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On expected score of cellwise alignments

Riho Klement and Jüri Lember

Abstract. We consider certain suboptimal alignments of two indepen-
dent i.i.d. random sequences from a �nite alphabetA = {1, . . . ,K}, both
sequences having length n. In particular, we focus on so-called cellwise

alignments, where in the �rst step so many 1-s as possible are aligned.
These aligned 1-s de�ne cells and the rest of the alignment is de�ned so
that the already existing alignment of 1-s remains unchanged. We show
that as n grows, for any cellwise alignment, the average score of a cell
tends to the expected score of a random cell, a.s. Moreover, we show
that a large deviation inequality holds. The second part of the paper is
devoted to calculating the expected score of certain cellwise alignment
referred to as priority letter alignment. In this alignment, inside every
cell �rst all 2-s are aligned. Then all 3-s are aligned, but in such way
that the already existing alignment of 2-s remains unchanged. Then we
continue with 4-s and so on. Although easy to describe, for K bigger
than 3 the exact formula for expected score is not that straightforward to
�nd. We present a recursive formula for calculating the expected score.

1. Introduction

Throughout this paper, X := (X1, X2, . . . , Xn) and Y := (Y1, Y2, . . . , Yn)
are two random vectors, usually referred to as sequences, so that all random
variables Xi and Yi, i = 1, . . . , n take their values in a �xed �nite alphabet
A = {1, . . . ,K}. We study the properties of certain similarity measures of
X and Y . The problem of measuring the similarity of two sequences is cen-
tral to many areas of applications including computational molecular biology
[2, 3, 5, 14, 18] and computational linguistics, e.g., [10, 11, 12]. A popular
measure of similarity is the length of the longest common subsequence (LCS).
A longest common subsequence of X and Y is any common subsequence
that has the longest possible length. Let Ln be the length of LCS. Formally,
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Ln is the biggest k such that there exist two subsets of indices � an align-

ment � {i1, . . . , ik}, {j1, . . . , jk} ⊂ {1, . . . , n} satisfying i1 < i2 < . . . < ik,
j1 < j2 < . . . < jk, and Xi1 = Yj1 , Xi2 = Yj2 , . . . , Xik = Yjk . Any alignment
corresponding to maximal k is called optimal alignment. LCS (or equiva-
lently, an optimal alignment) is typically not unique, but all of them can
be found by dynamic programming algorithm called Smith�Waterman al-
gorithm, see, e.g., [2, 5] with complexity O(n2). However, for very long
sequences, this complexity can be still too high and so one seeks for com-
mon subsequences having the length close to Ln. Besides the computational
cheapness those suboptimal common subsequences (sometimes called subop-
timal alignments) are often analytically easily tractable [16, 13]. This is a
clear advantage, since it is well known that Ln, although easy to de�ne, is
very di�cult to analyze.

A straightforward way to de�ne a suboptimal common subsequence is the
following: choose a letter, say 1 ∈ A. Now going from left to right, align
as many 1-s in both sequences as possible. The result is a subsequence with
the length Nx

1 ∧N
y
1 , where N

x
1 and Ny

1 are the numbers of 1-s in X and Y ,
respectively. The aligned pairs of 1-s divide the sequences into cells, where
the �rst cell consists of pieces of X and Y -sequences up to the �rst aligned
pair of 1-s (including the 1-s); the second cell consists of the pieces of X and
Y -sequences up to the second aligned pair of 1-s and so on (see Figure 1).

2 3 3 2 1 2 2 3 1 2 1 3 3 1 2 2

3 2 1 3 2 3 1 3 2 3 2 2 1 2 3 2

Figure 1. An example of cells.

Such alignment is meaningful if the 1-s have relatively high frequency in
both sequences. However, after aligning 1-s, one can improve the whole
alignment by aligning also the letters {2, . . . ,K} inside every cell. This means
that aligning the rest of the letters should not disturb the already existing
alignment of 1-s. There are several possible ways to align the letters inside a
cell, we shall call all obtained alignments cellwise alignments, because they
share a common feature � �rst align 1-s to de�ne cells and then perform any
alignment inside the cells. We require that all inside-cell alignments should
be performed along the same rule. Let Zi be the number of aligned letters
(including the pair of 1-s) in i-th cell. Then the length of the obtained pairs
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of common subsequence � the score � is

Bn :=

Nx
1 ∧N

y
1∑

i=1

Zi. (1.1)

In what follows, we shall study the long run behavior of di�erent cellwise
alignments. To be able to distinguish the related (dependent) sequences
from unrelated (independent) ones, one has to study the long-run behavior
of Bn in the case X and Y are independent. So throughout the paper, we
consider the case, where X and Y are both independent i.i.d. sequences,
but the distribution of random variables Xi and Yi can be di�erent. In what
follows, the distributions of Xi and Yj are denoted by P := (p1, . . . , pK) and
Q := (q1, . . . , qK), respectively. Note that althoughX and Y are independent
i.i.d. sequences, due to the fact that X and Y have �xed length n, the
scores of the cells Z1, Z2, . . . , ZNx

1 ∧N
y
1
are not i.i.d.. However, if instead of

the �xed length n, the both sequences had random length up to the m-th
cell, then obviously Z1, . . . Zm would be an i.i.d. sequence and laws of large
numbers, large deviation inequalities and many other classical results would
immediately follow. This observation suggests that similar results could also
hold for score Bn, and showing that is one objective of the present paper.
In particular, in Section 2 we prove the following large deviation inequality
(Theorem 2.2): for every ∆ > 0 there exist A(∆) <∞, b(∆) > 0 such that

P
(
|Bn
n
− γ| > ∆

)
≤ A exp[−bn], ∀n. (1.2)

Here γ > 0 is a constant that depends on the distributions P and Q, the
inside-cell alignment methods, but not on n. Obviously from (1.2) it follows
that

Bn
n
→ γ, a.s. and in L1.

The bigger γ, the better is the cellwise alignment so that knowing the value
of γ (or being able to calculate it) provides valuable information about the
performance of Bn. Another application of (1.2) is the statistical tests of
testing independence of X and Y . Knowing the constant A, b and γ, such
tests can be easily constructed. Those tests would be non-asymptotical,
because they hold for any n, not only for n big enough.

