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Coefficient inequality for transforms of certain
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Abstract. The objective of this paper is to obtain the best possible
sharp upper bound for the second Hankel functional associated with the

kth root transform
[
f(zk)

]1/k
of normalized analytic function f(z) when

it belongs to certain subclass of analytic functions, defined on the open
unit disc in the complex plane using Toeplitz determinants.

1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

defined in the open unit disc E = {z : |z| < 1}. Let S be the subclass of
A consisting of univalent functions. In 1985, Louis de Branges de Bourcia
[2] proved the Bieberbach conjecture, i.e., for an univalent function its nth

coefficient is bounded by n. The bounds for the coefficients of these func-
tions give the information about their geometric properties. In particular,
the growth and distortion properties of a normalized univalent function are
determined by the bound of its second coefficient. The kth root transform
for the function f given in (1.1) is defined as

F (z) :=
[
f(zk)

] 1
k

= z +
∞∑
n=1

bkn+1z
kn+1. (1.2)
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Now, we introduce the Hankel determinant for the kth root transform for
the function f given in (1.1), for q, n, k ∈ N = {1, 2, . . . }, defined as

|Hq(n)|
1
k =

bkn bkn+1 · · · bk(n+q−2)+1

bkn+1 bk(n+1)+1 · · · bk(n+q−1)+1
...

...
...

...
bk(n+q−2)+1 bk(n+q−1)+1 · · · bk[n+2(q−1)−1]+1

.

In particular, for k = 1 the above determinant reduces to the Hankel
determinant defined by Pommerenke [9] for the function f given in (1.1), and
this determinant has been investigated by several authors in the literature.
In particular, for q = 2, n = 1, bk = 1 and q = 2, n = 2, bk = 1, the Hankel
determinant simplifies, respectively, to

|H2(1)|
1
k =

bk bk+1

bk+1 b2k+1
= b2k+1 − b2k+1

and

|H2(2)|
1
k =

b2k b2k+1

b2k+1 b3k+1
= b2kb3k+1 − b22k+1.

For a family T of functions in S, the more general problem of finding sharp
estimates for the functional |a3− µa22| (µ ∈ R or µ ∈ C) is popularly known
as the Fekete–Szegö problem for T . Ali et al. [1] obtained sharp bounds for
the Fekete–Szegö functional denoted by |b2k+1 − µb2k+1| associated with the

kth root transform
[
f(zk)

]1/k
of the function given in (1.1), belonging to cer-

tain subclasses of S. We refer to |H2(2)|1/k as the second Hankel determinant
for the kth root transform associated with the function f. For our discus-
sion in this paper, we consider the Hankel determinant given by |H2(2)|1/k.
Motivated by the results obtained by Ali et al. [1], we obtain sharp upper
bound to the functional |bk+1b3k+1− b22k+1| for the kth root transform of the
function f when it belongs to certain subclass denoted by Q(α, β, γ) of S,
defined as follows.

Definition 1.1. A function f ∈ A is said to be in the class Q(α, β, γ)
with α, β > 0 and 0 ≤ γ < α+ β ≤ 1, if it satisfies the condition

Re

{
α
f(z)

z
+ βf ′(z)

}
≥ γ, z ∈ E.

This class was considered and studied by Wang et al. [12].

2. Preliminary results

Let P denote the class of functions

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +
∞∑
n=1

cnz
n (2.1)
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which are regular in the open unit disc E and satisfy Re p(z) > 0 for any
z ∈ E. Here p(z) is called the Carathéodory function [3].

Lemma 2.1 (see [9, 10]). If p ∈ P, then |ck| ≤ 2 for each k ≥ 1, the
inequality is sharp for the function p0(z) = (1 + z)/(1− z).

Lemma 2.2 (see [4]). The power series for p(z) given in (2.1) converges
in the open unit disc E to a function in P if and only if the Toeplitz deter-
minants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n ∈ N, c−k = ck,

are all non-negative. They are strictly positive except p(z)=
∑m

k=1 ρkp0(e
itkz)

with
∑m

k=1 ρk = 1, tk real, and tk 6= tj for k 6= j. In this case, Dn > 0 for
n < (m− 1) and Dn

.
= 0 for n ≥ m.

