the same HH;
• HH expenditure.

In order to satisfy the requirements (1) and (9), HHH education level was
taken as a group vector – a 3-dimensional indicator vector which indicates
the education level group where unit k belongs to. The population total of
the study variable, Y =

∑
U yk is known and is used to evaluate simulation

results.

6.1. General setup. A SRS sample of size n = 700 was taken and from
there a response set of 350 respondents (50% response rate) was randomly
picked with a given response mechanism, that deliberately produced non-
representative response set (details are presented in next section). Gathering
the next 100 respondents (raising the final response rate to 64.3%) was done
with two different strategies.

Strategy 1: Response set was allowed to accumulate as it had done
previously – according to the predetermined response mechanism.

Strategy 2: Response accumulation was monitored and the process
intervened by using the fixed proportion method [11].

In the end there were two response sets with the same response rate, one with
no intervention done and non-representative, and one where the response set
accumulation was monitored and intervened. In the case of Strategy 2 HHH
education level, HH size and HHH gender were used for monitoring the
response. Details of the monitoring procedure are brought out in a later
section.

In the estimation stage four different auxiliary vectors with different com-
binations of C-information were compared to capture four situations of in-
terest.



EFFECT OF AUXILIARY INFORMATION IN DATA COLLECTION 123

xMk xCk

Vector 1 Education + Gender + HH size –
Vector 2 Education + Gender + HH size No. of children
Vector 3 Education + Gender + HH size HH expenditure
Vector 4 Education + Gender + HH size No. of children + Empl. status

+ HH expenditure

In the case of Vector 1 there was no extra C-information, only xMk was used
in the estimation stage and it serves as a basis for comparisons. For Vector 2
number of children in HH was added to the auxiliary vector in the estimation
stage since it is strongly correlated with HH size (correlation 0.72). HH size
was used in monitoring stage and was therefore influential in forming Br

and Bs. For Vector 3 the C-information included HH expenditure since it
had a stronger correlation with the study variable (correlation 0.65) than
any other auxiliary variable, therefore influential in forming br and bs. The
last vector setup included all of the auxiliary information.

This setup was repeated for 1000 times and for every repetition, strategy,
and vector ŶCAL was calculated with the corresponding auxiliary vector. To
assess the performance of estimators relative bias (RB) and relative root
mean square error (RRMSE) of the estimated population totals were calcu-
lated over all repetitions:

RB(ŶCAL) =

1
T

∑T
t=1

(
Ŷ t
CAL − Y

)
Y

,

RRMSE(ŶCAL) =

√
1
T

∑T
t=1

(
Ŷ t
CAL − Y

)2
Y

,

where T is the number of repetitions, Ŷ t
CAL is the estimated total of the

study variable in t-th repetition, and Y =
∑

U yk is the true population
total.

6.2. Response mechanism. A known response mechanism was generated
by computing response probabilities θk with the formula

logit(θk) = 5−4×HHH gender+2×HHH empl. status−0.0004×HH income.

With this model HH-s with lower income had higher odds of belonging
in the response set than HH-s with higher income, female HHH had a lower
chance of responding than male HHH, and employed HHH had a higher
chance of responding than unemployed HHH. The known response probabil-
ity for each sampled HH was then multiplied by a random number zk from
a uniform distribution, z ∼ U(0, 1). The result was sorted in a descending
order and top 350 units were taken as the starting point for Strategy 2, and
top 450 as the final set of respondents for Strategy 1.
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The choice of variables in the response influencing model was done so that
it would include one M -information and one C-information variable and the
study variable.

6.3. Monitoring and intervening the response accumulation. The
fixed proportion method was proposed by [11]. This method sets aside a
fixed proportion of the sample at each intervention point. The number of
intervention points L needs to be determined in advance, in current simula-
tions there were 10 intervention points. At each intervention point response
propensities (16) were computed for all k ∈ s. The values were ordered, and
100/(L+1) percent of units with the highest values of fMk and not belonging
to the response set, were set aside, pretending that data collection attempts
had stopped for these units. From the remaining set of non-respondents 10
units were randomly assigned to the response set using previously computed
response probabilities θk and random numbers zk analogously to the forming
of initial response set.

6.4. Results. Vector 1 with Strategy 2 corresponds to the situation where
no extra information is acquired, the response is monitored using M -infor-
mation and calibrated on the same auxiliary variables. Vectors 2–4 with
Strategy 1 are situations where additional auxiliary variables are added to
the calibration vector, but no prior intervention with the data collection
process has been done. Vectors 2–4 with Strategy 2 would be the ideal cases
where data collection is monitored and also additional explaining power is
acquired.

To assess the effect of additional C-information on the overall imbalance,
the means of IMBC andQ over repetitions was computed, whereQ is defined
in (18). For variance of the total estimate ŶCAL over simulations, coefficient
of variation was calculated.

Table 1. Simulation results.