Motivated by above-stated arguments, the second half of the paper, Sec-
tion 3, deals with exact calculation of the constant γ for certain cellwise
alignments. We shall show that

γ =
EZ1

(Eτx1 ∨ Eτ
y
1 )
,

where EZ1 is the expected score of the �rst (and any) cell of in�nite sequences
X1, X2, . . . and Y1, Y2, . . ., Eτ

x
1 is the expected length of the �rst (and any)
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cell of X1, X2, . . . and Eτ
y
1 is the expected length of the �rst (and any) cell of

Y1, Y2, . . . (see the beginning of Section 2 for the formal de�nition). Since all
cells have geometric distribution, their expected lengths are straightforward
to �nd. However, depending on the alignment, to �nd EZ1 might be di�cult.
In the paper, we focus on �nding EZ1 of an alignment called priority letter

alignment. This alignment �rst aligns all 2-s inside a cell. Then, it aligns
all 3-s without disturbing the already existing alignment of 2-s (and 1-s,
because cells are already �xed). Then it aligns 4-s without disturbing the
already existing alignments of 1-s, 2-s and 3-s and so on, proceeding always
from left to right in a cell or subcell. It turns out that when the number
of letters K is bigger than two or three, the exact calculation of EZ1 might
be cumbersome. For example, �nding EZ1 for priority letter alignment is
almost trivial if K = 2, but the formula gets more and more intransparent
when K grows. Therefore, we present it recursively in K. It turns out that
in order to show the formula, it is convenient to represent a cell as a tree, this
formalism is established in Subsection 3.1. Being able to calculate γ allows
us to �nd the ordering of the alphabet A such that γ would be maximal.
Intuitively, one could expect the ordering be such that

p1 ∧ q1 ≥ p2 ∧ q2 ≥ · · · ≥ pK ∧ qK . (1.3)

It turns out that this intuition would fail and we �nish the paper with a
counterexample showing that it is not always the case.

To conclude the introduction, let us also mention that being able to calcu-
late γ exactly is a clear advantage of using suboptimal common subsequences
over LCS. Namely, from subadditivity it follows that when (X,Y ) are the
�rst n observations from an ergodic process, then there exists a constant γ∗

such that Ln/n→ γ∗, a.s. (see, e.g., [2, 7, 6]). The constant γ∗ is sometimes
called Chvatal�Sanko� constant referring to the seminal paper of Chvatal
and Sanko� [4], where the existence of γ∗ was observed. However, after more
than 40 years of study, the exact value of γ∗ is not exactly known even for
the simplest case where X and Y are independent i.i.d. Bernoulli sequences
with probability 1/2. For an overview of the research related with estimating
Chvatal�Sanko� constant as well as for some bounds, see [7]. For a subop-
timal alignment, surely γ < γ∗, but if the di�erence is not that big, then
the lower score could be a fair price for computational cheapeness, analyti-
cal formulas and well-understandable statistical properties. Besides practical
use, knowing a lower bound of γ∗ might help researchers restrict the search
space of optimal alignments in theoretical studies of the longest common
subsequence, see, e.g., [8, 9].

The study in the present paper continues the one in [1], where several
cellwise and other suboptimal alignments of binary sequences (K = 2) were
considered. The simulations in [1] show that many suboptimal alignments
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perform rather well, provided that the distributions P and Q are asymmet-
rical, i.e., p1 = q2 6= q1 = p2. As it becomes evident from the present paper,
the analysis of cell-wise alignments, in particular the exact calculation of γ ,
becomes more involved when the number of letters K increases.

2. Large deviation inequality

Let us �rst formally de�ne the cells in one sequence. Let X1, X2, . . . be an
i.i.d. sequence from A. Let

τx0 = 0, τx1 = min{r ≥ 1 : Xr = 1}, . . . , τxk = min{r ≥ τk−1 + 1 : Xr = 1}.

We call

Cxk := (Xτxk−1+1, . . . , Xτxk
), k = 1, 2, . . .

a X-cell. Similarly, we de�ne Y -cells Cy1 , C
y
2 , . . .. Let

f : A×A → R+

be a function that assigns to a pair of cells a non-negative score. Since we
are considering common subsequences, clearly the score inside the cell cannot
be bigger than the length of X-cell and the length of Y -cell. Therefore, for
every i = 1, 2, . . .,

f(Cxi , C
y
i ) ≤ (τxi − τxi−1) ∧ (τyi − τ

y
i−1). (2.1)

Since sequences X1, X2, . . . and Y1, Y2, . . . are independent i.i.d. sequences,
clearly the random variables Z1, Z2, . . ., where Zi := f(Cxi , C

y
i ) are i.i.d. as

well. Recall that Nx
1 (respectively, Ny

1 ) is the number of 1-s in X (respec-
tively, Y ) sequence. Formally, Nx

1 = max{k : τxk ≤ n}(Ny
1 = max{k : τyk ≤

n}). Our object of interest is the cellwise score Bn de�ned as in (1.1).

In what follows, let G(p) stand for geometric distribution with parameter
p. Thus, if τ ∼ G(p), then P (τ = k) = (1 − p)k−1p. Clearly τxk − τxk−1 ∼
G(p1),τyk − τ

y
k−1 ∼ G(q1), k = 1, 2, . . ., and therefore for any �xed m1,m2, it

holds

P
(
Nx

1 > m2

)
≤ P (τxm2

< n) = P
( m2∑
i=1

Gi < n
)

= P
( m2∑
i=1

Gi <
n

m2
·m2

)
(2.2)

P
(
Nx

1 < m1

)
= P (τxm1

> n) = P
( m1∑
i=1

Gi > n
)

= P
( m1∑
i=1

Gi >
n

m1
·m1

)
,

(2.3)

where G1, G2, . . . are i.i.d. random variables with distribution G(p1). The
inequality in (2.2) follows from the observation that if X1, . . . , Xn contains
strictly more than m2 1-s, then τxm2

< n. The equality in (2.3) follows from
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the observation that X1, . . . , Xn contains strictly less than m1 1-s if and only
if τxm1

> n.

For bounding the right hand side of (2.2) and (2.3), the following bounds
are useful: for any A > 1 and α < 1,

P
( m∑
i=1

Gi >
A

p1
m
)
≤ exp[−C(A)m], P

( m∑
i=1

Gi <
α

p1
m
)
≤ exp[−C(α)m],

(2.4)

where C(A) = A− 1− lnA and C(α) = α− 1− lnα. For the proof, see [8].
Fix p1 > ∆ > 0, de�ne

m1 = (p1 −∆)n, m2 = (p1 + ∆)n,

and use (2.4) to deduce

P
(
|Nx

1 − p1n| > ∆n
)
≤ exp[−C(

p1

p1 −∆
)m1] + exp[−C(

p1

p1 + ∆
)m2]

≤ 2 exp[−D(p1,∆)n],
(2.5)

where

D(p1,∆) := C(
p1

p1 −∆
)(p1 −∆) ∧ C(

p1

p1 + ∆
)(p1 + ∆).

