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Comparison of estimators of variance parameters

in the growth curve model with a special variance

structure

Rastislav Rusnačko and Ivan Žežula

Abstract. Three different estimators of the variance parameters in the
growth curve model with generalized uniform correlation structure are
compared on the basis of mean square error. Since the situation in
general depends on specific choice of the structure matrix, we investigate
two important special cases.

1. Introduction

The growth curve model, introduced by Potthoff and Roy in [6], is one of
fruitful models of multivariate analysis. It is of the form

Y = XBZ + ε, E(ε) = 0, Var(vec ε) = Σ⊗ I,

where Yn×p is the matrix of observations, Xn×m is an ANOVA matrix, Bm×r

is a matrix of unknown parameters, Zr×p is a matrix of regression constants,
εn×p is a matrix of normally distributed random errors, In×n is the identity
matrix, Σp×p is the variance matrix of rows of matrix Y , and vec operator
transforms a matrix into a vector by stacking the columns one underneath
the other. Usually, p is the number of time points, n is the number of
subjects studied, and m is the number of groups.

Since the number of variance parameters in Σ grows quickly with p, the
idea of using some special variance structures appeared. The first one to
deal with such modification of the model was Khatri [3], who derived maxi-
mum likelihood estimators (MLE) of model parameters and likelihood ratio
tests for block independence, sphericity, and intraclass model (in this article
denoted by GUCS, see later). The next one was Lee [5], who considered the
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uniform correlation structure (UCS, see (1)) and the autoregressive corre-
lation structure. He derived the MLEs for the unknown parameters in the
UCS. Although MLEs in general have many optimal properties, these are
assured only asymptotically, and their small sample properties can be much
worse. That is why another principles of estimation of the UCS parame-
ters, more suitable to small sample situation, were later used by Žežula [10]
and Ye and Wang [8]. Both articles investigated also generalized uniform
correlation structure (GUCS), see (2).

Žežula in [10] compared his estimators with MLEs. Later, Klein and
Žežula [4] proved that Žežula’s estimators and Ye and Wang’s estimators
are equivalent in the UCS model. However, the situation remains unclear in
the GUCS model. In this article, we compare estimators of Khatri, Žežula,
and Ye and Wang on the basis of their variances and mean square errors in
the GUCS model.

2. The uniform correlation structure

If p, the dimension of observations made on a single subject, is not large,
and the number of observations n is substantially bigger, there are more
suitable estimators of Σ at our disposition. However, when the number of
unknown parameters in the variance matrix Σ is close to or even bigger than
sample size, the situation gets complicated. One of the possible solutions
is to reduce the number of unknown parameters by considering a simpler
variance structure. Such a structure may also be naturally implied by the
nature of the data, e.g., when the observations are autoregressive time series
or a mixture of several populations. One of such simple models is the model
with the uniform correlation structure given as

Σ = σ2
[
(1− ̺) I + ̺11′

]
, (1)

where σ2 > 0 is the common variance of all observations, ρ ∈ (−1/(p−1); 1)
correlation coefficient of any pair in a row, and 1 vector of ones.

Under normality, we know that the uniformly minimum variance unbiased
invariant estimator of unstructured Σ is

S =
1

n− r(X)
Y ′MXY,

where r(X) is the rank of X and MX = I − PX = I −X(X ′X)−X, see [9].
We establish estimator of structured matrix Σ on the basis of estimator of
unstructured matrix Σ. Since E(S) = Σ holds regardless of the true value of
Σ, it can be reasonable to base estimators of the parameters of the simplified
model also on S.

Using the moment method, we easily get unbiased estimating equations

Tr(S)− pσ̂2 = 0 and 1′S1− Tr(S)[1 + (p − 1)̺̂] = 0
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for the parameters σ2 and ̺. Thus, natural simple estimators of the two
unknown variance structure parameters are

σ̂2 =
Tr(S)

p
and ̺̂= 1

p− 1

(
1′S1

Tr(S)
− 1

)
.

It holds that σ̂2 ≥ 0 and ρ̂ ∈ 〈−1/(p − 1); 1〉, which must hold also for their
true values. These estimators have been derived by Žežula in [10]. Later Ye
and Wang [8] derived seemingly different estimators by the decomposition of
the model into two parts, one parallel and the other perpendicular to vector
1, again using the moment method. Equivalence of these estimators with
the previous ones was proved by Klein and Žežula in [4].

