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Tests of exponentiality against some parametric
over/under-dispersed life time models

Rajibul Mian and Sudhir Paul

Abstract. We develop tests of goodness of fit of the exponential model
against some over/under dispersion family of distributions. In particular,
we develop 3 score test statistics and 3 likelihood ratio statistics. These
are (S1, L1), (S2, L2), and (S3, L3) based on a general over-dispersed
family of distributions, two specific over/under dispersed exponential
models, namely, the gamma and the Weibull distributions, respectively.
A simulation study shows that the statistics S3 and L3 have best overall
performance, in terms of both, level and power. However, the statistic
L3 can be liberal in some instances and it needs the maximum likelihood
estimates of the parameters of the Weibull distribution as opposed to the
statistic S3 which is very simple to use. So, our recommendation is to
use the statistic S3 to test the fit of an exponential distribution over any
over/under-dispersed exponential distribution.

1. Introduction

There have been numerous studies of over-dispersion in discrete data (see
[3, 9, 13, 18, 20]) As far as we can ascertain, very little work has been done on
over-dispersed continuous data. The one-parameter exponential distribution
has been extensively used to model data that arise in physical sciences and
engineering applications. Exponential distribution has been vastly used in
reliability theory and reliability engineering because of its memoryless prop-
erty, which is an appropriate model for the constant hazard rate portion
of the bathtub curve. In case of modelling the waiting time, exponential
distribution is a good choice. It can be used to model the waiting time of
cars exceeding certain speed limit within an interval, time for a radioactive
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particle to decay, waiting time for the next phone call to come. The heights
of different molecules can also approximately follow exponential distribu-
tion, if the gas and pressure observed at a certain temperature and uniform
gravitational field respectively. In exponential network, node’s connectiv-
ity distribution follows exponential. Moreover, if the concerned variable is
monthly or yearly maximum value of daily or weekly rainfall or river dis-
charge volumes, in that case the research of these extreme cases, exponential
distribution can be an appropriate choice. This distribution is a special case
of a richer family of distributions, such as the Pareto distribution, the gamma
distribution and the Weibull distribution, all of which are two-parameter
distributions and can be expressed as a family of over-dispersed exponential
models. The purpose of this paper is to develop tests of goodness of fit of
the exponential model against the over-dispersed family of distributions. In
particular, we develop score and likelihood ratio statistics to test goodness
of fit of the exponential model against (i) general over-dispersion by using
a over-dispersed generalized linear model proposed by [6] , (ii) against a
over-dispersed model given by the two parameter gamma distribution, and
(iii) against a over-dispersed model given by the Weibull distribution. A
performance study in terms of level and power of these statistics, along with
some 50:50 mixture counterparts is conducted.

The score test (see [14]) is a special case of the more general C(α) test (see
[11]) in which the nuisance parameters are replaced by maximum likelihood

estimates which are
√
N (N is the number of observations used in estimating

the parameters) consistent estimates. The score test is particularly appealing
as it requires estimates of the parameters only under the null hypothesis, and
often produces a statistic which is simple to calculate. Potential drawbacks
of the likelihood ratio and Wald tests include the fact that both require
estimates of the parameters under the alternative hypotheses and often show
liberal or conservative behaviour (see, for example, [2, 12, 19, 8]).

In Section 2, some two-parameter distributions are developed as over-
dispersed exponential distributions. In Section 3, we develop the score and
the likelihood ratio tests. A simulation study is conducted in Section4. Some
examples are analyzed in Section 5 and a discussion follows in Section 6.

2. Some over-dispersed exponential distributions

2.1. The Pareto distribution. An over-dispersed exponential distribu-
tion can be obtained as a compound distribution by mixing the exponential
distribution with a gamma distribution for the exponential parameter ρ.
Suppose that each individual survival time is exponentially distributed with
rate parameter ρ as

f(y|ρ) = ρe−ρy. (1)
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Suppose that the rate parameter ρ varies randomly between individuals ac-
cording to a gamma ( ρ0, k) distribution with mean ρ0 and index k having
the density

f(ρ) = (k/ρ0)(kρ/ρ0)
k−1e−kρ/ρ0/Γ(k).

The unconditional distribution of y then is a Pareto distribution (see [7])

f(y) =
k(k/ρ0)

k

(y + k/ρ0)k+1
. (2)

Then, the unconditional mean of y is

E(y) = E(E(y|ρ)) =
ρ0/k

k − 1
= ψ

and the unconditional variance for y is

Var(y)=E(Var(y|ρ))+Var(E(y|ρ))=

(
ρ0/k

k − 1

)2( k

k − 2

)
=ψ2

(
1

1− 2/k

)
.

For practical use a more convenient form of the distribution is obtained by
using c = 1/k in which case the above density can be written as

f(y) = ρ0(1 + cρ0y)−(1+c
−1) (3)

with modified form of Var(y) = ψ2(1/(1 − 2c)). Clearly this is an over-
dispersion distribution relative to the exponential distribution. This distri-
bution tends to the exponential distribution as k →∞ or c→ 0.

2.2. A general over-dispersed exponential family of distributions.
Suppose that for given ρ∗, y has the exponential family model with proba-
bility density function

f(y|ρ∗) = ρ∗e−ρ
∗y,

where ρ∗ = νρ with E(ν) = 1 and Var(ν) = τ . This allows modeling extra-
exponential variation. Then following [6] and [5] we obtain the mixed model
by expanding f(y, ρ∗) in a Taylor series at ρ and taking expectations. The
resulting over-dispersed exponential model can be written as

f2(y; ρ, τ) = f(y; ρ)

{
1 +

∞∑
r=2

αr
r!
Dr(y; ρ)

}
,

where

Dr(y, ρ) =

{
∂(r)

∂ρ∗(r)
f(y; ρ∗)|ρ∗=ρ

}
{f(y; ρ)}−1

and αr = E(ρ∗ − ρ)r. Then it can be seen that

E(ρ∗) = ρ, Var(ρ∗) = τρ2 > 0.