Similarly

P
(
|Ny

1 − q1n| > ∆n
)
≤ exp[−C(

q1

q1 −∆
)m1] + exp[−C(

q1

q1 + ∆
)m2]

≤ 2 exp[−D(q1,∆)n].
(2.6)

From (2.5) and (2.6), it follows that if ∆ > 0 is small enough, then

P
(∣∣Nx

1 ∧N
y
1 − (q1 ∧ p1)n

∣∣ > ∆n
)
≤ 2 exp[−D(q1,∆)n] + 2 exp[−D(p1,∆)n].

(2.7)
To see (2.7), note that when p1 < q1 and ∆ < q1−p1

2 , then

{Nx
1 ∧N

y
1 6= Nx

1 } ⊆ {|N
y
1 − q1| > ∆n} ∪ {|Nx

1 − p1| > ∆n}
and therefore

P
(∣∣Nx

1 ∧N
y
1−(q1∧p1)n

∣∣ > ∆n
)
≤ P

(
|Ny

1−q1| > ∆n
)

+P
(
|Nx

1 −p1| > ∆n
)
.

The large deviation inequality (1.2) now follows from the following theorem
proven in [15].

Theorem 2.1. Let {Zn}n>1 be non-negative random variables so that

EZi = µZ and for every ∆ > 0 there exist constants A1(∆), A2(∆), B1(∆),
B2(∆), N1(∆), N2(∆) so that

P

(
n∑
i=1

Zi − µZn 6 −∆n

)
6 A1(∆) exp[−B1(∆)n], if n > N1(∆) (2.8)
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P

(
n∑
i=1

Zi − µZn > ∆n

)
6 A2(∆) exp[−B2(∆)n], if n > N2(∆), (2.9)

and let M(n) be a non-negative integer valued random variable, that might

depend on the sequence Z1, Z2, . . . , Zn, suppose there exists µ > 0 such that

for every ∆1 > 0 there exist constants A3(∆1), B3(∆1), N3(∆1) so that

P (|M(n)− µn| > ∆1n) 6 A3(∆1) exp[−B3(∆1)n], if n > N3(∆1). (2.10)

Then for all ∆ > 0 there exist constants A(∆), B(∆) and N(∆), so that

P

∣∣∣∣∣∣
M(n)∑
i=1

Zi − (µZµ) · n

∣∣∣∣∣∣ > ∆n

 6 A(∆) exp[−B(∆)n], n > N(∆).

Moreover,

A(∆) := A1(ε1) +A2(ε2) +A3(ε3),

B(∆) := min

{
1

2

(
µ− ∆

2µZ

)
B1(ε1),

(
µ+

∆

2µZ

)
B2(ε2), B3(ε3)

}
,

N(∆) := max

{
N1(ε1), N2(ε2), N3(ε3),

2

µ− ∆
2µZ

,
2

µ+ ∆
2µZ

}
,

ε1 =
∆

4(µ− ∆
2µZ

)
, ε2 =

∆

8(µ+ ∆
2µZ

)
, ε3 =

∆

2µZ
.

From this theorem our main large deviation inequality almost immediately
follows.

Theorem 2.2. Let Bn be de�ned as in (1.1) and let

γ = (p1 ∧ q1)EZ1.

Then for every ∆ > 0 there exist N(∆) <∞, A(∆) <∞ and b(∆) > 0 such

that

P
(
|Bn
n
− γ| ≥ ∆

)
≤ A(∆) exp[−b(∆)n], n > N(∆). (2.11)

Proof. The proof is straightforward application of Theorem 2.1. First, we
have to show that the random variables Z1, Z2, . . . satisfy large deviation
inequalities (2.8) and (2.9). By the theory of large deviations, it su�ces to
show that the moment generating function MZ(t) := E exp[tZ1] is �nite in
the neighborhood of 0. This immediately follows from (2.1), because Z1 ≤ τ1

and so for every t ≥ 0
MZ1(t) ≤Mτ1(t).

Since τ1 ∼ G(p1), we know that Mτ1(t) < ∞, when t is su�ciently close to
0. Thus the assumptions (2.8) and (2.9) are ful�lled with µZ = EZ1. Then
take M(n) = Nx

1 ∧ N
y
1 and note that (2.7) implies (2.10) with µ = p1 ∧ q1.

Thus all assumptions of Theorem 2.1 are ful�lled and so (2.11) holds. �
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Note that when (2.11) holds for n > N , then there exist maybe di�erent
constants A′ and b′ so that with these constants (2.11) holds for n ≥ 1.

3. Priority letter alignment: Recursion for γ

In this section, we study the priority letter alignment described in the
introduction and we develop a recursive formula for calculating EZ1. Before
doing that, we need some additional de�nitions.

3.1. Cells and trees. Let us consider the X-cells on i.i.d. sequence X =
X1, X2, . . .. Clearly the sequence X is a concatenation of i.i.d. cells: X =
C1, C2, . . . . Every cell ends with 1 and this is the only 1 in the whole cell.
Let us study a cell C := C1 in more details. Let N2− 1 be the number of 2-s
in a cell C. The 2-s in C partition a cell into i.i.d 2-subcells

C = (C2
1 , · · · , C2

N2
),

where

C2
k := (Xτ2k−1+1, . . . , Xτ2k

), τ2
0 := 0, τ2

k = min{r ≥ τ2
k−1+1 : Xr ∈ {1, 2}}.

A 2-subcell ends with 1 or 2 and the rest of the letters in a 2-subcell are
3, . . . ,K. Of course, it can be that there are no 2-s in a cell and so the only
2-subcell coincides with the original cell. Similarly, every 2-subcell C2

i can be
further partitioned into 3-subcells C3

i,j , j = 1, . . . , N3,i, that consists of letters

4, . . . ,K (this part can be empty as well) but ends with a letter in {1, 2, 3}.
Every 3-subcell can be further partitioned into 4-subcells and so on. Thus, a
(K − 1)-subcell is nothing but a (possible empty) block of K-s ending with
any letter not being K. On �gure 2 there is an example of subcells in the
�rst cell of one short sequence in case K = 4. 3-subcells are grouped by
2-subcells, groups separated by vertical lines.

K=4

2 2 4 3 4 3 2 1 2 2 3 1 2 1 3 3 1 2 2

(2 2 4 3 4 3 2 1)

(2) (2) (43432) (1)

(2) (2) (43) (43) (2) (1)

sequence

First cell

2-subcells in �rst cell

3-subcells in �rst cell

Figure 2. An example of subcells.
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Since X1, X2, . . . are i.i.d. random variables, we see that the number of 2-
subcells in a cell C is geometrically distributed: N2 ∼ G( p1

p1+p2
), the number

of 3-subcells in a 2-subcell C2 is geometrically distributed N3 ∼ G( p1+p2
p1+p2+p3

).