3. The generalized uniform correlation structure

To keep the simplicity, but to allow for different variances and correlations,
if we know their ratios, the structure of Σ can be considered in the form

Σ = θ1G+ θ2ww
′, (2)

called the generalized uniform correlation structure, where Gp×p ≥ 0 is a
known symmetric matrix, w ∈ R

p is a known vector, and the variance-
covariance parameters θ1 and θ2 are unknown.

The GUCS is indeed a generalization of UCS. E.g., if we have design with
constant correlation ρ but different individual variances c21σ

2, . . . , c2pσ
2, then

G = diag
{
c21, . . . , c

2
p

}
, w = (c1, . . . , cp)

′ , θ1 = σ2(1− ρ), θ2 = σ2ρ.

Thus, the GUCS allows inhomogeneity of variances and covariances, while
saving parameter parsimony.

Should Σ be positive-semidefinite, one of the following conditions must
hold:

θ1 ≥ 0 & θ2 ≥ 0 ,

or

θ1 ≥ 0, θ2 < 0, w ∈ R(G) & θ1 ≥ |θ2|w′G+w , (3)

where G+ is the Moore–Penrose g-inverse (MP-inverse) of G.
Matrix G expresses our knowledge on ratios of variances of different row

elements, up to the the diagonal multiples of w2
i (all rows of Y have the

same variance matrix). Usually we take G diagonal, and our knowledge of
correlations ratios is expressed by vector w.

If we have general G ≥ 0, we can use its spectral decomposition G = UΛU ′

and transform the original model into Y U = XBZU + εU . Since matrix of
eigenvectors U is orthogonal, this model is equivalent to the original one (all
distances and vector angles are preserved), and the rows of the transformed
Y have variance matrix U ′ΣU = θ1Λ + θ2vv

′ with v = U ′w. Thus, it is
sufficient to consider G diagonal.
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Notice that in (2) we can restrict both norm of G and w arbitrarily, since

θ1G = (a1θ1)

(
1

a1
G

)
= θ∗1G

∗, and θ2ww
′ = (a2θ2)

(
1

a2
ww′

)
= θ∗2w

∗w∗′.

We will make use of it later.
Similarly to the UCS model, from

E [Tr(S)] = θ1 Tr(G) + θ2w
′w and E(1′S1) = θ11

′G1+ θ2(1
′w)2 ,

we get unbiased estimating equations, which lead to the estimators

θ̂Z1 =
(1′w)2 Tr(S)− 1′S1w′w

(1′w)2 Tr(G)− 1′G1w′w
and θ̂Z2 =

1′S1Tr(G)− 1′G1Tr(S)

(1′w)2 Tr(G) − 1′G1w′w

(see [10]). We will call them Z-estimators. Note that if G is diagonal, then
Tr(G) = 1′G1 and the second estimator gets free of G:

θ̂Z2d =
1′S1− Tr(S)

(1′w)2 − w′w
.

Using similar principle in an orthogonal decomposition of the model, as-
suming G > 0, Ye and Wang in [8] derived alternative estimators of the
form

θ̂YW
1 =

w′G−1wTr(G−1S)− w′G−1SG−1w

(p− 1)(w′G−1w)
,

θ̂YW
2 =

pw′G−1SG−1w − w′G−1wTr(G−1S)

(p − 1)(w′G−1w)2
.

We will call them YW-estimators.
Khatri in [3] derived ML estimators, which under condition that w ∈

R(Z ′) have the form

θ̂ML
1 =

n− r(X)

n
· wG

−1wTr
(
G−1S

)
− wG−1SG−1w

(p− 1)wG−1w

+
Tr
(
G−1MG−1

Z′ Y ′PXY
)

n(p− 1)
,

θ̂ML
2 =

n− r(X)

n
· pwG

−1SG−1w − wG−1wTr
(
G−1S

)

(p− 1) (wG−1w)2

−
Tr
(
G−1MG−1

Z′ Y ′PXY
)

n(p− 1)wG−1w
.
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Unbiasedness of S implies that both Z- and YW-estimators are unbiased.
Using results of [2], we easily get that MLEs are biased, and both underes-
timate the true value:

Eθ̂ML
1 = θ1

(
1− r(X)(r(Z ′)− 1)

n(p− 1)

)
,

Eθ̂ML
2 = θ2

n− r(X)

n
− θ1

r(X)(p − r(Z ′))

n(p− 1)
.

