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Tests of exponentiality against some parametric
over /under-dispersed life time models

RAJIBUL MIAN AND SUDHIR PAUL

ABSTRACT. We develop tests of goodness of fit of the exponential model
against some over/under dispersion family of distributions. In particular,
we develop 3 score test statistics and 3 likelihood ratio statistics. These
are (S1, L1), (S2, L2), and (Ss, L3) based on a general over-dispersed
family of distributions, two specific over/under dispersed exponential
models, namely, the gamma and the Weibull distributions, respectively.
A simulation study shows that the statistics Ss and L3 have best overall
performance, in terms of both, level and power. However, the statistic
L3 can be liberal in some instances and it needs the maximum likelihood
estimates of the parameters of the Weibull distribution as opposed to the
statistic S3 which is very simple to use. So, our recommendation is to
use the statistic S3 to test the fit of an exponential distribution over any
over /under-dispersed exponential distribution.

1. Introduction

There have been numerous studies of over-dispersion in discrete data (see
[3,9, 13, 18, 20]) As far as we can ascertain, very little work has been done on
over-dispersed continuous data. The one-parameter exponential distribution
has been extensively used to model data that arise in physical sciences and
engineering applications. Exponential distribution has been vastly used in
reliability theory and reliability engineering because of its memoryless prop-
erty, which is an appropriate model for the constant hazard rate portion
of the bathtub curve. In case of modelling the waiting time, exponential
distribution is a good choice. It can be used to model the waiting time of
cars exceeding certain speed limit within an interval, time for a radioactive
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particle to decay, waiting time for the next phone call to come. The heights
of different molecules can also approximately follow exponential distribu-
tion, if the gas and pressure observed at a certain temperature and uniform
gravitational field respectively. In exponential network, node’s connectiv-
ity distribution follows exponential. Moreover, if the concerned variable is
monthly or yearly maximum value of daily or weekly rainfall or river dis-
charge volumes, in that case the research of these extreme cases, exponential
distribution can be an appropriate choice. This distribution is a special case
of a richer family of distributions, such as the Pareto distribution, the gamma
distribution and the Weibull distribution, all of which are two-parameter
distributions and can be expressed as a family of over-dispersed exponential
models. The purpose of this paper is to develop tests of goodness of fit of
the exponential model against the over-dispersed family of distributions. In
particular, we develop score and likelihood ratio statistics to test goodness
of fit of the exponential model against (i) general over-dispersion by using
a over-dispersed generalized linear model proposed by [6] , (ii) against a
over-dispersed model given by the two parameter gamma distribution, and
(iii) against a over-dispersed model given by the Weibull distribution. A
performance study in terms of level and power of these statistics, along with
some 50:50 mixture counterparts is conducted.

The score test (see [14]) is a special case of the more general C(«) test (see
[11]) in which the nuisance parameters are replaced by maximum likelihood
estimates which are v/N (N is the number of observations used in estimating
the parameters) consistent estimates. The score test is particularly appealing
as it requires estimates of the parameters only under the null hypothesis, and
often produces a statistic which is simple to calculate. Potential drawbacks
of the likelihood ratio and Wald tests include the fact that both require
estimates of the parameters under the alternative hypotheses and often show
liberal or conservative behaviour (see, for example, [2, 12, 19, §]).

In Section 2, some two-parameter distributions are developed as over-
dispersed exponential distributions. In Section 3, we develop the score and
the likelihood ratio tests. A simulation study is conducted in Section4. Some
examples are analyzed in Section 5 and a discussion follows in Section 6.

2. Some over-dispersed exponential distributions

2.1. The Pareto distribution. An over-dispersed exponential distribu-
tion can be obtained as a compound distribution by mixing the exponential
distribution with a gamma distribution for the exponential parameter p.
Suppose that each individual survival time is exponentially distributed with
rate parameter p as

fylp) = pe™"". (1)
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Suppose that the rate parameter p varies randomly between individuals ac-
cording to a gamma ( pg, k) distribution with mean py and index k having
the density

F(p) = (k/po)(kp/po)*~" e~/ T (k).