210 RAJIBUL MIAN AND SUDHIR PAUL

Further, for small τ , we assume that αr = o(τ) for r ≥ 3 and

f2(y; ρ, τ) = f(y; ρ)
{

1 +
α2

2!
D2(y; ρ)

}
= f(y, ρ)

{
1 +

τ

2
yρ(yρ− 2)

}
, (4)

where D2(y; ρ) = (yρ − 2)yρ−1. It can be seen that f2(y; ρ, τ) in equation
(4) is a valid probability density function

E(Y ) = (1 + τ)/ρ = θ(1 + τ),

where θ = 1/ρ, and

Var(Y ) = θ2(1 + 4τ − τ2).
Obviously, the over-dispersed exponential model (4) reduces to the exponen-
tial model (1) for τ = 0.

2.3. The gamma distribution. The two-parameter gamma (ρ, k) distri-
bution with rate parameter ρ and shape parameter k has the density function
(p.d.f.)

f(y) = ρ(ρy)k−1e−ρy/Γ(k). (5)

It is easy to see that, for k = 1, the gamma (ρ, k) distribution reduces to
the exponential (ρ) distribution. For further development it is convenient to
reparameterize as θ = 1/ρ and c = 1/k. Then, it can be seen that

E(Y ) = kθ

and

Var(Y ) = kθ2 = θ2/c.

Thus, c = 1 corresponds to the exponential distribution with mean θ, c > 1
or k < 1 corresponds to an under-dispersed exponential model and c < 1 or
k > 1 corresponds to an over-dispersed exponential model.

2.4. The Weibull distribution. The two-parameter Weibull distribution
with scale parameter ρ and shape parameter k has p.d.f.

f(y) = kρ(ρy)k−1exp[−(ρt)k]. (6)

Note for k = 1, the Weibull distribution becomes an exponential distribution
with rate parameter ρ. Hence we are interested in testing the null hypothesis
H0 : k = 1. As in Section 2.1 it will be more convenient to repameterize as
θ = 1/ρ and c = 1/k. Then, it can be shown that

E(Y ) = θΓ(1 + c) = µ and Var(Y ) = µ2[(Γ(1 + 2c)/Γ2(1 + c))− 1].

Thus, c = 1 corresponds to the exponential distribution with mean θ, c > 1
or k < 1 corresponds to an over-dispersed exponential model and c < 1 or
k > 1 corresponds to an under-dispersed exponential model.
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3. The tests

3.1. Test for exponentiality against a general over-dispersed expo-
nential family of distributions. The score test. A score test using the
Pareto density of the forms in equation (2) or (3) runs into difficulty as the
likelihood score evaluated as k → ∞ or c → 0 either becomes independent
of the data or becomes unbounded. However, a score test using a general
over-dispersed exponential model exists.

Let Yi, i = 1, . . . , n, be a sample of independent observations from (4) with
1/ρi = θi a function of p×1 vector of covariates Xi and a vector of regression
parameters β; that is, θi = θi(Xi;β), i = 1, . . . , n. The log-likelihood can be
written as

l(θ, τ ; y) =

n∑
i=1

[
− log θi −

yi
θi

+ log

{
1 +

τ

2

yi
θi

(
yi
θi
− 2

)}]
.

The score test statistic for testing the hypothesis H0 : τ = 0 against the
alternative HA : τ > 0 is based on the score function evaluated under the
null hypothesis, namely

Ψ =
∂l

∂τ

∣∣∣∣
τ=0

=
1

2

n∑
i=1

1

θ2i

{
(yi − θi)2 − θ2i

}
.

Now, define the expected mixed second order partial derivative matrices

I11=E

(
− ∂2l

∂τ∂τ ′

∣∣∣∣
τ=0

)
, I12=E

(
− ∂2l

∂τ∂β

∣∣∣∣
τ=0

)
, I22=E

(
− ∂2l

∂β∂β′

∣∣∣∣
τ=0

)
.

Then, it can be seen that the variance of Ψ is V 2 = I11−I ′12I
−1
22 I12. Further,

algebra shows that I11 = 2n, and the jth element of I12 and the (j, j
′
)th

element of I22 are equal to

n∑
i=1

1

θi

∂θi
∂βj

and
n∑
i=1

1

θ2i

∂θi
∂βj

∂θi
∂βj′

,

respectively. Then, under some conditions for the application of the central
limit theorem to the score component Ψ and the regularity conditions of
maximum likelihood estimates, the score test statistic for testing H0 : τ = 0
is

S1 = Ψ̂/V̂ ,

which, asymptotically, as n→∞, has a standard normal distribution, where,
Ψ̂ = Ψ(β̂), V̂ = V (β̂) and β̂ is the maximum likelihood estimate of β under
the null hypothesis. Note, the maximum likelihood estimates of the regres-
sion parameters βj , j = 1, . . . , p, are obtained by solving the p estimating
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equations
n∑
i=1

(yi − θi)
1

θ2i

∂θi
∂βj

= 0. (7)

Thus, the maximum likelihood estimate of θi is θ̂i = θi(Xi; β̂). For the
link function θi = X ′iβ, where Xi is a p × 1 vector of regression variables,
the jth element of I12 and the (j, j′)th element of I22 are, respectively,

n∑
i=1

1

θ̂i
X ′ij and

n∑
i=1

1

θ̂i
2X
′
ijXij′ .

When no covariate is involved, θi = θ, maximum likelihood estimate of θ is ȳ
and the score test statistic for testing H0 : τ = 0 against any over-dispersed
family of exponential distributions reduces to

S1 =
1

2
√

2n

(
n∑
i=1

y2i
ȳ2
− 2n

)
.