That is not surprising. However, there is a bigger problem with θ̂ML
2 – the

mean depends also on θ1, which can lead to severe bias especially in small
samples.

Quality of all these estimators can be compared by their mean square
errors (MSE), which for Z- and YW-estimators are equal to corresponding
variances. According to [4], it holds

Var θ̂Z1 =
2
[
(1′w)4 Tr(Σ2)− 2(1′w)2w′w1′Σ21+ (w′w)2(1′Σ1)2

]

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2
,

Var θ̂Z2 =
2
[
[Tr(G)1′Σ1]2 − 2Tr(G)1′G11′Σ21+ (1′G1)2 Tr(Σ2)

]

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2
.

Inserting the formula for Σ, we get alternative expressions

Var θ̂Z1 =
2θ21

[
(1′w)4 Tr

(
G2
)
− 2(1′w)2(w′w)1′G21+ (w′w)2(1′G1)2

]

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2

+
4θ1θ2

[
(1′w)4w′Gw − 2(1′w)3(w′w)1′Gw + (1′w)2(w′w)21′G1

]

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2

and

Var θ̂Z2 =
2θ22

n− r(X)

+
2θ21

[
(1′G1)2 Tr2 (G)− 2(1′G1)Tr(G)1′G21+Tr(G2)(1′G1)2

]

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2

+
4θ1θ2

(n− r(X)) [(1′w)2 Tr(G) − 1′G1w′w]2
[
(1′G1)2Tr2 (G) (1′w)2

−2(1′w)(1′Gw)(1′G1)Tr(G) + (1′G1)2w′Gw
]
.

Similarly,

Var θ̂YW
1 =

2

(n− r(X)) (p− 1)2(w′G−1w)2

[
(w′G−1w)2 Tr(G−1ΣG−1Σ)
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+(w′G−1ΣG−1w)2 − 2(w′G−1w)(w′G−1ΣG−1ΣG−1w)
]

=
2θ21

(n− r(X)) (p− 1)
,

Var θ̂YW
2 =

2

(n− r(X)) (p− 1)2(w′G−1w)4

[
(w′G−1w)2 Tr(G−1ΣG−1Σ)

+p2(w′G−1ΣG−1w)2 − 2p(w′G−1w)(w′G−1ΣG−1ΣG−1w)
]

=
2
[
pθ21 + 2(p − 1)

(
w′G−1w

)
θ1θ2 + (p − 1)

(
w′G−1w

)2
θ22

]

(n− r(X)) (p− 1) (w′G−1w)2
.

Since the last term in MLEs uses projector PX , the other two MX , and
MXPX = 0, one can quickly find that the last term is independent of the
previous ones. Thus, using results of [2], we get

Var θ̂ML
1 =

(
n− r(X)

n

)2

Var θ̂YW
1 + 2r(X)

Tr
(
G−1MG−1

Z′ ΣG−1MG−1

Z′ Σ
)

n2(p− 1)2

=
2θ21 [(n− r(X)) (p− 1) + r(X)(p − r(Z ′))]

n2(p− 1)2
,

Var θ̂ML
2 =

(
n− r(X)

n

)2

Var θ̂YW
2 + 2r(X)

Tr
(
G−1MG−1

Z′ ΣG−1MG−1

Z′ Σ
)

n2(p− 1)2 (w′G−1w)2
.

Then, their MSEs are

MSEθ̂ML
1 =

(
n− r(X)

n

)2

Var θ̂YW
1

+
2r(X)Tr

(
G−1MG−1

Z′ ΣG−1MG−1

Z′ Σ
)
+ r(X)2(r(Z ′)− 1)2θ21

n2(p− 1)2
,

MSEθ̂ML
2 =

(
n− r(X)

n

)2

Var θ̂YW
2

+ 2r(X)
Tr
(
G−1MG−1

Z′ ΣG−1MG−1

Z′ Σ
)

n2(p − 1)2 (w′G−1w)2
+

r(X)2

n2

(
θ2 +

p− r(Z ′)

p− 1
θ1

)2

.