The unconditional distribution of y then is a Pareto distribution (see [7])

_ k(k/po)*
fly) = W' (2)

Then, the unconditional mean of y is

E(y) = E(E(ylp))

and the unconditional variance for y is

Var (y) = E(Var (y|p))+ Var (E(y|p)) = (,f%ﬁf (k ﬁ 2) =y (1 —12/k:> ’

For practical use a more convenient form of the distribution is obtained by
using ¢ = 1/k in which case the above density can be written as

F(y) = po(1 + cpoy) =4+ (3)

with modified form of Var(y) = ¢2(1/(1 — 2¢)). Clearly this is an over-
dispersion distribution relative to the exponential distribution. This distri-
bution tends to the exponential distribution as k¥ — oo or ¢ — 0.

k-1 v

2.2. A general over-dispersed exponential family of distributions.
Suppose that for given p*, y has the exponential family model with proba-
bility density function

flylp?) = p e,
where p* = vp with E(rv) =1 and Var(v) = 7. This allows modeling extra-
exponential variation. Then following [6] and [5] we obtain the mixed model

by expanding f(y, p*) in a Taylor series at p and taking expectations. The
resulting over-dispersed exponential model can be written as

fa(ys p.7) = f(y; p) {1 +y (jf,rDr(y;p)} :
r=2
where

o) .
mf(ya P )

Dy (y,p) = { p*=p} {Flyip)

and a, = E(p* — p)". Then it can be seen that
E(p*) = p, Var(p*) =7p*>>0.
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Further, for small 7, we assume that o, = o(7) for r > 3 and

i m) = Flyip) {1+ 5 Dalyi) | = Fwp) {1+ Zuplyp =2}, (&)

where Do(y; p) = (yp — 2)yp~!. It can be seen that fo(y;p,7) in equation

(4) is a valid probability density function
EY)=00+7)/p=0(1+7),
where 6 = 1/p, and
Var (Y) = 0(1 + 41 — 72).

Obviously, the over-dispersed exponential model (4) reduces to the exponen-
tial model (1) for 7 = 0.

2.3. The gamma distribution. The two-parameter gamma (p, k) distri-
bution with rate parameter p and shape parameter k£ has the density function

(p.d.f.)
F(y) = plpy)*~te /T (k). ()

It is easy to see that, for £ = 1, the gamma (p, k) distribution reduces to
the exponential (p) distribution. For further development it is convenient to
reparameterize as § = 1/p and ¢ = 1/k. Then, it can be seen that

E(Y)=kb
and
Var(Y) = k6% = 6?/c.

Thus, ¢ = 1 corresponds to the exponential distribution with mean 6, ¢ > 1
or k < 1 corresponds to an under-dispersed exponential model and ¢ < 1 or
k > 1 corresponds to an over-dispersed exponential model.

2.4. The Weibull distribution. The two-parameter Weibull distribution
with scale parameter p and shape parameter k has p.d.f.

F) = kp(py)*'exp|—(pt)*]. (6)

Note for k£ = 1, the Weibull distribution becomes an exponential distribution
with rate parameter p. Hence we are interested in testing the null hypothesis
Hy: k=1. As in Section 2.1 it will be more convenient to repameterize as
0 =1/p and ¢ = 1/k. Then, it can be shown that

E(Y)=60T(1+¢)=p and Var(Y) = p2[(D(1 + 2¢)/T?(1 +¢)) — 1].

Thus, ¢ = 1 corresponds to the exponential distribution with mean 6, ¢ > 1
or k < 1 corresponds to an over-dispersed exponential model and ¢ < 1 or
k > 1 corresponds to an under-dispersed exponential model.
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3. The tests

3.1. Test for exponentiality against a general over-dispersed expo-
nential family of distributions. The score test. A score test using the
Pareto density of the forms in equation (2) or (3) runs into difficulty as the
likelihood score evaluated as k — oo or ¢ — 0 either becomes independent
of the data or becomes unbounded. However, a score test using a general
over-dispersed exponential model exists.

Let Y;, i = 1,...,n, be asample of independent observations from (4) with
1/p; = 6; a function of p x 1 vector of covariates X; and a vector of regression
parameters (3; that is, 0; = 0;(X;; 8), ¢ = 1,...,n. The log-likelihood can be
written as

n

10,71;y) :Z [—log@i—zl:—l—log{1—|—2gZ <ZZ—2>}]

i=1

The score test statistic for testing the hypothesis Hy : 7 = 0 against the
alternative H4 : 7 > 0 is based on the score function evaluated under the
null hypothesis, namely

ol
Y=l

7202{ 92}

Now, define the expected mixed second order partial derivative matrices

02 0%l 0?1
IH*E <_ T=0> , IuiE <_ aTaﬂ T=0> , IQ27E <_ aﬁaﬁ, T=O> .

oror!
Then, it can be seen that the variance of ¥ is V2 = I;; — I{2I2_21I12. Further,
algebra shows that I;; = 2n, and the j element of I} and the (j,; )"
element of Iy, are equal to

1 00; 1 89 (99

respectively. Then, under some conditions for the application of the central
limit theorem to the score component ¥ and the regularity conditions of
maximum likelihood estimates, the score test statistic for testing Hy: 7 =0
is