Therefore, for any l < K, the number of l-subcells in a (l−1)-subcell C l−1 is

geometrically distributed Nl ∼ G(
p1+···+pl−1

p1+···+pl ). Similarly, the number of K-s

in a K − 1-subcell is NK − 1, where NK ∼ G(1− pK).

In what follows, it is convenient to represent a (random) cell as a (random)
tree, where the root has R2 := N2 children each corresponding to a 2-subcell.
The i-th child of the root (node at level 2) has N3,i children, each correspond-

ing to a 3-subcell. The number of nodes at level 3 is R3 :=
∑N2

i=1N3,i and
this is the number of 3-subcells. The i-th node at level 3 has N4,i children,

all together there are R4 :=
∑R3

i=1N4,i nodes at level four. Recursively, thus,

Rl :=

Rl−1∑
i=1

Nl,i, l = 1, . . . ,K − 1, (R0 = 0, R1 = 1). (3.1)

Thus, every l-level node in the tree corresponds to a l-subcell, and if
l < K − 1, the number of its children equals to the number of its l + 1-
subcells. The total number of l-subcells is Rl. The children of the nodes
in level K − 1 are the leaves and the number of children of a node in level
K − 1 is the number of K-s in the corresponding subcell. Unlike other lev-
els, we shall denote the number of children of i-th node in level K − 1 as

NK,i−1, so that the total number of leaves is RK =
∑RK−1

i=1 (NK,i−1). Note
that RK is the number of K-s in the cell. Note that Rl is the number of
1, . . . , l letters in the cell and RK−1 +RK is the length of the cell. The num-
ber of l-letters in the cell is Rl−Rl−1, if l < K (see an example in Figure 3).

Now, a random cell can be modelled as a random tree as follows: at �rst
generate R2 = N2 children of the root, where N2 ∼ G( p1

p1+p2
). Then generate

R2 i.i.d. random variables N3,1, . . . , N3,R2 from distribution G( p1+p2
p1+p2+p3

).

These are the children of 2-level nodes. All together there are R3 3-level
nodes and then generate R3 i.i.d. random variables N4,1, . . . , N4,R3 from

distribution G(p1+p2+p3
p1+···+p4 ) and so on. Thus Nl,1, . . . , Nl,Rl−1

are i.i.d. random

variables from G(
p1+···+pl−1

p1+···+pl ) and their sum is Rl (recall (3.1)). From (3.1),

it easily follows that

Rl ∼ G(
p1

p1 + · · ·+ pl
), l = 1, . . . ,K − 1.
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K=4

(2 2 4 3 4 3 2 1)First cell

2-subcells R2 = 4

3-subcells R3 = 1 + 1 + 3 + 1 = 6

leaves R4 = 0 + 0 + 1 + 1 + 0 + 0 = 2

the length of a cell: R3 +R4 = 6 + 2 = 8

Figure 3. Cell as a tree.

Finally, for the nodes at level K − 1 generate again RK−1 i.i.d. random
variables NK,1, . . . , NK,RK−1

from G(1 − pK), but the number of leaves at
node i is not NK,i as in other levels but NK,i − 1.

Let T be a random tree obtained like that and to specify the distribution, we
sometimes write T (p1, . . . , pK). Let T 2

i , i = 1, . . . , N2 be subtrees at level 2.
Clearly they are independent and every subtree is T (p1 + p2, p2, . . . , pK−1).
This observation is important in recursion.

In what follows, we also consider the random trees, where every node has
a di�erent o�spring distribution for the number of children. So the number
of nodes at level 2 is distributed according to law P1, attached to the root.
Given N2 children, we have thus P2,1, . . . P2,N2 distributions, each attached to
a child. The i-th node at level 2 has N3,i ∼ P2,i children, and the j-th of them
has distribution P3,i,j , j = 1, . . . N3,i according to which the number of chil-
dren are distributed and so on. In this terminology, for a T (p1, . . . , pK)-tree,
P1 = G( p1

P1+p2
), P2,i = G( p1+p2

p1+p2+p3
), all nodes at level three have distribution

G( p1+p2+p3
p1+p2+p3+p4

) and so on.
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3.2. Alignments. Let X = X1, X2, . . . and Y = Y1, Y2, . . . be two inde-
pendent i.i.d. sequences with laws (p1, . . . , pK) and (q1, . . . , qK), respec-
tively. We are interested in calculating the expected score of an alignment
Ef(Cx, Cy), where Cx (Cy) is a random cell in X (in Y ). For that we
represent Cx as a random tree T x(p1, . . . , pK) and Cy as a random tree
T y(q1, . . . , qK). In order to facilitate the calculation, we represent the (ran-
dom) alignment as a (random) tree T = f(T x, T y), where the number of
aligned l letters (l < K) is Rl −Rl−1 and RK is the number of aligned K's.
Therefore, the score of the alignment is g(T ) := RK−1 +RK . Thus

Ef(Cx, Cy) = ERK−1 + ERK = Eg(T ),

and the tree-representation allows us to calculate Eg(T ) recursively, namely

Eg(T ) = E
( R2∑
i=1

g(T 2
i )
)
. (3.2)

We consider closely two alignments. In order to help the reader to understand
the tree construction, we �rst consider so-called priority subcell alignment.
After that, we focus on the priority letter alignment which is the main ob-
jective of our paper.

In this section, we use the same notation as previously, just adding super-
script x or y to indicate the X or Y -sequences. For example, Nx

l,i stands for
the number of l-subcells in the i-th l − 1 subcell of Cx. Let

M2 := Nx
2 ∧N

y
2 , Ml,i := Nx

l,i ∧N
y
l,i, l = 3, . . . ,K.

3.2.1. Priority subcell alignment. Priority subcell alignment is the following:
�rst, we align the maximal number of 2-s, proceeding from left to right. We
obtain R2 − 1 aligned letters, where R2 := M2. Then we align maximal
number of 3-s in the �rst M2 2-subcells, again proceeding from left to right.
The number of 3-s we align in the i-th 2-subcell (out of �rst R2 subcells) is
M3,i − 1. In total we align R3 −R2 letters 3, where

R3 :=

R2∑
i=1

M3,i.