Again, Tr
(
G−1MG−1

Z′ ΣG−1MG−1

Z′ Σ
)
depends on θ1, which is a problem

for θ̂ML
2 . To get the MSEs, we need to add squared biases, which in case of

θ̂ML
2 will strengthen the dependence on θ1. We see now that while θ̂ML

1 can
be comparable with the YW-estimator (two more terms can be compensated

by (n− r(X)/n)2 coefficient at the first term), θ̂ML
2 is a dangerous estimator
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in small samples. That is why we will compare only Z- and YW-estimators
in the next.

For the comparison, we define the following two functions:

r1 = Var θ̂Z1 −Var θ̂YW
1 and r2 = Var θ̂Z2 −Var θ̂YW

2 .

We will consider them not as functions of the unknown variance components,
but – for fixed values of these components – as functions of the elements of
G and w.

There cannot be said much about these differences in general. That is
why we will look at some special cases in the following subsections. In order
to keep the structure as simple as possible, in accordance with our remarks
above, we choose G diagonal in all cases.

3.1. The GUCS model with G diagonal and w = 1. Choosing w = 1

means that we suppose uniform correlation structure, but not necessarily
with equal variances in all components. Due to multiplication by an unknown
parameter, this model is equivalent with the one using w = c1 for some c.

Let us suppose that measurements in different times have all potentially
different precisions/variances xi > 0, i = 1, . . . , p. Then we have G =
diag(x), where x = (x1, . . . , xp)

′ is the vector of variances. It is easy to get
the relations

Tr (Σ) = x
′1θ1 + pθ2, Tr

(
Σ2
)
= x

′
xθ21 + 2x′1θ1θ2 + p2θ22,

1′Σ1 = x
′1θ1 + p2θ2, 1′Σ21 = x

′
xθ21 + 2px′1θ1θ2 + p3θ22.

Denoting by x
−1 = (1/x1, . . . , 1/xp)

′ the vector of reciprocals of x, we
have G−1 = diag(x−1), and

1′G−11 = 1′x−1, 1′G−1ΣG−11 = 1′x−1θ1 + (1′x−1)2θ2,

1′G−1ΣG−1ΣG−11 = 1′x−1θ21 + 2(1′
x
−1)2θ1θ2 + (1′

x
−1)3θ22,

Tr
(
G−1ΣG−1Σ

)
= pθ21 + 21′

x
−1θ1θ2 + (1′

x
−1)2θ22.

Using the above formulas, after short calculation we get

Var θ̂Z1 =
2θ21

[
p(p− 2)x′

x+ (1′
x)2
]

(n− r(X))(p − 1)2(1′x)2
,

Var θ̂Z2 =
2
[(
(1′

x)2 − x
′
x
)
θ21 + 2

(
p− 1)2(1′x

)
θ1θ2 + p2(p− 1)2θ22

]

(n− r(X))p2(p − 1)2
,

Var θ̂YW
1 =

2θ21
(n− r(X))(p − 1)

,

Var θ̂YW
2 =

2
[
pθ21 + 2(p − 1)1′

x
−1θ1θ2 + (p− 1)(1′

x
−1)2θ22

]

(n − r(X))(p − 1)(1′x−1)2
.
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Then, the differences r1 and r2 as functions of x are

r1(x) =
2θ21(p− 2)

(
px′

x− (1′x)2
)

(n− r(X))(p − 1)2(1′x)2
, (4)

r2(x) =
2θ21

[(
1′x−1

)2 (
(1′x)2 − x

′
x

)
− p3(p− 1)

]

(n− r(X))p2(p− 1)2 (1′x−1)2

+
4θ1θ2(p− 1)2

(
1′x−11′x− p2

)

(n− r(X))p2(p − 1)21′x−1
.