=0V,
which, asymptotically, as n — o0, has a standard normal distribution, where,
U =W(B), V=V(3) and § is the maximum likelihood estimate of § under

the null hypothesis. Note, the maximum likelihood estimates of the regres-
sion parameters §3;, 7 = 1,...,p, are obtained by solving the p estimating
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equations
Z 1 09
Z(yi - '91')972765]' = 0. (7)

i=1
Thus, the maximum likelihood estimate of 6; is éz = 0;(X;; B) For the
link function 6; = X/, where X; is a p x 1 vector of regression variables,
the j*" element of I1o and the (j,j')"" element of Isy are, respectively,

"1 1
=1 7 =1 92

When no covariate is involved, 8; = 6, maximum likelihood estimate of 6 is y
and the score test statistic for testing Hp : 7 = 0 against any over-dispersed
family of exponential distributions reduces to

1 " y2
S = —= == —2n.
P oy (&
The likelihood ratio test. The likelihood ratio test (LRT) statistic can be
written as

which has, asymptotically, a X%1) distribution, as n — oo, where 0, =

Hi(Xi;ﬁ), Bj, j =1,...,p, and 7 are obtained by solving the estimating
equations

simultaneously.

3.2. Test of exponentiality against a gamma alternative. The score
test. Let Y;,i = 1,...,n, be a sample of independent observations from (5)
with
(Y:) = pi = k0;(Xy; B).
Our interest is to test Hy : K = 1 against all alternatives. Now, the log-
likelihood apart from a constant can be written as
n

l= —kZlogQi +(k-1) Zlogyi — Z % —n log(T'(k)).
i=1 i=1

i=1 ¢
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Then, using this log-likelihood and a procedure similar to what was used in
Section 3.1 it can be shown that the score test statistic for testing Hy : k =1
is

Sy =T/V,
where

T == log(6:(8) + 3 logy: — mp(1),
=1 =1

0
(1) is the value of a digamma function ¢ (k) = B log(I'(k)) under Hy, and
V2 = V2(B) with V2 = Iy — I}y155 12 and I;; = ny)' (1). The expressions
for the j' element of Ij5 and the (j,7 )" element of Iy are the same as
those obtained in Section 3.1. Further, the estimating equations for the p
regression parameters here are the same as those given in equations (7).

When no covariate is involved we have

T = log(y:/y) — nep(1) = > _log(y:/§) — 0,5772156649 n
i=1 i=1

and V = \/ny’(1) with

01 = [ (tesp(=0)/(1 = exp(-t)i.

The likelthood ratio test. The LRT statistic can be written as

2(1(0, k; y) | Ha — 1(8, k; y)| Ho)

which has, asymptotically, a X%l) distribution, as n — oo, where 0, =

Loy

Hi(Xi;ﬂN), Bj, j =1,...,p, and k are obtained by solving simultaneously
the estimating equations

ol "y k\ 08 Ol & Vi
— = = - — — = log = — ¥ (k
95; 2 <9§ 9@-> ap;" Ok z; (Og 6~V )> ’

=1

where 9 is a digamma function.

3.3. Test of exponentiality against an Weibull alternative. The score
test. Let Y1,Ys, ..., Y, be arandom sample from an Weibull distribution (6).
Then the log-likelihood function apart from a constant can be written as

n

l=n logk—kZlogGi—i— (k — I)ZIOgyi —Z(yi/ﬁi)k.
i=1

i=1 i=1
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Here 0;=0;(X;; ) which connects the mean of datum y with possible co-
variates X; and regression coefficients 5. Now, using this log-likelihood func-
tion and a procedure similar to what was used in Section 3.1, it can be shown
that the score test statistic for testing Hp : k =1 is

=T/V,
where
: - yi Uil oo 205
T=n+ [(1—)10 A], Ve=V
Z i) os g (8)
with
n 2
V2 =1y — [0 o and I =n+ 3@(10 y)
11 12422 112 11 ; 6 g 0;
The jth element of I12 and the (7, j,)th element of Iy are, respectively,
-~ yi\ 1 00; 2y; — (9 00; 009;
0; — vy — yilog = ) - and -
; ( 0i/ 6, T ; g 08 08"

Note that in order to avoid approximations to expected values here we have
used observed information matrix to obtain asymptotic variance of the like-
lihood score T. The maximum likelihood estimates of the regression param-
eters (5, j = 1,...,p, are the same as those obtained in equation (7). If
a linear link function ¢; = X/3, where X; is a p x 1 vector of regression
variables, is used, then the jth element of 115 and the (j,j/)th element of I9
are, respectively,
z":Hi—yi—y@- log(y:/6:) X! and 223/1— i

)
i=1 0;

In situations where there are no covariates, we have

n
T:n—l—z<1—y_z>logy_l,
i—1 Yy Y
noo 2
1'11:714-2%(509’%) , T =0,
-1 Y Yy

and hence V' = +/I1;. Thus the score statistic is

53_(n+§;(1__)0 y)/ n+§;%< )