The likelihood ratio test. The likelihood ratio test (LRT) statistic can be
written as

L1 = 2(l(θ̃, τ̃ ; y)|HA − l(θ̂, τ̂ ; y)|H0)

= 2(l(θ̃, τ̃ ; y)− l(θ̂, 0, ; y)),

which has, asymptotically, a χ2
(1) distribution, as n → ∞, where θ̃i =

θi(Xi; β̃), β̃j , j = 1, . . . , p, and τ̃ are obtained by solving the estimating
equations

∂l

∂βj
=

n∑
i=1

( 1
θi

)(yiθi − 1)[1 + τ
2 (yiθi )(

yi
θi
− 4)]

1 + τ
2 (yiθi )(

yi
θi
− 2)

∂θi
∂βj

,

∂l

∂τ
=

n∑
i=1

1
2(yiθi )(

yi
θi
− 2)

1 + τ
2 (yiθi )(

yi
θi
− 2)

simultaneously.

3.2. Test of exponentiality against a gamma alternative. The score
test. Let Yi, i = 1, . . . , n, be a sample of independent observations from (5)
with

(Yi) = µi = kθi(Xi;β).

Our interest is to test H0 : k = 1 against all alternatives. Now, the log-
likelihood apart from a constant can be written as

l = −k
n∑
i=1

log θi + (k − 1)
n∑
i=1

log yi −
n∑
i=1

yi
θi
− n log(Γ(k)).
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Then, using this log-likelihood and a procedure similar to what was used in
Section 3.1 it can be shown that the score test statistic for testing H0 : k = 1
is

S2 = T̂ /V̂ ,

where

T̂ = −
n∑
i=1

log(θi(β̂)) +

n∑
i=1

log yi − nψ(1),

ψ(1) is the value of a digamma function ψ(k) =
∂

∂k
log(Γ(k)) under H0, and

V̂ 2 = V 2(β̂) with V 2 = I11 − I
′
12I
−1
22 I12 and I11 = nψ

′
(1). The expressions

for the jth element of I12 and the (j, j
′
)th element of I22 are the same as

those obtained in Section 3.1. Further, the estimating equations for the p
regression parameters here are the same as those given in equations (7).
When no covariate is involved we have

T̂ =
n∑
i=1

log(yi/ȳ)− nψ(1) =
n∑
i=1

log(yi/ȳ)− 0, 5772156649n

and V̂ =
√
nψ′(1) with

ψ
′
(1) =

∫ ∞
0

(t exp(−t))/(1− exp(−t))dt.

The likelihood ratio test. The LRT statistic can be written as

L2 = 2(l(θ̃, k̃; y)|HA − l(θ̂, k̂; y)|H0)

= 2(l(θ̃, k̃; y)− l(θ̂, 0; y)),

which has, asymptotically, a χ2
(1) distribution, as n → ∞, where θ̃i =

θi(Xi; β̃), β̃j , j = 1, . . . , p, and k̃ are obtained by solving simultaneously
the estimating equations

∂l

∂βj
=

n∑
i=1

(
yi
θ2i
− k

θi

)
∂θi
∂βj

,
∂l

∂k
=

n∑
i=1

(
log

yi
θi
− ψ(k)

)
,

where ψ is a digamma function.

3.3. Test of exponentiality against an Weibull alternative. The score
test. Let Y1, Y2, . . . , Yn be a random sample from an Weibull distribution (6).
Then the log-likelihood function apart from a constant can be written as

l = n log k − k
n∑
i=1

log θi + (k − 1)
n∑
i=1

log yi −
n∑
i=1

(yi/θi)
k .
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Here θi=θi(Xi;β) which connects the mean of datum y with possible co-
variates Xi and regression coefficients β. Now, using this log-likelihood func-
tion and a procedure similar to what was used in Section 3.1, it can be shown
that the score test statistic for testing H0 : k = 1 is

S3 = T̂ /V̂ ,

where

T̂ = n+
n∑
i=1

[(
1− yi

θ̂i

)
log

yi

θ̂i

]
, V̂ 2 = V 2(β̂)

with

V 2 = I11 − I
′
12I
−1
22 I12 and I11 = n+

n∑
i=1

yi

θ̂i

(
log

yi

θ̂i

)2

.

The jth element of I12 and the (j, j
′
)th element of I22 are, respectively,

n∑
i=1

(
θ̂i − yi − yi log

yi

θ̂i

)
1

θ̂i
2

∂θi
∂βj

and

n∑
i=1

2yi − θ̂i
θ̂i

3

∂θi
∂βj

∂θi
∂βj ′

.

Note that in order to avoid approximations to expected values here we have
used observed information matrix to obtain asymptotic variance of the like-
lihood score T. The maximum likelihood estimates of the regression param-
eters βj , j = 1, . . . , p, are the same as those obtained in equation (7). If
a linear link function θi = X ′iβ, where Xi is a p × 1 vector of regression
variables, is used, then the jth element of I12 and the (j, j′)th element of I22
are, respectively,

n∑
i=1

θ̂i − yi − yi log(yi/θ̂i)

θ̂i
2 X ′ij and

n∑
i=1

2yi − θ̂i
θ̂i

3 X ′ijXij′ .

In situations where there are no covariates, we have

T = n+

n∑
i=1

(
1− yi

ȳ

)
log

yi
ȳ
,

I11 = n+

n∑
i=1

yi
ȳ

(
log

yi
ȳ

)2

, I12 = 0,

and hence V =
√
I11. Thus the score statistic is

S3 =

(
n+

n∑
i=1

(
1− yi

ȳ

)
log

yi
ȳ

)/√√√√n+
n∑
i=1

yi
ȳ

(
log

yi
ȳ

)2

.