(5)

Lemma 3.1. Under the above assumptions, it is r1(x) ≥ 0 for all x > 0.1

Proof. The denominator of r1(x) is positive for x > 0, so that we have only to
look at the numerator. It must be p ≥ 2 for the model to have sense. The rest
immediately follows from Schwarz inequality (1′

x)2 ≤ 1′1 ·x′
x = px′

x. �

Thus, YW-estimator of θ1 is always at least as good as Z-estimator in this
model. Note that r1(x) ≡ 0 for p = 2.

Since equality occurs in Schwarz inequality if and only if x = c1 for some
c, r1(x) attains zero values on M = {x = c1; c > 0} for arbitrary p.

Let us now denote Sk the arithmetic average of all possible products of
k elements out of x1, . . . , xp (k-th symmetric polynomial mean) for k =
1, 2, . . . , p. We express the terms in r2(x) by means of them. Because x > 0,
Sk > 0 for all k. Then we have

1′x =

p∑

i=1

xi = pS1 ,

1′x−1 =

p∑

i=1

x−1
i =

1∏p
j=1 xj

p∑

i=1

∏p
j=1 xj

xi
=

1∏p
j=1 xj

p∑

i=1

p∏

j=1
j 6=i

xj =
pSp−1

Sp

,

(
1′x
)2 − x

′
x =

(
p∑

i=1

xi

)2

−
p∑

i=1

x2i =

p∑

i=1

p∑

j=1
j 6=i

xixj = p(p− 1)S2 .

Lemma 3.2. Under the above assumptions, r2(x) ≥ 0 for all x > 0.

Proof. As before, the denominators of both fractions in (5) are positive for
x > 0, so that it is sufficient to look at the numerators.

a) Let us first consider the case θ1, θ2 ≥ 0. We will look at the two terms
separately. Since

(
1′
x
−1
)2 ((

1′
x
)2 − x

′
x

)
− p3(p− 1) = p3(p − 1)

(
S2
p−1S2

S2
p

− 1

)
,

1Taken element-wise.
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we need to prove that S2
p−1S2−S2

p ≥ 0. It is known that S2
k ≥ Sk−1Sk+1 for

1 ≤ k ≤ p− 1 (Theorem 1, p. 324 in [1]), and Sp ≤ SkSp−k for 1 ≤ k ≤ p− 1
(Corollary 2(c), p. 326 in [1]). Using these inequalities, we get

S2
p−1S2 − S2

p ≥ Sp−2SpS2 − S2
p = Sp (Sp−2S2 − Sp) ≥ 0.

Similarly,

1′x−11′x− p2 = p2
(
S1Sp−1

Sp

− 1

)
= p2

S1Sp−1 − Sp

Sp

≥ 0.

Thus, both terms are non-negative and the result holds.
b) Let us now consider the case θ1 ≥ 0, θ2 < 0. According to (3), Σ is

p.s.d. for θ2 < 0 if and only if θ1 ≥ |θ2|1′ diag
(
x
−1
)
1 = |θ2|1′x−1. Since

r2(x) =
2θ21

(n− r(X))p2(p− 1)2 (1′x−1)2

[(
1′
x
−1
)2 ((

1′
x
)2 − x

′
x

)

− p3(p− 1)− |θ2|1′
x
−1

θ1
2(p − 1)2

(
1′x−11′x− p2

)]

and the fraction |θ2|1′
x
−1

θ1
≤ 1 can be arbitrarily close to 1, it is clear that

r2(x) ≥ 0 if and only if
(
1′
x
−1
)2 ((

1′
x
)2 − x

′
x

)
− p3(p− 1)− 2(p − 1)2

(
1′x−11′x− p2

)
≥ 0 .

Thus, we need to prove that
(
1′x−1

)2 ((
1′x
)2 − x

′
x

)
+p2(p−1)(p−2)−2(p−1)21′x−11′x ≥ 0, x > 0.

It is easy to verify that the left-hand side of the above inequality is equal to
0 for p = 2. That means that the non-negativity of r2(x) is equivalent to
the positive-semidefiniteness of Σ. Thus, the inequality holds for p = 2.

Now take p > 2. The desired inequality is of the form

p3(p− 1)
S2
p−1S2

S2
p

+ p2(p− 1)(p − 2)− 2p(p − 1)2
Sp−1S1

Sp

≥ 0, x > 0 ,

which is equivalent to

p2S2
p−1S2 + p(p − 2)S2

p − 2(p − 1)Sp−1S1Sp ≥ 0, x > 0 .