The statistic Ugo(vrs) /2 in [7] reduces to the statistic Ss after simplifications,
when there is no censoring or covariates.
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The likelihood ratio tests. The LRT statistic can be written as
Ly = 2(1(0, k; y)| Ha — 1(0, k; y)| Ho)
= 2((8, ks y) — 1(,0; ),
which has, asymptotically, a X%U distribution, as n — oo, where 0, =

H,L-(Xi;ﬁ), Bj, j =1,...,p, and k are obtained by solving the estimating
equations

ol o~k [u)" 90; Ol (1 vi  [w]® wi
%—Z(QM ‘1>aﬁj’%‘;<k“‘)g@‘[@ 50

simultaneously.

4. Simulation

A simulation study was conducted to study the performance, in terms
of size and power of all the statistics. Note that in the case of the general
over-dispersion test we deal with Hy : 7 = 0 against the alternative Hj4 :
7 > 0. Thus, the value of the parameter under the null hypothesis is on the
boundary of the parameter space. The distribution of the likelihood ratio
test statistic and the score test then asymptotically have a 50 : 50 mixture of
X2 and 7 distributions. That is, the distribution of each of these statistics
is not x?, but rather %X% + %Xg, i.e., a 50 : 50 mixture of a point mass at
zero and a chi square distribution with one degree of freedom. Note, point
mass at zero is zero. So, the distribution is %X% So, to get a « level test,
look up the 2« point of a x?. See, for example, [15, 16, 17].

Thus, in the simulation study we consider Sy, its 50 : 50 mixture counter-
part Sig, L1, its 50 : 50 mixture counterpart Lip, So, Lo, S and L3. For
studying level properties of these statistics we simulated samples from the
exponential distribution with mean u = 1. For power studies we simulated
data from (a) the general over-dispersed exponential models, namely the
gamma mixture of the exponential (the Pareto distribution) model, and the
lognormal mixture of exponential model, (b) specific over-dispersed exponen-
tial models, namely, the gamma and the Weibull distributions. Empirical
level and power results for data simulated from the gamma mixture of the
exponential distribution, the lognormal mixture of exponential distribution,
the gamma distribution, and the Weibull distribution are given in Table 1,
Table 2, Table 3 and Table 4, respectively. In the simulation we consid-
ered nominal significant levels o = 0.01, o = 0.05 and « = 0.10. However,
comparative results for data simulated from all the above distributions are
similar for all the levels. So, in the tables we give results only for o = 0.05.

Note that, the lognormal mixture of exponential distribution is used to
generate over-dispersed data. Test statistics are applied to these over-disper-
sed data and their performances are checked to evaluate the robustness of
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the test statistics. Development of the test statistics based on the lognor-
mal mixture of exponential distribution is difficult at best and so far seems
infeasible and unnecessary, and hence was not considered in the study.

To do the simulation study, samples from the different distributions were
generated using “stats” and “actuar” packages of the statistical software “R
version 3.0.17. For solving the simultaneous equations, we used function
“nlegslv()” of “nlegslv” package and “BBsolve()” function of “BB” package.

For power calculation, we computed absolute value of the test statistics
(1S]) and compared it with absolute value the quantiles (|Q|) calculated
from standard normal distribution based on «. We assign indicator 1 if
|S| > |Q|, and 0 otherwise. The power of the test, in the simulation study,
is then obtained from the average of these indicators. We calculate power
for all test statistics under different values of dispersion parameter ¢. Thus,
the results in the column under ¢ = 0 in Table 1 and Table 2 refer to the
empirical levels. However, the results in the column under ¢ = 1 in Table 3
and Table 4 refer to the empirical levels. These levels are all the same as in
all cases data are generated from the exponential distribution.

First we compare level properties of all the statistics. All the statistics
are in general conservative. For small sample sizes (n < 50) the statistics
S1, Sir, Ln and Lqip are all very conservative. The statistic Sy is very
conservative for all sample sizes. The levels of the statistics S3 and Lg are
closer to the nominal level as sample size increases. The performance of Lg
is liberal in terms of level as sample size increases compared to S3.

For comparison of power among all the statistics, we find that in Table 1
and Table 2 power increases as the value of ¢ increases from 0. However, in
Table 3 and Table 4 power increases as the value of ¢ increases from 0 and
also increases as the value of ¢ decreases from 0. In all cases power increases
as the sample size increases.

The statistics S3 and Ls have the best overall performance, in terms of
both, level and power. However, the statistic Ls can be liberal for large
sample sizes.

Based on the level and the power properties of the test statistics, we
recommend to use the statistic S3 to test the fit of an exponential distribution
over any over/under-dispersed exponential distribution.