In what follows, we consider these R3 3-subcells only and so on, always
proceeding from left to right during aligning letters in subcells. Thus, after
aligning letters (l − 1), we have Rl−1 (l − 1)-subcells. In i-th (l − 1)-subcell
we align Ml,i − 1 letters (l), all together we shall have Rl l-subcells, where

Rl :=

Rl−1∑
i=1

Ml,i, l = 3, . . . ,K − 1. (3.3)
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Finally, after aligning all letters K−1, we end up with RK−1 (K−1)-subcells
and in each of them, we align maximal number of K-letters. Formally, in
i-th (K− 1)-subcell we align MK,i− 1 letters K. The number of aligned K-s
is

RK :=

RK−1∑
i=1

(Ml,i − 1). (3.4)

In terms of trees, this procedure can be described as follows. First recall that
the nodes have ordering corresponding to cells. Then take one of the trees
and delete all subtrees starting from the nodes having index bigger thanM2.
In other words, keep the �rst M2 subtrees or, equivalently, M2 nodes at level
2. Now consider M2 subtrees T 2

1 , . . . , T
2
M2

and for every subtree T 2
i proceed

so: delete all subtrees in level 2 (level 3 in original tree) starting from nodes
having indexes bigger than M3,i. Then repeat the same procedure for sub-
subtrees. We end up with a reduced tree T obtained from two independent
original trees T x(p1, · · · , pK) and T y(q1, . . . , qK). The number of nodes at
level l in the reduced tree is Rl, de�ned as previously by (3.3) and (3.4). In
tree T , all nodes at level l have the same o�spring distribution

Pl = G(ρl),

where

ρl := 1− (
pl+1

p1 + · · ·+ pl+1
)(

ql+1

q1 + · · ·+ ql+1
), l = 1, . . . ,K − 1. (3.5)

The score of the alignment g(T ) = RK−1 +RK is easy to �nd recursively

Eg(T ) = E(M2)Eg(T 2) =
1

ρ1
Eg(T 2) =

1

ρ1

1

ρ2
Eg(T 3) = · · · =

(K−1∏
l=1

ρl

)−1
.

There is an example of priority subcell alignment in Figure 4, where the
alignment of one pair of cells is represented both letterwise and in terms of
trees in case K = 4. One can see that there are �ve 2-subcells (four 2-s) in X
and three 2-subcells (two 2-s) in Y which means that we can align two pairs
of 2-s and get three aligned 2-subcells (separated by solid lines on the �gure).
Now we can't align any 3-s in �rst 2-subcell as there are not any, while we
can align one pair of 3-s in the second and third 2-subcell. Now we can't
align any more letters, because in the third 2-subcell we have two 3-subcells
in X and �ve 3-subcells in Y and there are no 4-s in �rst two 3-subcells of
Y (separated by dashed lines in the �gure).
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K=4

2 3 2 3 4 2 4 3 4 2 3 1

4 2 3 3 2 3 3 3 3 4 1

_ 2 3 _ 2 3 4 _ _ _ _ 2 4 3 4 2 3 1
4 2 3 3 2 3 _ 3 3 3 4 _ _ _ _ _ _ 1

g(T )=5

First cell of X

First cell of Y

Alignment

Score

Figure 4. Priority subcell alignment.

3.2.2. Priority letter alignment. The description of priority letter alignment
is very simple: At �rst we align as many 2-s as possible, thusM2−1 2-s. Then
we align as many 3-s as possible, without disturbing the existing alignment
of 2-s. While aligning we always proceed again from left to right. The
di�erence with the previously described alignment is that the 3-s outsideM2
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�rst 2-subcells have now chance to be aligned as well. Therefore the score
is bigger. Then after aligning 2-s and 3-s, so many 4-s as possible will be
aligned, without disturbing the existing alignment of 2-s and 3-s and so on.
Thus the score of priority letter alignment is greater or at least equal to the
previously considered priority subcell alignment (see Figure 5).

K=4

2 3 2 3 4 2 4 3 4 2 3 1

4 2 3 3 2 3 3 3 3 4 1

_ 2 3 _ 2 3 4 2 4 3 4 2 3 _ _ 1
4 2 3 3 2 3 _ _ _ 3 _ _ 3 3 4 1

g(T )=7

First cell of X

First cell of Y

Alignment

Score

Figure 5. Priority letter alignment.

In terms of trees, the procedure of building a new tree T out of two trees
T x and T y is as follows: Suppose Nx

2 > Ny
2 . Recall that last N

x
2 − (Ny

2 − 1)
subtrees (from level 2) from T x correspond to last Nx

2 − (Ny
2 − 1) 2-subcells,

separated by Nx
2 − N

y
2 2-s. Remove these 2-s from the X-sequence. Then

these Nx
2 −N

y
2 + 1 subtrees become one subtree. The number of children of

the root of this subtree is

1 +

Nx
2∑

j=Ny
2

(Nx
3,j − 1), (3.6)

that equals to the number of 3-s plus one in the last Nx
2 −N

y
2 + 1 2-subcells

of X-sequence. Note that merging the redundant subtrees into one changes
the structure of merged subtrees in every level. For example, in Figure 6 is
shown that procedure based on one short pair of cells. One can see, that in
original tree T x nodes a, b and c (all being 4-s in X-sequence) are children of
di�erent nodes , but after last three nodes on level 2 of tree T x become one,
nodes a and b are now children of one node, while c has still di�erent node as
a parent. In terms of sequence it is explained by the fact, that originally 4-s
a and b were separated by 2 which we ignore as it places behind �rst M2− 1
2-s in X. Nodes b and c are separated by a 3 in X-sequence, thus they will
remain separated after the �rst step.

If Ny
2 > Nx

2 , then remove the redundant 2-s in Y -sequence, merging the
subtrees of T y. If Ny

2 = Nx
2 , then leave the subtrees unchanged. After

the merging procedure both trees, T y and (reduced version of) T x have M2
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2 3 2 3 4 2 4 3 4 2 3 1

4 2 3 3 2 3 3 3 3 4 1

First cell of X

First cell of Y
original trees

Nx
2 = 5 > 3 = Ny

2

Nx
3,1 = 1 = Ny

3,1

Nx
3,2 = 2 < 3 = Ny

3,2

Nx∗
3,3 = 4 < 5 = Ny

3,3

a b c

a b c

Figure 6. Priority letter alignment represented by trees.
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nodes at level 2. Now continue this procedure on level of T 2-subtrees � if, for
example Nx

3,1 < Ny
3,1, then remove last Ny

3,1 − Nx
3,1 3-s in the �rst 2-subcell

on Y sequence and so the last Ny
3,1 − Nx

3,1 + 1 subtrees of T 2y
1 -tree become

one. Again, this merging changes all sub-subtrees of T 2y
1 as well. Then do

the same procedure for the next subtrees, T 2y
2 and T 2x

2 and so on. After this
procedure, in both (reduced) trees T x and T y, all nodes at level 2 have equal
number of children: i-th node has M3,i children. Then start comparing the
subtrees having roots at level 3 and so on. When �nished, both reduced trees
T x and T y are equal, and the output tree is T .