The statistic Uk0(vkk)
1/2 in [7] reduces to the statistic S3 after simplifications,

when there is no censoring or covariates.
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The likelihood ratio tests. The LRT statistic can be written as

L3 = 2(l(θ̃, k̃; y)|HA − l(θ̂, k̂; y)|H0)

= 2(l(θ̃, k̃; y)− l(θ̂, 0; y)),

which has, asymptotically, a χ2
(1) distribution, as n → ∞, where θ̃i =

θi(Xi; β̃), β̃j , j = 1, . . . , p, and k̃ are obtained by solving the estimating
equations

∂l

∂βj
=

n∑
i=1

(
k

θi

[
yi
θi

]k
− 1

)
∂θi
∂βj

,
∂l

∂k
=

n∑
i=1

(
1

k
+ log

yi
θi
−
[
yi
θi

]k
log

yi
θi

)
simultaneously.

4. Simulation

A simulation study was conducted to study the performance, in terms
of size and power of all the statistics. Note that in the case of the general
over-dispersion test we deal with H0 : τ = 0 against the alternative HA :
τ > 0. Thus, the value of the parameter under the null hypothesis is on the
boundary of the parameter space. The distribution of the likelihood ratio
test statistic and the score test then asymptotically have a 50 : 50 mixture of
χ2
0 and χ2

1 distributions. That is, the distribution of each of these statistics
is not χ2

1, but rather 1
2χ

2
1 + 1

2χ
2
0, i.e., a 50 : 50 mixture of a point mass at

zero and a chi square distribution with one degree of freedom. Note, point
mass at zero is zero. So, the distribution is 1

2χ
2
1. So, to get a α level test,

look up the 2α point of a χ2
1. See, for example, [15, 16, 17].

Thus, in the simulation study we consider S1, its 50 : 50 mixture counter-
part S1F , L1, its 50 : 50 mixture counterpart L1F , S2, L2, S3 and L3. For
studying level properties of these statistics we simulated samples from the
exponential distribution with mean µ = 1. For power studies we simulated
data from (a) the general over-dispersed exponential models, namely the
gamma mixture of the exponential (the Pareto distribution) model, and the
lognormal mixture of exponential model, (b) specific over-dispersed exponen-
tial models, namely, the gamma and the Weibull distributions. Empirical
level and power results for data simulated from the gamma mixture of the
exponential distribution, the lognormal mixture of exponential distribution,
the gamma distribution, and the Weibull distribution are given in Table 1,
Table 2, Table 3 and Table 4, respectively. In the simulation we consid-
ered nominal significant levels α = 0.01, α = 0.05 and α = 0.10. However,
comparative results for data simulated from all the above distributions are
similar for all the levels. So, in the tables we give results only for α = 0.05.

Note that, the lognormal mixture of exponential distribution is used to
generate over-dispersed data. Test statistics are applied to these over-disper-
sed data and their performances are checked to evaluate the robustness of
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the test statistics. Development of the test statistics based on the lognor-
mal mixture of exponential distribution is difficult at best and so far seems
infeasible and unnecessary, and hence was not considered in the study.

To do the simulation study, samples from the different distributions were
generated using “stats” and “actuar” packages of the statistical software “R
version 3.0.1”. For solving the simultaneous equations, we used function
“nleqslv()” of “nleqslv” package and “BBsolve()” function of “BB” package.

For power calculation, we computed absolute value of the test statistics
(|S|) and compared it with absolute value the quantiles (|Q|) calculated
from standard normal distribution based on α. We assign indicator 1 if
|S| ≥ |Q|, and 0 otherwise. The power of the test, in the simulation study,
is then obtained from the average of these indicators. We calculate power
for all test statistics under different values of dispersion parameter c. Thus,
the results in the column under c = 0 in Table 1 and Table 2 refer to the
empirical levels. However, the results in the column under c = 1 in Table 3
and Table 4 refer to the empirical levels. These levels are all the same as in
all cases data are generated from the exponential distribution.

First we compare level properties of all the statistics. All the statistics
are in general conservative. For small sample sizes (n < 50) the statistics
S1, S1F , L1 and L1F are all very conservative. The statistic S2 is very
conservative for all sample sizes. The levels of the statistics S3 and L3 are
closer to the nominal level as sample size increases. The performance of L3

is liberal in terms of level as sample size increases compared to S3.
For comparison of power among all the statistics, we find that in Table 1

and Table 2 power increases as the value of c increases from 0. However, in
Table 3 and Table 4 power increases as the value of c increases from 0 and
also increases as the value of c decreases from 0. In all cases power increases
as the sample size increases.

The statistics S3 and L3 have the best overall performance, in terms of
both, level and power. However, the statistic L3 can be liberal for large
sample sizes.

Based on the level and the power properties of the test statistics, we
recommend to use the statistic S3 to test the fit of an exponential distribution
over any over/under-dispersed exponential distribution.

5. Examples

5.1. Example 1. In an attempt to fit a generalized Pareto distribution [4]
used a set of fatique data originally reported by [1]. In [4] three different
estimation methods are applied and compared to this data. According to
their analysis they found that generalized Pareto distribution assumption is
appropriate for fatigue data. The data are given in Table 5 which refers to
lifetime (in hours) of Kevlar/Epoxy strand at a stress level 70%. For more
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details of the data, see [1]. We consider fatigue data as over-dispersed data
and use this data to test the fit of the exponential distribution over some of
the over-dispersed exponential models. For this data, the values of the test
statistics S3 and L3 with p-values in the parenthesis are 17.46 (0.0000) and
26.45 (0.0000) respectively. It can be seen that both these test statistics S3
and L3 decisively reject the hypothesis of fit of an exponential distribution
over an over-dispersed exponential model. These findings are in agreement
with the results of the simulation study, i.e., the statistics S3 and L3 have
best overall performance, in terms of both, level and power. Despite our
recommendation about S3 to test the exponentiality of the data, all devel-
oped score tests (S1, S2, and S3), as well as likelihood ratio tests (L1, L2,
and L3) will facilitate researchers to competently identify the distributional
assumption of the dispersed continuous data.