This necessary and sufficient condition found in [4] is due to Carathéodory
and Toeplitz. We may assume without restriction that c1 > 0. On using
Lemma 2.2 for n = 2 and n = 3, we have, respectively,

2c2 = c21 + y(4− c21) (2.2)

and

4c3 = c31 + 2c1(4− c21)y − c1(4− c21)y2 + 2(4− c21)(1− |y|2)ζ (2.3)

for some complex valued y with |y| ≤ 1 and for some complex valued
ζ with |ζ| ≤ 1. To obtain our result, we refer to the classical method initiated
by Libera and Z lotkiewicz [6], which has been used widely.

3. Main result

Theorem 3.1. If f given by (1.1) belongs to Q(α, β, γ) with α, β > 0 and
0 ≤ γ < α+ β ≤ 1), then∣∣bk+1b3k+1 − b22k+1

∣∣ ≤ [2(α+ β − γ)

k(α+ 3β)

]2
and the inequality is sharp.

Proof. Let f ∈ Q(α, β, γ). By virtue of Definition 1.1, there exists an
analytic function p ∈P in the open unit disc E with p(0) = 1 and Re p(z) >
0 such that

αf(z) + βzf ′(z)− γz
(α+ β − γ)z

= p(z). (3.1)
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Replacing f(z), f ′(z) and p(z) with their equivalent series expressions in the
relation (3.1), we have

α

{
z +

∞∑
n=2

anz
n

}
+ βz

{
1 +

∞∑
n=2

nanz
n−1

}
− γz

= (α+ β − γ)z

{
1 +

∞∑
n=1

cnz
n

}
.

Upon simplification, we obtain

(α+ 2β)a2 + (α+ 3β)a3z + (α+ 4β)a4z
2 + . . .

= (α+ β − γ)
(
c1 + c2z + c3z

2 + . . .
)
.

(3.2)

Equating the coefficients of like powers of z0, z1 and z2, respectively, on both
sides of (3.2), we get

a2 =
α+ β − γ
α+ 2β

c1, a3 =
α+ β − γ
α+ 3β

c2, a4 =
α+ β − γ
α+ 4β

c3. (3.3)

For a function f given by (1.1), a computation shows that

[
f(zk)

] 1
k

=

[
zk +

∞∑
n=2

anz
nk

] 1
k

= z +
1

k
a2z

k+1 +
{1

k
a3 +

1− k
2k2

a22

}
z2k+1

+
{1

k
a4 +

1− k
k2

a2a3 +
(1− k)(1− 2k)

6k3
a32

}
z3k+1 + . . . .

(3.4)

The expressions (1.2) and (3.4) yield

bk+1 =
1

k
a2, b2k+1 =

1

k
a3 +

1− k
2k2

a22,

b3k+1 =
1

k
a4 +

1− k
k2

a2a3 +
(1− k)(1− 2k)

6k3
a32.

(3.5)

Simplifying the relations (3.3) and (3.5), we get

bk+1 =
α+ β − γ
k(α+ 2β)

c1,

b2k+1 =
α+ β − γ

k

[
1

(α+ 3β)
c2 +

(1− k)(α+ β − γ)

2k(α+ 2β)2
c21

]
,

b3k+1 =
α+ β − γ

k

[
1

(α+ 4β)
c3 +

(1− k)(α+ β − γ)

k(α+ 2β)(α+ 3β)
c1c2

+
(1− k)(1− 2k)(α+ β − γ)2

6k2(α+ 2β)3
c31

]
.