Since Corollary 2(a) on page 326 in [1] implies that S2Sp−1 ≥ S1Sp for p > 2,
and the left-hand side of the previous inequality can be written in the form

p2Sp−1 (Sp−1S2 − S1Sp) + p(p− 2)S2
p +

[
(p− 1)2 + 1

]
Sp−1S1Sp ,

the non-negativity of all three terms for all p > 2 is now obvious. �

As a consequence, the YW-estimator of θ2 is always at least as good as
Z-estimator. It is easy to verify that also here r2(x) attains zero values only
on M = {x = c1; c > 0}.
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3.1.1. A special case. We can also be interested in the question, how big
can be the differences r1(x) and r2(x). Let us investigate it on a simple
special case of the above model. Let

x = (a, . . . , a︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
p−k times

)′, 1 ≤ k < p.

It means that the variance matrix Σ contains diagonal elements θ1a+θ2 and
θ2, and all off-diagonal elements are θ2. Formulas (4) and (5) give after some
algebra

r1(x) = r1(a) =
2k(p − k)(p − 2)θ21

(n− r(X))(p − 1)2(ka+ p− k)2
(a− 1)2

and

r2(x) = r2(a) =
2kθ1

(n− r(X)) [p(p− 1) [(k − p)a− k]]2

{
(p− k)2(k − 1)θ1a

4

+ 2(p − k)
[
θ1
[
(p − k)2 + k(k − 1)

]
+ θ2(p − k)(p− 1)2

]
a3

+
[
θ1
[
p2(3− 4p) + kp(10p − 12k − 3) + 6k3

]

−2θ2(p− 1)2(2p2 − 5kp+ 3k2)
]
a2

+ 2
[
θ1(p − k)

[
(p − k)2 − (p− k) + k2

]
+ θ2(p− 1)2

[
(p− 2k)2 − k2

]]
a

+ k(p− k)
[
θ1(p− k − 1) + 2θ2(p− 1)2

]}
.

We see that function r1(a) has one zero point a = 1. It is because in that
case the model turns into usual uniform correlation structure model with
θ1 = σ2(1 − ̺) and θ2 = σ2̺, so that Z-estimators and YW-estimators are
the same. We can see a typical behaviour of r1(a) in Figure 1. Let us notice
that this difference is bounded from above, since

lim
a→∞

r1(a) =
2(p − k)(p− 2)θ21

(n− r(X))k(p − 1)2
.
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Figure 1: behaviour of function r1(a)

(with detail of neighbourhood of 1).
Figure 2: behaviour of function r2(a).
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Also function r2(a) has one zero point a = 1 on the interval 〈0,∞). Its
typical shape is depicted on Figure 2. In this case lim

a→∞
r2(a) = ∞, so that

the difference is not bounded. Thus, the difference in precision can be much
bigger in the case of θ2.

If θ1 ≥ 0 and θ2 < 0, then condition (3) turns into θ1 > |θ2|(p − k), and

the range of a is restricted to a ∈
〈
k (θ1/|θ2| − p+ k)−1 ,∞

)
.

Some other special cases were investigated by Rusnačko in [7].

3.2. The GUCS model with G = I and non-constant w. Let us now
consider the GUCS model with G = Ip and any w such that w′w = 1. Let
us denote w0 = 1′w. Since Tr(G) = 1′G1 = 1′1 = p, it is easy to get the
relations

Tr (Σ) = pθ1 + θ2, Tr
(
Σ2
)
= pθ21 + 2θ1θ2 + θ22,

1′Σ1 = pθ1 + w2
0θ2, 1′Σ21 = pθ21 + 2w2

0θ1θ2 + w2
0θ

2
2.

Also, it holds

w′G−1w = w′w = 1, w′G−1ΣG−1w = w′Σw = θ1 + θ2,

Tr
(
G−1ΣG−1Σ

)
= Tr

(
Σ2
)
,

w′G−1ΣG−1ΣG−1w = w′Σ2w = θ21 + 2θ1θ2 + θ22 = (θ1 + θ2)
2 .