RB RRMSE IMBC Q̄
Str 1 Str 2 Str 1 Str 2 Str 1 Str 2 Str 1 Str 2

Vector 1 -.246 -.224 .248 .226 - - - -
Vector 2 -.243 -.222 .245 .223 .001 .001 5.5% 7.5%
Vector 3 -.199 -.175 .201 .177 .012 .012 33.1% 42.4%
Vector 4 -.205 -.182 .208 .184 .015 .014 37.0% 47.2%

Simulation results, presented in Table 1, generated the following com-
ments:

• Results of Propositions 2 and 4 were confirmed, covariances of h-
weights with fMk and gMk in the response set, and covariances of
h∗-weights with fMk and gMk in the sample were all 0. Mean of
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h-weights in the response set, and mean of h∗-weights in the sample
were 0.
• All of the monitored auxiliary vectors produced a lower IMBM value

as expected – for Strategy 1 it was 0.025 and for Strategy 2 around
0.017.
• When comparing Strategy 1 versus Strategy 2, RB and RRMSE were

always lower when the same auxiliary vector is used in estimation,
meaning that monitoring response on average gave less biased and
more accurate estimates.
• Most of the deviance of estimates from the true value was caused by

bias since RRMSE values were bigger, but always close to RB values.
• Acquiring strong auxiliary information like HH expenditure gave on

average lower bias and lower variation in estimates, more than only
monitoring data collection and no additional explaining power in the
estimation stage (Vector 3–4 with Strategy 1 versus Vector 1 with
Strategy 2 in Table 1).
• Balancing on the M -variables slightly improved the balance of
C-variables, as IMBC decreased when comparing Strategy 1 and
2 through Vector 2–4, but the difference is so small that it cannot
be witnessed in Table 1.
• Proportion of imbalance indicated by C-information is higher for

auxiliary vectors with Strategy 2, but this is because the overall
IMB is lower for Strategy 2.
• Coefficient of variation of ŶCAL over the simulations did not change

significantly when comparing Strategy 1 and Strategy 2 through Vec-
tors 1 to 4, but did increase with adding more auxiliary variables
being 2.9% with Vectors 1 and 2, 3.6% with Vectors 3 and 4.

7. Conclusions

The expression for the calibration weights with two terms were derived,
explicitly showing the contribution of M -information and C-information to
the calibration estimator ŶCAL. The additional explaining power was ex-
pressed through h-weights and useful properties, like the mean, variance
and covariances of the h-weights were proved.

The expression of response propensities in a split vector case was also de-
veloped and some useful properties of h∗-weights were proved. A measure of
extra imbalance and its contribution to the overall imbalance was proposed.

A simulation study with a fairly realistic setup, with real data and two
alternative strategies was carried out. Simulations confirmed the theoretical
results and also showed that monitoring data collection improves estimates
in terms of bias and accuracy. If there is strong auxiliary information made
available in the estimation stage, then monitoring data collection can be
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skipped, although not advised. If the survey budget allows both data collec-
tion monitoring and obtaining more auxiliary information, then this would
be the most advised course of action, as the simulations demonstrated.

The complementary theoretical results and simulation study are a good
starting point for statistical organisations to explore possible strategies for
data collection and/or acquisition of extra explaining power. Increased costs
force survey statisticians to improve the data collection strategies and mea-
sure the data inflow with better indicators. Decisions for survey designs can
be drawn from earlier surveys using the ratio of imbalance Q introduced by
added explaining power and results of Propositions 1 and 3.

Results of Propositions 2 and 4, and (19) serve as a good mid-point for
further development of a theoretical link between reduction of imbalance and
non-response bias.

Appendix: Proof of Proposition 1

The proof follows a technique used in [13], where calibration weights are
developed into two parts for domain estimation.

When the auxiliary vector is split like in (8), then calibration weights (4)
can be expressed using partitioned matrices

gk =

(
TMs

TCs

)′(
TMMr TMCr

TCMr TCCr

)−1(xMk

xCk

)
.

Using partitioned matrix inversion for symmetric matrices [4, pp. 74–75],
we get(

TMMr TMCr

TCMr TCCr

)−1
=

(
T−1MMr + Br [TCCr −TCMrBr]

−1 B′r −Br [TCCr −TCMrBr]
−1

− [TCCr −TCMrBr]
−1 B′r [TCCr −TCMrBr]

−1

)
,

where Br = T−1MMrTMCr is a coefficient matrix for a multivariate multiple
regression fit [7, pp. 279–281]. The calibration weights gk can now be written
in the following way:

gk =

(
T′MsT

−1
MMr − [T′Cs −T′MsBr] [TCCr −TCMrBr]

−1 B′r
[T′Cs −T′MsBr] [TCCr −TCMrBr]

−1

)′(
xMk

xCk

)
= T′MsT

−1
MMrxMk

+
[
T′Cs −T′MsBr

]
[TCCr −TCMrBr]

−1 [xCk −B′rxMk

]
.

(20)
Regression coefficients Br are used to obtain linear predictions for xCk from
xMk, x̂Ck = B′rxMk, and the middle expressions in brackets can be expressed
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via residuals:

TCCr −TCMrBr =
∑
r

dkxCkx
′
Ck −

∑
r

dkxCkx
′
MkBr

=
∑
r

dkxCk (xCk − x̂Ck)′

=
∑
r

dkxCkε
′
k, (21)

where εk = xCk − x̂Ck is the vector of residuals. Since
∑

r dkx̂Ckε
′
k =∑

r dkx̂Ck (xCk − x̂Ck)′ = B′r (TMCr −TMMrBr) = 0q, then an alternative
expression for (21) is

TCCr −TCMrBr =
∑
r

dkxCkε
′
k =

∑
r

dkεkε
′
k =: Tεεr.

Similarly

T′Cs −T′MsBr =
∑
s

dkx
′
Ck −

∑
s

dkx
′
MkBr

=
∑
s

dk (xCk − x̂Ck)′

=
∑
s

dkε
′
k

=: T′εs.

Inserting the matrices Tεεr and Tεs into (20) we get

gk = T′MsT
−1
MMrxMk + T′εsT

−1
εεrεk

and taking gMk := T′MsT
−1
MMrxMk, hk := T′εsT

−1
εεrεk we arrive at the result

of Proposition 1.
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