(3.6)
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Substituting the values of bk+1, b2k+1 and b3k+1 from (3.6) in the second
Hankel determinant to the kth transform for the function f ∈ Q(α, β, γ),
which simplifies to give

|bk+1b3k+1 − b22k+1| =
(α+ β − γ)2

12k4(α+ 2β)4(α+ 3β)2(α+ 4β)

×
∣∣∣12k2(α+ β)3(α+ 3β)2c1c3 − 12k2(α+ 2β)4(α+ 4β)c22

+ (k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β)c41

∣∣∣.
(3.7)

The above expression is equivalent to

|bk+1b3k+1 − b22k+1| = t
∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ , (3.8)

where

t =
(α+ β − γ)2

12k4(α+ 2β)4(α+ 3β)2(α+ 4β)
(3.9)

and
d1 = 12k2(α+ 2β)3(α+ 3β)2,

d2 = 12k2(α+ 2β)4(α+ 4β),

d3 = (k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β).

(3.10)

Substituting the values of c2 and c3 from (2.2) and (2.3), respectively, from
Lemma 2.2 on the right-hand side of (3.8), we have∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ =
∣∣1
4
d1c1{c31 + 2c1(4− c21)y − c1(4− c21)y2

+ 2(4− c21)(1− |y|2)ζ}+
1

4
d2{c21 + y(4− c21)}2 + d3c

4
1

∣∣.
Using the triangle inequality and the fact that |ζ| < 1, after simplifying we
get

4
∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ ∣∣(d1 + d2 + 4d3)c
4
1

+2d1c1(4− c21) + 2(d1 + d2)c
2
1(4− c21)|y|

−
{

(d1 + d2)c
2
1 + 2d1c1 − 4d2

}
(4− c21)|y|2

∣∣ . (3.11)

Using the values of d1, d2 and d3 from (3.10), we can write

(d1 + d2)c
2
1 + 2d1c1 − 4d2 = 12k2(α+ 2β)3

×
{
β2c21 + 2(α+ 3β)2c1 + 4(α+ 2β)(α+ 4β)

}
.

(3.12)

Consider

β2c21 + 2(α+ 3β)2c1 + 4(α+ 2β)(α+ 4β)

= β2

{c1 +
(α+ 3β)2

β2

}2

−

{√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

}2

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= β2

[
c1 +

{
(α+ 3β)2

β2
+

√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

}]

×

[
c1 +

{
(α+ 3β)2

β2
−

√
α4 + 49β4 + 50α2β2 + 84αβ3 + 12α3β

β4

}]
.

Since c1 ∈ [0, 2], noting that (c1 +a)(c1 +b) ≥ (c1−a)(c1−b), where a, b ≥ 0
on the right-hand side of above expression, we have

β2c21 + 2(α+ 3β)2c1 + 4(α+ 2β)(α+ 4β)

≥ β2c21 − 2(α+ 3β)2c1 + 4(α+ 2β)(α+ 4β).
(3.13)

From the relations (3.12) and (3.13), we get

−
{

(d1 + d2)c
2
1 + 2d1c1 − 4d2

}
≤ −12k2(α+ 2β)3

×
{
β2c21 − 2(α+ 3β)2c1 + 4(α+ 2β)(α+ 4β)

}
.

(3.14)

Substituting the calculated values from (3.10) and (3.14) on the right-hand
side of (3.11), we have

4|d1c1c3 + d2c
2
2 + d3c

4
1| ≤

∣∣∣[12k2(α+ 2β)3β2

− 4(k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β)
]
c41

+ 24k2(α+ 2β)3
{

(α+ 3β)2c1 + β2c21|y|
}

(4− c21)
− 12k2(α+ 2β)3

{
β2c21 − 2(α+ 3β)2c1

+4(α+ 2β)(α+ 4β)} (4− c21)|y|2
∣∣∣.

Choosing c1 = c ∈ [0, 2], applying the triangle inequality and replacing |y|
by µ on the right-hand side of the above inequality, we obtain

4|d1c1c3 + d2c
2
2 + d3c

4
1| ≤ F (c, µ), (3.15)

where

F (c, µ) =
{

12k2(α+ 2β)3β2

− 4(k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β)
}
c4

+ 24k2(α+ 2β)3
{

(α+ 3β)2c+ β2c2µ
}

(4− c2)
+ 12k2(α+ 2β)3

{
β2c2 − 2(α+ 3β)2c

+4(α+ 2β)(α+ 4β)} (4− c2)µ2.