5.2. Example 2. The breakdown times data in Table 6 are from [10] .
The data refer to the results of a life test experiment in which specimens
of a type of electrical insulating fluid were subjected to different voltage
stresses. There were seven groups of specimens in the data set and specimens
were tested at voltages ranging from 26 to 38 kilovolts. We consider the
breakdown times as over/under-dispersed data and use only a part of these
data, namely, time to breakdown at stress level of 32 kilovolts, to test the
fit of the exponential distribution over some of the over/under-dispersed
exponential models. For this data the values of the test statistics, S3 and
L3, with p-values in the parenthesis, are 10.41 (0.0012) and 8.21 (0.0041).
Both these test statistics reject the fit of the exponential distribution in
favour of an over-dispersed exponential distribution.

6. Discussion

We have developed three score tests statistics S1, S2 and S3 and three
likelihood ratio statistics L1, L2 and L3 to test the fit of an exponential
distribution over some over/under-dispersed exponential models. The score
statistics S1, S2 and S3 are simple and easy to use. These statistics use
only the maximum likelihood estimates of the exponential distribution. The
score statistics S1 and S2 are, in general, very conservative. The likelihood
ratio statistics L1, L2 and L3 use the maximum likelihood estimates of the
parameters of the assumed over-dispersed exponential model. Moreover, as
the score test statistics S1 and S2, the likelihood ratio statistics L1 and
L2 are also very conservative. The statistics S3 and L3 have best overall
performance, in terms of both, level and power. However, the statistic L3 can
be liberal for large sample sizes. Moreover, the statistic L3 is based on the
maximum likelihood estimates of the parameters of the Weibull distribution,
the same time statistics S3 is very simple to use. So, our recommendation is
to use the statistic S3 to test the fit of an exponential distribution over any
over/under-dispersed exponential distribution.
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Appendix: Tables

Table 1. Emperical power (%) of score test statistics S1,
S1F , S2, S3, and LRT statistics L1, L1F , L2, L3 for testing
over-dispersion with no covariates at α = 0.05 when data
are simulated from gamma mixture of the exponential
distribution based on 20,000 replications (c = 0 indicates
emperical level).

n Statistic
c

0.00 0.05 0.10 0.20 0.30 0.40 0.50 1.00 2.00 3.00 4.00

5

S1 0.00 0.00 0.03 0.07 0.09 0.29 0.62 04.80 20.10 34.81 45.12
S1F 0.06 0.08 0.12 0.25 0.58 1.03 2.00 09.18 28.10 43.04 53.65
L1 0.00 0.00 0.00 0.28 0.36 1.29 2.40 11.27 40.14 82.40 96.36
L1F 0.00 0.02 0.00 1.42 2.40 3.91 5.88 20.89 56.05 94.13 97.66
S2 0.49 0.67 0.84 1.18 1.80 2.76 4.00 14.43 41.93 62.74 75.55
L2 0.52 0.56 1.00 1.96 3.16 5.32 7.22 17.18 31.62 34.05 40.70
S3 2.38 2.39 2.66 3.17 3.84 5.24 7.09 19.25 48.03 67.31 79.14
L3 1.26 1.16 1.48 2.16 3.18 3.56 3.54 03.88 04.36 04.25 03.45

10

S1 0.50 0.70 1.39 3.04 5.74 9.50 13.30 35.84 68.16 83.50 90.44
S1F 0.80 1.31 2.20 4.34 7.80 12.20 16.53 41.01 72.65 86.45 92.73
L1 0.07 0.04 0.10 0.24 1.40 3.51 4.90 28.18 71.35 99.41 99.80
L1F 0.38 0.67 0.91 2.70 5.76 10.22 14.43 49.00 85.90 99.70 99.80
S2 0.50 0.62 0.86 1.62 3.17 5.76 8.85 33.77 74.97 91.26 96.58
L2 1.11 1.64 2.40 4.14 7.34 11.96 16.12 45.08 69.70 77.20 84.55
S3 3.66 3.75 4.03 5.10 7.63 11.47 15.96 43.97 81.67 94.00 97.84
L3 2.96 3.30 3.72 3.68 5.22 6.96 11.74 49.02 88.36 95.45 98.40

20

S1 0.64 1.58 3.43 8.52 15.56 24.20 33.17 70.59 95.16 98.96 99.83
S1F 1.25 2.44 5.11 11.30 19.30 28.72 38.20 74.86 96.26 99.28 99.89
L1 0.37 0.59 1.42 2.87 5.84 11.24 20.36 66.14 96.40 100 100.0
L1F 1.46 2.42 4.20 9.24 16.80 26.35 38.85 83.12 98.79 100 100.0
S2 0.35 0.55 0.82 2.43 5.99 11.33 18.48 62.41 95.92 99.55 99.94
L2 2.27 2.68 4.20 8.28 14.78 22.92 34.14 76.74 95.36 98.35 99.6
S3 3.84 3.89 4.88 8.31 15.20 23.64 33.74 75.95 98.00 99.80 99.98
L3 5.91 6.06 6.76 11.78 23.72 41.96 59.22 94.80 99.70 99.85 100.0

50

S1 1.07 3.03 7.46 20.05 37.96 55.06 70.12 97.50 99.99 100 100
S1F 1.83 4.76 10.42 25.30 44.18 61.23 75.36 98.30 100 100 100
L1 2.00 3.23 6.10 15.09 31.24 50.71 67.57 98.88 100 100 100
L1F 4.80 8.34 13.98 29.97 50.12 68.44 82.12 99.74 100 100 100
S2 0.24 0.61 1.29 4.42 13.18 27.68 44.85 94.58 100 100 100
L2 4.08 4.84 7.44 16.06 32.24 50.26 66.36 98.44 100 100 100
S3 3.94 4.32 6.94 17.59 35.35 54.36 71.04 98.58 100 100 100
L3 8.25 7.28 11.98 34.10 61.30 80.60 90.22 99.86 100 100 100