Let us now study the distribution of random output tree

T = T (p1, . . . , pK ; q1, . . . , qK)

given the two original trees T x(p1, . . . , pK) and T y(q1, . . . , qK) are indepen-
dent. Recall that T has M2 nodes at level 2, so that T has M2 independent
subtrees T 2

i , i = 1, . . . ,M2, having roots at level 2. The independence comes
from the fact that the number of subtrees Nx

2 (Ny
2 ) is independent of sub-

trees in T x (T y). The di�erence Nx
2 −N

y
2 has in�uence on the distribution

of the last subtree, but the previous subtrees have no in�uence on the last
one. The recursion is based on the observation that when i = 1, . . . ,M2 − 1,
then the subtrees T 2

i are i.i.d. having the distribution

T (p1 + p2, p3 . . . , pK ; q1 + q2, q3, . . . , qK). (3.7)

To see that recall that the 2-level subtrees T 2x
i (or T 2y

i ) are i.i.d. with dis-
tribution T x(p1 + p2, p3, . . . , pK) (or T y(q1 + q2, q3, . . . , qK)) and along the
�rst M2 − 1 subtrees the whole alignment procedure is exactly the same as
for the whole cell. In particular, these M2 − 1 subtrees T 2

i have o�spring
distribution P2,i = G(ρ2), i = 1, . . . ,M2 − 1, where ρ2 is de�ned as in (3.5).
The distribution of the last subtree T 2

M2
is di�erent. In what follows, we shall

denote that distribution by

U2(p1, . . . , pK ; q1, . . . , qK).

When Nx
2 ≥ N

y
2 , then the conditional distribution of U2 equals to that of

T
( p1

1− p2
,

p3

1− p2
, . . . ,

pK
1− p2

; q1 + q2, q3, . . . , qK

)
. (3.8)

To see (3.8) recall that removing 2-s means that a letter 2 is not any more an
end of a cell. Thus the number of 3-subcells is distributed along G( p1

p1+p3
),

number of 4-subcells is distributed along G( p1+p3
p1+p3+p4

) and so on. So as for

the whole tree T (p1, . . . , pK ; q1, . . . , qK) the number of �rst level subcells is
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distributed along G( p1
p1+p2

) and the number of second level subcells is dis-

tributed along G( p1+p2
p1+p2+p3

) and so on, then for subtree T 2
M2

we need proba-

bilities a1, a3, . . . , aK , to be so that
a1

a1 + a3
=

p1
p1 + p3

,
a1 + a3 + · · · al
a1 + a3 + · · · al+1

=
p1 + p3 + · · ·+ pl
p1 + p3 + · · ·+ pl+1

, l = 3, . . . ,K − 1.

(3.9)

Since the distribution of tree is determined by its o�spring distributions, we
get that U2 is distributed as

T (a1, a3, . . . , aK ; q1 + q2, q3, . . . , qK).

Now take
a1 :=

p1

1− p2
, al :=

pl
1− p2

, l = 3, . . .K,

and note that (3.9) holds. Similarly, when Nx
2 ≤ Ny

2 , then the conditional
distribution of U2 equals to that of

T
(
p1 + p2, p3, . . . , pK ;

q1

1− q2
,

q3

1− q2
, . . . ,

qK
1− q2

)
.

Finally, when Nx
2 = Ny

2 , then nothing is changed in level 2 so the conditional
distribution of U2 is exactly the same as the distribution of other subtrees
T 2
i i.e. as in (3.7). In this case all subtrees T 2

1 , . . . , T
2
M2

are i.i.d..

Let us now study the distribution of the subtrees of U2. Again, consider
the case Nx

2 ≥ N
y
2 . Then U

2 has M∗3 subtrees, where (recall (3.6))

M∗3 = Ny
3,M2
∧
(
1 +

Nx
2∑

j=Ny
2

(Nx
3,j − 1)

)
. (3.10)

Again, all these subtrees are independent, the �rst M∗3 − 1 of them have the
distribution

T
(p1 + p3

1− p2
,

p4

1− p2
, . . . ,

pK
1− p2

; q1 + q2 + q3, q4 . . . , qK

)
. (3.11)

Let U3 be M∗3 -th subtree of U2. Since the procedure of building the trees is
the same in every subcell, we see that under the condition Nx

2 ≥ N
y
2 , U

3 has
the distribution

U2
( p1

1− p2
,

p3

1− p2
, . . . ,

pK
1− p2

; q1 + q2, q3, . . . , qK

)
. (3.12)

If Nx
2 = Ny

2 , then U
3 has the distribution

U2(p1 + p2, p3, . . . pK ; q1 + q2, q3, . . . , qK). (3.13)

Now clearly

Eg(T ) = (EM2 − 1)Eg(T 2) + Eg(U2),

Eg(U2) = E[g(U2)|Nx
2 ≥ N

y
2 ]P (Nx

2 ≥ N
y
2 )
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+ E[g(U2)|Nx
2 ≤ N

y
2 ]P (Nx

2 ≤ N
y
2 )

− E[g(U2)|Nx
2 = Ny

2 ]P (Nx
2 = Ny

2 ),

E[g(U2)|Nx
2 ≥ N

y
2 ] =

(
E[M∗3 |Nx

2 ≥ N
y
2 ]− 1

)
E[g(T 3)|Nx

2 ≥ N
y
2 ]

+ E[g(U3)|Nx
2 ≥ N

y
2 ],

E[g(U2)|Nx
2 ≤ N

y
2 ] =

(
E[M∗3 |Nx

2 ≤ N
y
2 ]− 1

)
E[g(T 3)|Nx

2 ≤ N
y
2 ]

+ E[g(U3)|Nx
2 ≤ N

y
2 ],

E[g(U2)|Nx
2 = Ny

2 ] =
(
E[M∗3 |Nx

2 = Ny
2 ]− 1

)
E[g(T 3)|Nx

2 = Ny
2 ]

+ E[g(U3)|Nx
2 = Ny

2 ],

where T 2 is a random tree with distribution (3.7) and T 3 is distributed as any
of the �rst M∗3 − 1 subtrees of U2. We know that under condition Nx

2 ≥ N
y
2 ,

the subtree T 3 is distributed as (3.11), U2 as (3.8) and U3 as (3.12).