5. Examples

5.1. Example 1. In an attempt to fit a generalized Pareto distribution [4]
used a set of fatique data originally reported by [1]. In [4] three different
estimation methods are applied and compared to this data. According to
their analysis they found that generalized Pareto distribution assumption is
appropriate for fatigue data. The data are given in Table 5 which refers to
lifetime (in hours) of Kevlar/Epoxy strand at a stress level 70%. For more
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details of the data, see [1]. We consider fatigue data as over-dispersed data
and use this data to test the fit of the exponential distribution over some of
the over-dispersed exponential models. For this data, the values of the test
statistics S3 and Lz with p-values in the parenthesis are 17.46 (0.0000) and
26.45 (0.0000) respectively. It can be seen that both these test statistics S3
and L3 decisively reject the hypothesis of fit of an exponential distribution
over an over-dispersed exponential model. These findings are in agreement
with the results of the simulation study, i.e., the statistics S3 and L3 have
best overall performance, in terms of both, level and power. Despite our
recommendation about S3 to test the exponentiality of the data, all devel-
oped score tests (S1, Se2, and S3), as well as likelihood ratio tests (Lj, Lo,
and L3) will facilitate researchers to competently identify the distributional
assumption of the dispersed continuous data.

5.2. Example 2. The breakdown times data in Table 6 are from [10] .
The data refer to the results of a life test experiment in which specimens
of a type of electrical insulating fluid were subjected to different voltage
stresses. There were seven groups of specimens in the data set and specimens
were tested at voltages ranging from 26 to 38 kilovolts. We consider the
breakdown times as over/under-dispersed data and use only a part of these
data, namely, time to breakdown at stress level of 32 kilovolts, to test the
fit of the exponential distribution over some of the over/under-dispersed
exponential models. For this data the values of the test statistics, S3 and
L3, with p-values in the parenthesis, are 10.41 (0.0012) and 8.21 (0.0041).
Both these test statistics reject the fit of the exponential distribution in
favour of an over-dispersed exponential distribution.