100

S1 1.00 4.23 11.70 36.40 63.43 82.48 92.95 99.97 100 100 100
S1F 1.83 6.72 16.53 44.05 70.17 86.92 95.19 99.99 100 100 100
L1 3.95 8.37 14.39 38.95 66.64 85.91 95.18 100 100 100 100
L1F 8.49 15.97 26.25 55.76 80.11 92.88 97.90 100 100 100 100
S2 0.24 0.57 1.60 8.46 26.76 53.12 75.70 99.87 100 100 100
L2 3.82 6.30 9.62 29.06 54.62 77.38 90.70 99.98 100 100 100
S3 3.77 5.20 10.73 32.82 61.77 82.98 93.92 100.00 100 100 100
L3 6.95 8.92 17.58 51.68 79.16 93.00 97.54 100.00 100 100 100
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Table 2. Emperical power (%) of score test statistics S1,
S1F , S2, S3, and LRT statistics L1, L1F , L2, L3 for testing
over-dispersion with no covariates at α = 0.05 when data are
simulated from lognormal mixture of the exponential
distribution based on 20,000 replications (c = 0 indicates
emperical level).

n Statistic
c

0.00 0.05 0.10 0.20 0.30 0.40 0.50 1.00 2.00 3.00 4.00

5

S1 0.00 0.01 0.00 0.00 0.00 0.02 0.03 0.64 9.03 22.80 35.49
S1F 0.06 0.03 0.02 0.05 0.08 0.12 0.24 2.29 16.47 33.00 45.18
L1 0.00 0.00 0.02 0.16 0.10 0.10 0.12 2.46 23.82 74.62 97.91
L1F 0.00 0.02 0.02 0.65 0.55 0.86 1.07 7.03 43.49 94.58 98.64
S2 0.49 0.47 0.48 0.55 0.62 0.74 1.24 5.33 35.33 66.86 83.19
L2 0.52 0.50 0.70 1.34 1.44 1.48 2.50 9.38 42.70 61.40 83.65
S3 2.38 2.43 2.34 2.24 2.42 2.70 3.28 9.04 42.65 71.81 86.34
L3 1.26 1.04 0.84 1.50 1.70 1.96 2.28 2.36 4.56 11.20 36.65

10

S1 0.50 0.44 0.38 0.58 1.01 1.68 2.73 14.67 51.14 74.39 84.73
S1F 0.80 0.78 0.78 1.10 1.74 2.66 3.92 18.70 57.33 79.42 88.49
L1 0.07 0.06 0.08 0.14 0.16 0.16 0.72 8.04 57.84 99.54 99.61
L1F 0.38 0.26 0.53 0.57 0.93 1.49 3.28 23.70 80.29 99.85 99.74
S2 0.50 0.40 0.43 0.61 0.72 0.98 1.55 12.67 69.38 94.38 98.94
L2 1.11 1.66 1.16 1.48 2.08 2.86 4.22 24.88 80.30 94.50 99.30
S3 3.66 3.68 3.50 3.55 3.70 4.05 4.81 21.97 78.22 96.43 99.41
L3 2.96 1.94 1.48 2.04 2.20 2.34 2.66 5.28 60.20 93.10 99.45

20

S1 0.64 0.94 0.89 1.48 2.40 4.71 7.72 37.54 86.61 97.58 99.52
S1F 1.25 1.55 1.54 2.28 3.74 6.49 10.48 43.66 90.03 98.38 99.73
L1 0.37 0.31 0.30 0.71 0.61 1.49 2.96 33.23 93.68 100 100
L1F 1.46 1.57 1.60 2.01 3.15 5.38 9.70 57.43 97.99 100 100
S2 0.35 0.32 0.32 0.54 0.75 1.41 2.44 27.77 94.53 99.92 99.99
L2 2.27 2.62 2.42 2.92 3.26 5.02 7.12 50.62 97.92 99.95 100
S3 3.84 3.98 3.69 3.81 4.22 5.84 8.36 46.32 97.77 99.98 100.00
L3 5.91 3.20 4.30 3.50 4.64 5.14 7.02 52.78 99.06 100 100

50

S1 1.07 1.08 1.46 2.22 5.06 10.48 19.02 78.02 99.85 100 100
S1F 1.83 1.96 2.30 3.64 7.43 14.22 24.34 83.14 99.94 100 100
L1 2.00 2.16 2.08 3.11 4.91 9.28 18.07 89.64 100 100 100
L1F 4.80 5.25 5.26 8.14 11.83 19.90 32.87 96.13 100 100 100
S2 0.24 0.25 0.32 0.43 0.89 2.00 4.71 65.59 100 100 100
L2 4.08 3.68 3.68 4.70 5.96 9.94 16.88 88.30 100 100 100
S3 3.94 3.95 3.82 4.05 5.54 10.05 18.11 86.81 100 100 100
L3 8.25 4.08 4.12 4.72 7.00 11.42 20.18 92.66 100 100 100

100

S1 1.07 1.19 1.43 3.15 8.12 18.14 33.57 97.06 100 100 100
S1F 1.83 2.17 2.53 5.24 12.21 24.21 41.64 98.31 100 100 100
L1 3.95 3.83 3.86 6.57 11.60 23.43 41.68 99.66 100 100 100
L1F 8.49 8.25 8.40 13.28 22.63 38.31 57.64 99.90 100 100 100
S2 0.24 0.27 0.27 0.47 1.11 3.13 9.07 93.80 100 100 100
L2 3.82 4.02 4.34 5.38 8.60 15.50 30.22 99.20 100 100 100
S3 3.77 4.00 3.96 4.75 8.26 17.38 33.76 99.21 100 100 100
L3 6.95 3.94 3.98 5.86 10.90 21.40 39.38 99.82 100 100 100
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Table 3. Emperical power (%) of score test statistics S1,
S1F , S2, S3, and LRT statistics L1, L1F , L2, L3 for testing
over-dispersion with no covariates at α = 0.05 when data
are simulated from gamma distribution based on 20,000
replications(c = 1 indicates emperical level).