Let

m2(p1, p2; q1, q2) := EM2 =
1

ρ1
,

mx
3(p1, p2, p3; q1, q2, q3) := E[M∗3 |Nx

2 ≥ N
y
2 ],

my
3(p1, p2, p3; q1, q2, q3) := E[M∗3 |Nx

2 ≤ N
y
2 ]

m0
3(p1, p2, p3; q1, q2, q3) := E[M∗3 |Nx

2 = Ny
2 ],

px(p1, p2; q1, q2) := P (Nx
2 ≥ N

y
2 ),

py(p1, p2; q1, q2) := P (Nx
2 ≤ N

y
2 ),

p0(p1, p2; q1, q2) := P (Nx
2 = Ny

2 );

gK(p1, . . . , pK ; q1, . . . , qK) := Eg(T ),

uK(p1, . . . , pK ; q1, . . . , qK) := Eg(U2),

uxK(p1, . . . , pK ; q1, . . . , qK) := E[g(U2)|Nx
2 ≥ N

y
2 ],

uyK(p1, . . . , pK ; q1, . . . , qK) := E[g(U2)|Nx
2 ≤ N

y
2 ],

u0
K(p1, . . . , pK ; q1, . . . , qK) := E[g(U2)|Nx

2 = Ny
2 ].

With this notation, we have

gK(p1, . . . , pK ; q1, . . . , qK) = (m2(p1, p2; q1, q2)− 1)

× gK−1(p1 + p2, p3, . . . , pK ; q1 + q2, q3, . . . , qK)

+ uK(p1, . . . , pK ; q1, . . . , qK);

uK(p1, . . . , pK ; q1, . . . , qK) = uxK(p1, . . . , pK ; q1, . . . , qK)px(p1, p2; q1, q2)

+ uyK(p1, . . . , pK ; q1, . . . , qK)py(p1, p2; q1, q2)

− u0
K(p1, . . . , pK ; q1, . . . , qK)p0(p1, p2; q1, q2).
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Using (3.11) and (3.12) we get

uxK(p1, . . . ,pK ; q1, . . . , qK) =
(
mx

3(p1, p2, p3; q1, q2, q3)− 1
)

× gK−2

(p1 + p3

1− p2
,

p4

1− p2
, . . . ,

pK
1− p2

; q1 + q2 + q3, q4 . . . , qK

)
+ uK−1

( p1

1− p2
,

p3

1− p2
, . . . ,

pK
1− p2

; q1 + q2, q3, . . . , qK

)
.

Similarly,

uyK(p1, . . . ,pK ; q1, . . . , qK) =
(
my

3(p1, p2, p3; q1, q2, q3)− 1
)

× gK−2

(
p1 + p2 + p3, p4, . . . , pK ;

q1 + q3

1− q2
,

q4

1− q2
, . . . ,

qK
1− q2

)
+ uK−1

(
p1 + p2, p3, . . . , pK ;

q1

1− q2
,

q3

1− q2
, . . . ,

qK
1− q2

)
,

and from (3.13), it follows that

u0
K(p1, . . . ,pK ; q1, . . . , qK) =

(
m0

3(p1, p2, p3; q1, q2, q3)− 1
)

× gK−2(p1 + p2 + p3, p4, . . . , pK ; q1 + q2 + q3, q4, . . . , qK)

+ uK−1(p1 + p2, p3, . . . , pK ; q1 + q2, q3, . . . , qK).

Let us calculate m·3(p1, p2, p3; q1, q2, q3). For this note that under Nx
2 ≥

Ny
2 , the di�erence Nx

2 − N
y
2 + 1 has G( p1

p1+p2
) distribution. Then, because

the variables Nx
3,j are independent of N

x
2 −N

y
2 it holds that

1 +

Nx
2∑

j=Ny
2

(Nx
3,j − 1) ∼ G

( p1

p1 + p3

)
. (3.14)

Reader can verify (3.14) via straightforward calculations. Therefore (3.10)
is distributed as minimum of two independent geometrically distributed ran-
dom variables, one having parameter q1+q2

q1+q2+q3
and another p1

p1+p3
. Therefore,

under Nx
2 −N

y
2 ≥ 0 we have M∗3 ∼ G(ρx2), where

ρx2 := 1−
( p3

p1 + p3

)( q3

q1 + q2 + q3

)
.

Similarly, under Nx
2 −N

y
2 ≤ 0 we have M∗3 ∼ G(ρy2), where

ρy2 := 1−
( q3

q1 + q3

)( p3

p1 + p2 + p3

)
.

Finally, under Nx
2 − Ny

2 = 0, M∗3 has the same distribution as M3, thus
G(ρ2). Therefore,

mx
3(p1, p2, p3; q1, q2, q3) =

1

ρx2
,

my
3(p1, p2, p3; q1, q2, q3) =

1

ρy2
,
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m0
3(p1, p2, p3; q1, q2, q3) =

1

ρ2
.

Finally, let us �nd p·(p1, p2; q1, q2). The reader can easily check that

p0(p1, p2; q1, q2) =
p1q1

(p1 + p2)(q1 + q2)− p2q2
,

py(p1, p2; q1, q2) =
p1(q1 + q2)

(p1 + p2)(q1 + q2)− p2q2
,

px(p1, p2; q1, q2) =
q1(p1 + p2)

(p1 + p2)(q1 + q2)− p2q2
.

Now all components of our recursion are known and given, for every two
K−1-dimensional probability vectors (p′1, . . . , p

′
K−1) and (q′1, . . . , q

′
K−1), one

can calculate

gK−1(p′1, . . . , p
′
K−1; q′1, . . . , q

′
K−1), uK−1(p′1, . . . , p

′
K−1; q′1, . . . , q

′
K−1).

Using these functions, one can also calculate gK(p1, . . . , pK ; q1, . . . , qK) and
uK(p1, . . . , pK ; q1, . . . , qK).

Let us specify the beginning of the recursion. Take K = 3. Then

g3(p1, p2, p3; q1, q2, q3) = (m2(p1, p2; q1, q2)− 1)g2(p1 + p2, p3; q1 + q2, q3)

+ u3(p1, p2, p3; q1, q2, q3).

For two level tree, the score of the cell is just the number of nodes, hence

g2(p1 + p2, p3; q1 + q2, q3) = m2(p1 + p2, p3; q1 + q2, q3),

u3(p1, p2, p3; q1, q2, q3) = mx
3(p1, p2, p3; q1, q2, q3)px(p1, p2; q1, q2)

+my
3(p1, p2, p3; q1, q2, q3)py(p1, p2; q1, q2)

−m0
3(p1, p2, p3; q1, q2, q3)p0(p1, p2; q1, q2).