6. Discussion

We have developed three score tests statistics S7, So and S3 and three
likelihood ratio statistics L1, Lo and L3 to test the fit of an exponential
distribution over some over/under-dispersed exponential models. The score
statistics S1, So and S3 are simple and easy to use. These statistics use
only the maximum likelihood estimates of the exponential distribution. The
score statistics S1 and Sy are, in general, very conservative. The likelihood
ratio statistics L1, Lo and L3 use the maximum likelihood estimates of the
parameters of the assumed over-dispersed exponential model. Moreover, as
the score test statistics S7 and S5, the likelihood ratio statistics L; and
Lo are also very conservative. The statistics S3 and L3 have best overall
performance, in terms of both, level and power. However, the statistic Ls can
be liberal for large sample sizes. Moreover, the statistic L3 is based on the
maximum likelihood estimates of the parameters of the Weibull distribution,
the same time statistics S5 is very simple to use. So, our recommendation is
to use the statistic S3 to test the fit of an exponential distribution over any
over /under-dispersed exponential distribution.
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Appendix: Tables
TABLE 1. Emperical power (%) of score test statistics Si,
Sir, S9, S3, and LRT statistics L1, Lig, Lo, L3 for testing
over-dispersion with no covariates at @« = 0.05 when data
are simulated from gamma mixture of the exponential
distribution based on 20,000 replications (¢ = 0 indicates
emperical level).
n  Statistic <
0.00 0.05 010 020 030 040 050 1.00  2.00 3.00  4.00
S 0.00 0.00 003 007 009 029 062 0480 20.10 34.81 45.12
Sir 006 008 012 025 058 103 200 09.18 2810 43.04 53.65
Ly 0.00 0.00 0.0 028 036 129 240 11.27 40.14 8240 96.36
5 Lip 000 002 000 142 240 391 588 20.89 56.05 94.13 97.66
A 049 0.67 084 118 180 276 4.00 1443 41.93 6274 75.55
Lo 052 056 1.00 1.96 3.16 532 7.22 17.18 3162 34.05 40.70
Ss3 2.38 2.39 2.66 3.17 3.84 5.24 7.09 19.25 48.03 67.31 79.14
Ls 126 116 148 216 3.8 3.56 3.54  03.88 0436 0425 03.45
S 050 070 1.39 3.04 574 950 13.30 3584 6816 83.50 90.44
Sir 0.80 131 220 434 7.80 1220 1653 4101 72.65 86.45 92.73
L 0.07 0.04 010 024 140 351 490 2818 71.35 99.41 99.80
o Lir 038 067 091 270 576 1022 1443 49.00 8590 99.70 99.80
A 050 0.62 0.86 1.62 3.17 576 885 3377 7497 91.26 96.58
Lo LIl 1.64 240 414 7.34 1196 16.12 45.08 69.70 77.20 84.55
S5 3.66 375 4.03 510 7.63 11.47 15.96 43.97 8167 94.00 97.84
Ls 296 3.30 3.72  3.68 522 696 11.74 49.02 88.36 9545 98.40
51 0.64 1.58 343 852 1556 2420 33.17 70.59 9516 98.96 99.83
Sip 125 244 511 1130 19.30 28.72 38.20 74.86 96.26 99.28 99.89
L 0.37 059 142 287 584 11.24 20.36 66.14 96.40 100  100.0
oo  Lor 146 242 420 924 1680 26.35 38.85 8312 9879 100  100.0
S5 035 055 0.82 243 599 11.33 1848 6241 9592 99.55 99.94
Lo 227 268 420 8.28 1478 2292 3414 7674 9536 98.35 99.6
S5 3.84 3.89 488 831 1520 23.64 33.74 7595 98.00 99.80 99.98
Ls 591 6.06 6.76 11.78 23.72 41.96 59.22 94.80 99.70 99.85 100.0
51 1.07 3.03 746 2005 37.96 55.06 70.12 9750 99.99 100 100
Sip 1.83 476 1042 2530 44.18 61.23 7536 98.30 100 100 100
L 200 323 610 1509 31.24 50.71 67.57 98.88 100 100 100
50 Lip 4.80 8.34 13.98 2997 50.12 68.44 82.12 99.74 100 100 100
S5 0.24 0.61 1.29 442 13.18 27.68 44.85 9458 100 100 100
Lo 408 4.84 744 1606 3224 50.26 66.36 9844 100 100 100
S5 3.904 432 694 17.59 3535 54.36 7104 9858 100 100 100
Ls 825 7.28 11.98 3410 61.30 80.60 90.22 99.86 100 100 100
S 1.00 423 11.70 3640 63.43 8248 92.95 99.97 100 100 100
Sip 1.83 672 1653 44.05 70.17 86.92 9519 99.99 100 100 100
L 3.95 837 14.39 38.95 66.64 8591 9518 100 100 100 100
o Lir 849 1597 2625 5576 80.11 9288 97.00 100 100 100 100
S5 0.24 057 1.60 846 26.76 53.12 7570 99.87 100 100 100
Ly 3.82  6.30  9.62 29.06 54.62 77.38 90.70 99.98 100 100 100