n Statistic
c

0.70 0.80 0.90 0.95 1.00 1.10 1.20 1.50 2.00 3.00 4.00

5

S1 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.10 0.56 3.12 6.65
S1F 0.00 0.00 0.04 0.03 0.06 0.10 0.19 0.60 2.05 6.93 12.59
L1 0.00 0.00 0.20 0.10 0.00 0.10 0.14 0.94 4.51 43.87 95.86
L1F 0.00 0.06 0.32 0.24 0.00 0.56 0.92 4.05 14.25 76.92 97.12
S2 0.02 0.09 0.24 0.33 0.49 0.98 1.80 5.69 16.55 42.06 61.19
L2 0.14 0.36 0.70 0.92 0.52 2.14 3.40 12.02 28.08 60.40 90.45
S3 3.31 2.84 2.37 2.13 2.38 2.90 3.77 8.51 21.24 47.24 65.99
L3 2.28 1.72 2.24 1.64 1.26 1.92 2.12 4.40 9.92 29.00 59.00

10

S1 0.03 0.10 0.16 0.34 0.50 0.53 0.98 2.76 7.76 21.29 34.85
S1F 0.08 0.16 0.36 0.62 0.80 1.03 1.82 4.38 11.20 27.73 42.83
L1 0.00 0.02 0.08 0.36 0.07 0.68 1.06 5.66 19.96 88.71 95.61
L1F 0.04 0.16 0.44 0.81 0.38 2.39 3.97 15.14 40.10 95.16 96.49
S2 0.00 0.03 0.14 0.21 0.50 1.02 2.20 9.25 30.69 70.48 89.04
L2 0.18 0.24 0.50 1.08 1.11 2.96 5.82 20.82 55.84 90.70 99.35
S3 9.12 6.07 4.38 3.88 3.66 4.10 5.56 14.85 39.17 77.17 92.09
L3 2.66 2.56 2.00 2.18 2.96 2.02 2.96 6.28 24.96 64.25 93.65

20

S1 0.03 0.16 0.39 0.54 0.64 1.40 2.44 6.86 19.47 49.34 70.23
S1F 0.08 0.34 0.66 1.01 1.25 2.32 3.94 10.05 25.98 58.13 77.20
L1 0.02 0.08 0.33 0.47 0.37 1.88 4.16 19.88 52.74 66.67 100
L1F 0.02 0.39 1.10 1.89 1.46 5.12 10.36 34.53 72.79 77.78 100
S2 0.00 0.02 0.06 0.17 0.35 1.21 3.01 16.81 54.48 93.70 99.28
L2 1.14 1.34 1.76 2.46 2.27 5.38 9.02 38.00 82.94 99.60 100
S3 17.73 9.75 5.41 4.30 3.84 4.73 7.77 27.45 66.70 96.40 99.67
L3 10.66 7.66 6.02 5.28 5.91 4.46 4.88 18.92 57.88 94.65 100

50

S1 0.01 0.10 0.27 0.71 1.07 2.18 4.32 16.35 49.33 89.86 98.65
S1F 0.46 0.26 0.58 1.31 1.83 3.84 6.93 23.30 59.67 93.84 99.34
L1 0.02 0.04 0.62 1.17 2.00 6.10 13.71 58.18 94.87 100 100
L1F 0.04 0.35 1.98 3.19 4.80 11.14 21.56 65.00 97.72 100 100
S2 0.86 0.13 0.03 0.09 0.24 1.34 5.36 39.73 91.84 99.97 100.00
L2 45.04 22.10 9.06 5.34 4.08 6.56 17.46 69.98 99.26 100 100
S3 42.65 18.82 7.57 4.67 3.94 6.34 14.82 58.90 96.64 99.99 100.00
L3 53.28 29.00 13.28 7.56 8.25 5.48 12.50 53.36 96.48 100 100

100

S1 0.76 0.10 0.22 0.53 1.00 3.18 6.70 32.87 81.42 99.70 100
S1F 8.92 1.92 0.82 1.06 1.83 5.27 10.95 43.77 88.61 99.87 100
L1 0.00 0.02 0.75 1.94 3.95 7.52 16.28 73.01 99.76 100 100
L1F 0.00 0.21 2.19 3.91 8.49 10.86 21.26 74.56 99.91 100 100
S2 13.83 1.88 0.14 0.12 0.24 2.20 10.14 72.21 99.72 100.00 100
L2 81.48 42.28 10.04 4.94 3.82 9.64 27.06 90.86 100.00 100 100
S3 73.82 35.03 10.71 5.73 3.77 9.70 26.51 87.39 99.96 100.00 100
L3 82.88 47.52 13.06 7.08 6.95 7.06 20.98 84.00 99.96 100 100
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Table 4. Emperical power (%) of score test statistics S1,
S1F , S2, S3, and LRT statistics L1, L1F , L2, L3 for testing
over-dispersion with no covariates at α = 0.05 when data
are simulated from Weibull distribution based on 20,000
replications(c = 1 indicates emperical level).