Then, after some algebra we get

r1(w) = r2(w) =
2
(
p− w2

0

) [
p
(
p− 2 +w2

0

)
θ21 + 2(p − 1)w2

0θ1θ2
]

(p− 1)(n − r(X))
(
w2
0 − 1

)2 .

Lemma 3.3. Under the above assumptions, it holds r1(w) = r2(w) ≥ 0
for all w and for all admissible values of θ1, θ2.

Proof. Since p ≥ 2, the denominator is clearly positive if and only if n > r(X)
and w0 6= ±1. Hölder’s inequality gives w2

0 = (w′1)2 ≤ w′w ·1′1 = p, so that
the first term of the numerator is also non-negative.

If both θ1, θ2 ≥ 0, then also the second term of the numerator is clearly
non-negative for any p ≥ 2, and r1(w) = r2(w) ≥ 0.

If θ1 ≥ 0 and θ2 < 0, then (3) with w′w = 1 implies θ1 ≥ |θ2|. Thus we
get

p
(
p− 2 + w2

0

)
θ21 − 2(p − 1)w2

0θ1 |θ2| ≥
≥
[
p
(
p− 2 + w2

0

)
− 2(p − 1)w2

0

]
θ21 = (p− 2)(p − w2

0)θ
2
1 ≥ 0, p ≥ 2.

It has to be noted that limw2

0
→1 r1(w) = +∞, so that this possible compli-

cation does not threaten the non-negativity. �

We can conclude that also in this case YW-estimators are always better
than Z-estimators.
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3.2.1. A special case. Similarly to the previous subsection, let us consider
a special case given by

w =
1√

kb2 + p− k
(b, . . . , b︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
p−k times

)′, 1 ≤ k < p.

In this case the variance matrix Σ contains two types of diagonal elements,
variances θ1 + θ2b

2 and θ1 + θ2, and three types of off-diagonal elements,
covariances θ2b

2, θ2b, and θ2. We can call such structure block-wise uniform.
Note that b can be negative.

As stated in Section 3, for θ1, θ2 ≥ 0, matrix Σ is positive semi-definite
for any value of b. In the case θ1 ≥ 0 and θ2 < 0, the condition for semi-
definiteness of matrix Σ is θ1 ≥ |θ2|. It is easy to verify that, for 1 ≤ k ≤ p
and b ∈ R,

|b|√
kb2 + p− k

< lim
b→±∞

|b|√
kb2 + p− k

=
1√
k
.

Then

w0(b) = 1′w =
kb+ p− k√
kb2 + p− k

assumes values from (−
√
k; +

√
p〉, and it holds w2

0(b) = 1 in one or two
points. This causes that Z-estimators are not defined at some points, having
zero in the denominator. It is another reason why we have to recommend
using YW-estimators.

We show a typical behaviour of function r1(b) (= r2(b)) for some specific
values of parameters in the following figures.
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Figure 3: function r1(b) with one

discontinuity.

-10 -5 0 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: function r1(b) with two

discontinuities.

We see that the difference can grow to infinity with increasing value of
|b|, but also can asymptotically remain low. More typical is the second case,
when the difference is asymptotically constant.
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4. Conclusions

We have compared ML-, Z-, and YW-estimators in the growth curve
model with GUC structure. We have showed that MLEs and YW-estimators
are similar, but use of θ̂ML

2 is dangerous in small samples, since both mean
and MSE of it depend not only on θ2 but also on θ1.

We have proved that in the model with positive definite diagonal matrix G
and w = 1 or G = I and arbitrary w, YW-estimators of variance parameters
are always better than Z-estimators. YW-estimators typically have also
much smaller variance than Z-estimators.

Moreover, Z-estimators suffer of problem of not being defined in some
situations. As a result, we have to recommend using YW-estimators as a
good small-sample alternative to MLEs. However, when matrixG is singular,
the YW-estimators are not defined and closed form of MLEs is not known.
Z-estimators, if they exist, can be considered as a reasonable alternative in
such a case.

It has to be noted that our results can also be applied to standard multi-
variate regression model (i.e., regression model with multivariate responses)
with the GUCS, since the Z matrix is not used for the variance components
estimation.
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