Ss 377 520 10.73 32.82 61.77 8298 93.92 100.00 100 100 100
Ls 6.95 892 17.58 51.68 79.16 93.00 97.54 100.00 100 100 100
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TABLE 2. Emperical power (%) of score test statistics 57,
SlFa SQ, 53, and LRT statistics Ll, LlFa LQ, L3 for testing
over-dispersion with no covariates at & = 0.05 when data are
simulated from lognormal mixture of the exponential
distribution based on 20,000 replications (¢ = 0 indicates
emperical level).
n Statistic ¢
0.00 0.05 0.0 020 030 040 050 1.00 200 3.00  4.00
5 0.00 0.01 000 000 000 002 003 064 9.03 2280 3549
S 0.06 003 002 005 008 012 024 229 1647 33.00 45.18
L 0.00 0.00 002 016 010 010 0.2 246 23.82 74.62 97.91
5 Lip 000 002 002 065 055 086 1.07 7.03 4349 9458 98.64
S5 0.49 047 048 055 062 074 1.24 533 3533 66.86 83.19
Lo 052 050 0.70 1.34 144 148 250 9.38 4270 61.40 83.65
S3 2.38 243 2.34 2.24 2.42 2.70 3.28 9.04 42.65 71.81 86.34
Ls 126 1.04 084 150 1.70 1.96 228 236 456 11.20 36.65
S 0.50 044 038 058 101 1.68 273 14.67 51.14 74.39 84.73
S 0.80 0.78 078 110 1.74 2.66 3.92 1870 57.33 79.42 88.49
L 0.07 0.06 008 0.14 016 016 072 804 57.84 99.54 99.61
o L 038 026 053 057 093 149 328 2370 80.29 99.85 99.74
Ss 0.50 040 043 061 072 098 1.55 12.67 69.38 94.38 98.94
Lo 111 1.66 1.16 1.48  2.08 2.86 4.22 24.88 80.30 9450  99.30
Ss 3.66 3.68 3.50 3.55 3.70 4.05 4.81 21.97 7822 96.43 99.41
Ls 296 1.94 1.48 204 220 234 266 528 60.20 93.10 99.45
S 0.64 094 089 148 240 471 772 37.54 86.61 97.58 99.52
SiF 1.25 1.55 1.54 2.28 3.74 6.49 10.48 43.66 90.03 98.38 99.73
L 037 031 030 071 061 1.49 296 33.23 93.68 100 100
s  Lir 146 157 160 201 315 538 970 5743 97.99 100 100
S5 0.35 032 032 054 075 141 244 2777 9453 99.92  99.99
Lo 2.27 2,62 242 292 326 502 712 50.62 97.92 99.95 100
Sa 3.84 398 3.69 3.81 422 584 836 46.32 97.77 99.98 100.00
Ls 591 320 430 3.50 4.64 514 7.02 5278 99.06 100 100
S 1.07 1.08 146 222 506 1048 19.02 7802 99.85 100 100
Sir 1.83 196 230 3.64 7.43 1422 2434 8314 99.94 100 100
L 2.00 216 2.08 3.1 491 928 1807 89.64 100 100 100
so Lir 480 525 526 814 1183 19.90 3287 9613 100 100 100
S5 024 025 032 043 089 200 471 6559 100 100 100
Lo 4.08 3.68 3.68 4.70 596 9.94 1688 8830 100 100 100
Ss 3.94 3.95 3.82 405 554 1005 1811 86.81 100 100 100
Ls 8.25 4.08 4.12 472 7.00 11.42 20.18 92.66 100 100 100
S 107 1.9 143 315 812 1814 3357 97.06 100 100 100
Sip 183 217 253 524 1221 2421 41.64 9831 100 100 100
L 3.95 3.83 3.8 657 11.60 23.43 41.68 99.66 100 100 100
o Lip 849 825 840 13.28 2263 3831 57.64 99.90 100 100 100
S5 0.24 027 027 047 L1l 313 907 93.80 100 100 100
Lo 3.82 402 434 538 860 1550 30.22 99.20 100 100 100
Ss 3.77 4.00 3.96 4.75 826 17.38 33.76 99.21 100 100 100
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TABLE 3. Emperical power (%) of score test statistics 51,
SlFa SQ, 53, and LRT statistics Ll, LlFa LQ, L3 for testing
over-dispersion with no covariates at @ = 0.05 when data
are simulated from gamma distribution based on 20,000
replications(c = 1 indicates emperical level).
n Statistic ¢
070  0.80 090 095 1.00 110 1.20 1.50  2.00  3.00  4.00
5 0.00 0.00 000 000 000 002 002 010 056 312  6.65
Sir 0.00 000 004 003 006 0.0 019 060 205 693  12.59
L 0.00 000 020 010 000 0.0 014 094 451  43.87  95.86
5 Lir 0.00 006 032 024 000 056 092 405 1425 7692 97.12
85 002 009 024 033 049 098 1.80 569 1655 4206  61.19
Lo 0.14 036 070 092 052 214 340 1202 2808 60.40  90.45
Ss 3.31 284 237 213 238 290 3.77 851 2124 47.24  65.99
Ls 2.28 1.72 2.24 1.64 1.26 1.92 2.12 4.40 9.92 29.00 59.00
S 003 010 016 034 050 053 098 276 T.76  21.29 3485
Sir 008 016 036 062 080 1.03 1.82 438 1120 27.73  42.83
L 0.00 002 008 036 007 0.68 106 566 19.96 8871  95.61
o bir 004 016 044 081 038 239 397 1514 40.10 9516  96.49
S5 000 003 014 021 050 1.02 220 925 30.69 7048  89.04
Lo 018 024 050 108 1.11 296 582 2082 5584 90.70  99.35