n Statistic
c

0.70 0.80 0.90 0.95 1.00 1.10 1.20 1.50 2.00 3.00 4.00

5

S1 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.50 3.33 14.48 27.77
S1F 0.00 0.00 0.02 0.04 0.06 0.14 0.38 1.84 7.91 23.82 38.02
L1 0.00 0.00 0.14 0.26 0.00 0.10 0.30 2.47 11.64 67.07 98.7
L1F 0.00 0.06 0.38 0.40 0.00 0.64 1.93 10.14 29.38 91.37 99.4
S2 0.00 0.04 0.22 0.26 0.49 1.23 2.55 10.45 31.70 68.36 85.86
L2 0.38 0.12 0.64 1.04 0.52 2.44 4.72 18.14 39.60 71.25 91.7
S3 5.05 3.55 2.63 2.31 2.38 3.03 5.13 14.84 38.22 73.14 88.56
L3 1.64 1.16 1.64 1.44 1.26 2.10 2.22 4.48 9.08 26.15 55.7

10

S1 0.00 0.02 0.12 0.16 0.50 1.10 2.28 9.78 29.12 61.55 77.85
S1F 0.00 0.02 0.20 0.32 0.80 1.96 3.68 13.44 35.66 68.31 82.92
L1 0.00 0.02 0.10 0.14 0.07 0.66 2.17 13.73 40.53 98.43 100.0
L1F 0.02 0.06 0.26 0.52 0.38 2.82 7.61 32.36 66.00 99.48 100.0
S2 0.00 0.02 0.11 0.24 0.50 1.57 3.80 20.52 60.66 94.47 99.15
L2 1.50 0.44 0.50 0.84 1.11 3.40 8.86 36.14 73.76 96.20 99.7
S3 19.29 9.62 5.14 3.72 3.66 4.67 8.12 29.98 70.28 96.42 99.48
L3 6.40 3.36 2.54 2.22 2.96 1.64 2.90 8.64 31.06 86.95 99.6

20

S1 0.00 0.02 0.16 0.36 0.64 2.40 6.24 25.60 63.58 93.19 98.75
S1F 0.00 0.03 0.25 0.62 1.25 3.93 8.87 32.14 70.56 95.55 99.29
L1 0.00 0.04 0.18 0.18 0.37 3.03 8.44 45.52 81.73 100 100
L1F 0.04 0.08 0.81 1.03 1.46 8.45 19.14 68.50 93.61 100 100
S2 0.00 0.00 0.04 0.12 0.35 1.70 6.64 40.76 89.69 99.91 100.00
L2 26.58 11.68 3.58 3.26 2.27 6.18 15.94 68.06 95.88 100 100
S3 42.8 19.32 7.45 4.73 3.84 5.88 14.26 57.03 94.70 99.97 100.00
L3 41.00 21.74 8.42 6.68 5.91 4.44 9.28 50.06 94.52 100 100

50

S1 0.00 0.00 0.14 0.31 1.07 5.15 14.27 62.40 96.84 100 100
S1F 5.66 0.51 0.22 0.65 1.83 7.87 20.08 70.72 98.20 100 100
L1 0.00 0.02 0.29 0.66 2.00 12.28 36.64 94.01 99.83 100 100
L1F 0.00 0.08 0.68 2.02 4.80 21.04 49.00 96.96 99.98 100 100
S2 9.10 0.94 0.08 0.06 0.24 3.00 14.62 82.58 99.94 100 100
L2 86.56 54.08 16.58 7.70 4.08 12.06 37.88 96.92 99.94 100 100
S3 86.65 46.50 13.11 6.21 3.94 11.31 33.27 93.47 99.99 100 100
L3 92.54 65.30 22.04 9.90 8.25 9.66 31.04 94.34 99.98 100 100

100

S1 25.72 1.35 0.05 0.16 1.00 8.04 28.07 90.85 99.98 100 100
S1F 69.66 15.13 1.30 0.70 1.83 12.60 37.38 94.64 99.98 100 100
L1 0.00 0.00 0.19 0.73 3.95 20.17 55.34 99.74 100 100 100
L1F 0.00 0.00 0.36 1.88 8.49 26.04 63.44 99.88 100 100 100
S2 68.79 12.68 0.76 0.18 0.24 5.76 32.36 98.83 100.00 100 100
L2 99.56 84.60 24.26 7.96 3.82 20.24 64.50 99.96 100 100 100
S3 99.44 77.79 23.42 9.03 3.77 19.59 60.34 99.87 100.00 100 100
L3 99.86 88.68 28.48 9.68 6.95 18.32 61.36 99.92 100 100 100



222 RAJIBUL MIAN AND SUDHIR PAUL

Table 5. Fatique data: Lifetime (in hours) for the
Kevlar/Epoxy strand at 70% stress level.

1,051 1,337 1,389 1,921 1,942 2,322 3,629 4,006 4,012 4,063
4,921 5,445 5,620 5,817 5,905 5,956 6,068 6,121 6,473 7,501
7,886 8,108 8,546 8,666 8,831 9,106 9,711 9,806 10,205 10,396
10,861 11,026 11,214 11,362 11,604 11,608 11,745 11,762 11,895 12,044
13,520 13,670 14,110 14,496 15,395 16,179 17,092 17,568 17,568

Table 6. Breakdown times (in minutes) at each seven levels
of voltage.

Voltage levels nl breakdown times

26 3 5.79 1579.52 2323.7
28 5 68.85 426.07 110.29 108.29 1067.6
30 11 17.05 22.66 21.02 175.88 139.07 144.12 20.46 43.40

194.90 47.30 7.74
32 15 0.40 82.85 9.88 89.29 215.10 2.75 0.79 15.93

3.91 0.27 0.69 100.58 27.80 13.95 53.24
34 19 0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50

8.27 33.91 32.52 3.16 4.85 2.78 4.67 1.31
12.06 36.71 72.89

36 15 1.97 0.59 2.58 1.69 2.71 25.50 0.35 0.99
3.99 3.67 2.07 0.96 5.35 2.90 13.77

38 8 0.47 0.73 1.40 0.74 0.39 1.13 0.09 2.38
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