(3.16)
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Next, we maximize the function F (c, µ) on the closed region [0, 2] × [0, 1].
Differentiating F (c, µ) in (3.16) partially with respect to µ, we get

∂F

∂µ
= 24k2(α+ 2β)3

[
β2c2

+
{
β2c2 − 2(α+ 3β)2c+ 4(α+ 2β)(α+ 4β)

}
µ
]

(4− c2).
(3.17)

For 0 < µ < 1, for fixed c with 0 < c < 2 and α, β > 0, from (3.17) we
observe that ∂F

∂µ > 0. Consequently, F (c, µ) becomes an increasing function

of µ and, hence, F (c, µ) cannot have a maximum value at any point in the
interior of the closed region [0, 2] × [0, 1]. Further, for fixed c ∈ [0, 2], we
have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.18)

Simplifying the relations (3.16) and (3.18), we obtain

G(c) = −4
{

(k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β)

+ 6k2β2(α+ 2β)3
}
c4 − 48k2(α+ 2β)3(α2 + 6αβ + 6β2)c2

+ 192k2(α+ 2β)4(α+ 4β),

(3.19)

and, consequently,

G′(c) = −16
{

(k2 − 1)(α+ β − γ)2(α+ 3β)2(α+ 4β)

+ 6k2β2(α+ 2β)3
}
c3 − 96k2(α+ 2β)3(α2 + 6αβ + 6β2)c.

(3.20)

From the expression (3.20), we observe that G′(c) ≤ 0 for all values of
c ∈ [0, 2] and for fixed values of α, β > 0, where 0 ≤ γ < α + β ≤ 1.
Therefore, G(c) becomes a monotonically decreasing function of c in the
interval [0, 2] and hence it attains the maximum value at c = 0 only. From
(3.19), the maximum value of G(c) is given by

max
0≤c≤2

G(c) = G(0) = 192k2(α+ 2β)4(α+ 4β). (3.21)

Considering, only the maximum value of G(c) at c = 0, from the relations
(3.15) and (3.21), after simplifying, we get

|d1c1c3 + d2c
2
2 + d3c

4
1| ≤ 48k2(α+ 2β)4(α+ 4β). (3.22)

Simplifying the expressions (3.8) and (3.22) together with (3.9), we obtain

|bk+1b3k+1 − b22k+1| ≤
[

2(α+ β − γ)

k(α+ 3β)

]2
. (3.23)

If we set c1 = c = 0 and select y = 1 in (2.2) and (2.3), we find that
c2 = 2 and c3 = 0. Using these values in (3.22), we observe that equality is
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attained, which shows that our result is sharp. For these values, we derive
the extremal function from (2.1), given by

α
f(z)

z
+ βf ′(z)− γ =

αf(z) + βzf ′(z)− γz
(α+ β − γ)z

=1 + 2z2 + 2z4 − · · · = 1− z2

1 + z2
.

This completes the proof of our theorem. �

Remark 3.2. For the choice of α = (1− σ), β = σ and γ = 0, we get

(α, β, γ) = ((1− σ), σ, 0),

for which, from (3.23), upon simplification, we obtain

|bk+1b3k+1 − b22k+1| ≤
4

(1 + 2σ)2
, 0 ≤ σ ≤ 1.

This result is a special case of that of Murugusundaramoorthy and Magesh
[7].

Remark 3.3. Selecting k = 1, α = 0, β = 1 and γ = 0 in (3.23), we
obtain

|b2b4 − b23| ≤
4

9
.

This result coincides with that of Janteng et al. [5].

Remark 3.4. Choosing k = 1 in (3.23), we obtain

|b2b4 − b23| ≤
4(α+ β − γ)2

(α+ 3β)2
.

This result coincides with that of Vamshee Krishna and RamReddy [11].
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