Let us see how the recursion also applies for K = 4. So,

g4(p1, p2, p3, p4; q1, q2, q3, q4) =
(
m2(p1, p2; q1, q2)− 1

)
× g3(p1 + p2, p3, p4; q1 + q2, q3, q4)

+ u4(p1, p2, p3, p4; q1, q2, q3, q4),

u4(p1, p2, p3, p4; q1, q2, q3, q4) = ux4(p1, p2, p3, p4; q1, q2, q3, q4)px(p1, p2; q1, q2)

+ uy4(p1, p2, p3, p4; q1, q2, q3, q4)py(p1, p2; q1, q2)

− u0
4(p1, p2, p3, p4; q1, q2, q3, q4)p0(p1, p2; q1, q2),

ux4(p1, p2, p3, p4; q1, q2, q3, q4) =
(
mx

3(p1, p2, p3; q1, q2, q3)− 1
)

× g2

(p1 + p3

1− p2
,

p4

1− p2
; q1 + q2 + q3, q4

)
+ u3

( p1

1− p2
,

p3

1− p2
,

p4

1− p2
; q1 + q2, q3, q4

)
,
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uy4(p1, p2, p3, p4; q1, q2, q3, q4) =
(
my

3(p1, p2, p3; q1, q2, q3)− 1
)

× g2

(
p1 + p2 + p3, p4;

q1 + q3

1− q2
,

q4

1− q2

)
+ u3

(
p1 + p2, p3, p4;

q1

1− q2
,

q3

1− q2
,

q4

1− q2

)
,

u0
4(p1, p2, p3, p4; q1, q2, q3, q4) =

(
m0

3(p1, p2, p3; q1, q2, q3)− 1
)

× g2

(
p1 + p2 + p3, p4; q1 + q2 + q3, q4

)
+ u3

(
p1 + p2, p3, p4; q1 + q2, q3, q4

)
.

4. Comparing the formulas

Let us compare EZ1 =: gK(p1, . . . , pK ; q1, . . . , qK) of priority letter align-
ment with EZ1 =: g′K(p1, . . . , pK ; q1, . . . , qK) of priority subcell alignment.
Clearly gK ≥ g′K , but as we see, the di�erence depends on the distributions.
Moreover, we compare both numbers with the best possible cellwise score,
namely the expected length of LCS. Let that be g∗K(p1, . . . , pK ; q1, . . . , qK).
This function cannot be calculated recursively, so we estimate it by simula-
tions. In the second part of the section, we study the order of letters 2, . . . ,K
that would give the maximal gK . We present a counterexample showing
that the intuitively best ordering (1.3) does not necessarily give the biggest
gK . Since due to the recursive formula, for any ordering of (p1, . . . , pK) and
(q1, . . . , qK), we can calculate gK and the corresponding γ = gK/(Eτ

x
1 ∨Eτ

y
1 ).

This means that in practice the best ordering can be easily found. Of course
the probabilities pi and qi might not always be known, but can be easily
estimated via relative frequencies.

4.1. Comparison of methods. We �rst compare two described methods:
priority subcell alignment and priority letter alignment. Let K = 4. During
the comparison we always use the intuitively best ordering of letters (1.3).
We de�ne symmetrical distribution as follows

1 2 3 4
P 1/4 + ε 1/4 + ε 1/4− ε 1/4− ε
Q 1/4 + ε 1/4 + ε 1/4− ε 1/4− ε,

(4.1)

where ε ∈ [0, 1
4 ]. In Figure 7 there are presented theoretical expected values

of constants γ = (p1 ∧ q1)gK (priority letter alignment) and γ
′

= (p1 ∧ q1)g
′
K

(priority subcell alignment) in case of every ε ∈ [0, 1
4 ]. One can see that if

ε is close to 0, we have a distribution close to uniform distribution and in
that case the di�erence is relatively big. The more ε increases, the less there
are 3-s and 4-s in sequences and the smaller is the advantage of priority
letter alignment. This is fully understandable, because the case ε = 1/4



162 RIHO KLEMENT AND JÜRI LEMBER

0.40

0.45

0.50

0.55

0.60

0.65

0.00 0.05 0.10 0.15 0.20 0.25
ε

γ

Method
Priority letter

Priority subcell

Figure 7. Comparison of priority letter and priority subcell alignments.

corresponds to the case K = 2 and for binary sequences the priority letter
and the priority subcell alignments are the same.

Now we look at the same P and Q, but we try to get an overview on
how far from the score of the LCS is our priority letter alignment. To get
a better comparison on the methods we add one more alignment � cellwise

LCS, where we �rst divide our sequences into cells and then we �nd LCS in all
the pairs of cells. The last cell is �un�nished�, because it does not necessarily
end with 1. However, it is taken into calculations as well. Asymptotically
the e�ect of the last un�nished cell is negligible. When one sequence has
more cells than another, then these redundant cells are considered as the one
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Figure 8. Comparison of Priority letter alignment with LCS methods.

big cell and still used in comparison. The sum of all the scores of LCS from
every cell is the score of cellwise LCS alignment. We know, that the length
of global LCS cannot be smaller than the length of cellwise LCS and priority
letter alignment cannot do better than cellwise LCS. In Figure 8 there are
presented all three described lines. For 15 di�erent ε value, 30 simulations
with sequence length 2000 were made and an average was calculated. One
can see, that again the biggest di�erence between all the methods is when
the distribution is close to the uniform distribution. When ε increases, the
number of 3-s and 4-s decreases and the number of cells increases which
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means that the priority letter alignment is basically same as cellwise LCS.
The global LCS is still substantially better than the others.

4.2. Ordering of the letters. Studying both of the methods described
before (priority subcell and priority letter alignments), one can see, that the
ordering of the letters has quite large in�uence on the score of the alignment.
We shall now present a counterexample showing that the ordering (1.3) does
not always give the best possible score. Let us have p = q = (0.45, 0.45, 0.1).
All possible scores of priority letter alignment are:

Ordering γ
1 2 3 0.61111
1 3 2 0.61128
3 2 1 0.41548

So ordering 1,3,2 gives us a counterexample that the ordering (1.3) is not
always the best and in this case aligning 3-s before 2-s gives better score,
although p2 ∧ q2 > p3 ∧ q3. Furthermore, as the score of the priority letter
alignment is a continuous function of probabilities, one can found similar
counterexample where p1 6= p2. However various calculations indicate that
letter with the highest pi ∧ qi should always be aligned �rst.
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