Ss 9.12  6.07 438 3.88 3.66 4.10 556 14.85 39.17  77.17  92.09
Ls 2.66 256 200 218 296 202 296 6.28 2496 64.25  93.65
S 003 0.6 039 054 064 140 244 686 1947 49.34  70.23
SiF 0.08 0.34 0.66 1.01  1.25 2.32 3.94 10.05 25.98 58.13 77.20
L 002 008 033 047 037 1.88 416 19.88 5274 66.67 100
A 002 039 1.0 1.89 1.46 512 10.36 34.53 7279 7778 100
S5 0.00 002 006 017 035 1.21 3.0l 1681 5448 9370  99.28
Lo 114 1.34 176 246 227 538 9.2 3800 8294 99.60 100
Ss 17.73 975 541 430 3.84 473 7.07 2745 66.70 9640  99.67
Ls 10.66 7.66 6.02 5.28 591 446 4.88 1892 57.88 9465 100
S 001 0.0 027 071 1.07 218 432 1635 49.33 89.86  98.65
Sir 046 026 058 1.31 1.83 384 693 2330 59.67 93.84  99.34
L 002 004 062 117 200 610 13.71 5818 9487 100 100
5o Lir 004 035 1.98 3.19 4.80 11.14 21.56 6500 97.72 100 100
S5 0.86 0.13 003 009 024 1.34 536 3973 91.84 99.97 100.00
Lo 4504 2210 9.06 534 4.08 6.56 17.46 69.98 99.26 100 100
S5 42,65 18.82 7.57 4.67 3.94 634 1482 5890 96.64  99.99  100.00
Ls 53.28 29.00 13.28 T7.56 8.25 548 12.50 53.36 9648 100 100
S 076 0.10 022 053 1.00 3.18 670 3287 8142 9970 100
Sir 892 192 082 106 1.83 527 10.95 43.77 8861 99.87 100
Ly 0.00 0.02 0.75 1.94 3.95 7.52 16.28 73.01 99.76 100 100
0o Lir 0.00 021 219 391 849 10.86 21.26 7456 99.91 100 100
S5 13.83  1.88 0.4 012 0.24 220 1014 7221 99.72 100.00 100
Lo 81.48 4228 10.04 4.94 3.82 9.64 27.06 90.86 100.00 100 100
S5 73.82 35.03 10.71 5.73 3.77 970 2651 87.39  99.96 100.00 100
Ls 82.88 47.52 13.06 7.08 6.95 7.06 20.98 84.00 99.96 100 100
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TABLE 4. Emperical power (%) of score test statistics 51,
SlFa SQ, 53, and LRT statistics Ll, LlFa LQ, L3 for testing
over-dispersion with no covariates at @ = 0.05 when data
are simulated from Weibull distribution based on 20,000
replications(c = 1 indicates emperical level).
n Statistic ¢
070  0.80 090 095 1.00 110 1.20 1.50  2.00  3.00  4.00
5 0.00 0.00 000 000 000 004 004 050 333 1448 27.77
Sir 0.00 000 002 004 006 0.4 038 1.84 791 23.82 38.02
L 0.00 000 014 026 000 0.0 030 247 11.64 67.07 98.7
5 Lir 0.00 006 038 040 0.00 0.64 193 10.14 29.38 91.37  99.4
85 000 004 022 026 049 1.23 255 1045 3170 68.36 85.86
Lo 0.38 0.12 0.64 1.04 0.52 2.44 4.72 18.14 39.60 71.25 91.7
Ss 505 355 263 231 238 3.03 513 1484 3822 73.14 88.56
Ls 1.64 1.16 1.64 1.44 1.26 2.10 2.22 4.48 9.08 26.15 55.7
S 000 002 012 016 050 1.10 228 978 2012 61.55 77.85
Sir 0.00 002 020 032 080 1.96 368 1344 3566 6831 82.92
L 000 002 010 0.4 007 0.66 217 13.73 4053 98.43  100.0
o bir 002 006 026 052 038 282 7.61 3236 66.00 99.48 100.0
S5 0.00 002 011 024 050 1.57 3.80 2052 60.66 94.47 99.15
Lo 150 044 050 0.84 1.11 340 886 36.14 73.76 96.20  99.7
Ss 19.20  9.62 514 3.72 3.66 4.67 812 20.98 70.28 96.42 99.48
Ls 6.40 3.36 254 222 296 1.64 290 864 31.06 86.95 99.6
S 0.00 002 016 036 064 240 624 2560 6358 93.19 98.75
Sir 000 003 025 062 1.25 3.93 887 3214 7056 9555 99.29
L 000 004 018 0.8 037 3.03 844 4552 8173 100 100
A 004 008 081 103 146 845 19.14 6850 9361 100 100
S5 0.00 0.00 004 012 035 170 6.64 40.76 89.69 99.91 100.00
Lo 26.58 11.68 3.58 3.26 2.27 6.18 1594 68.06 9588 100 100
Ss 428 10.32 745 473 3.84 588 1426 57.03 9470  99.97 100.00
Ls 41.00 21.74 8.42 6.68 5.91 4.44 9.28 50.06 94.52 100 100
S 000 000 014 031 1.07 515 1427 6240 96.84 100 100
Sir 566 051 022 065 1.83 7.87 20.08 70.72 9820 100 100
L 000 002 029 066 200 1228 36.64 9401 99.83 100 100
5o Lir 0.00 008 068 202 480 21.04 49.00 96.96 99.98 100 100
S5 9.10 094 008 006 024 3.00 1462 8258 99.94 100 100
Lo 86.56 54.08 16.58 7.70 4.08 12.06 37.88 96.92 99.94 100 100
S5 86.65 4650 13.11 6.21 3.94 11.31 33.27 93.47 99.99 100 100
Ls 92.54 65.30 22.04 9.90 825 9.66 31.04 9434 99.98 100 100
S 2572 1.35  0.05 0.6 1.00 804 28.07 90.85 99.98 100 100
Sip 69.66 1513 1.30 070 1.83 12.60 37.38 94.64 99.98 100 100
Ly 0.00 0.00 0.19 0.73 3.95 20.17 55.34 99.74 100 100 100
0o Lir 0.00 000 036 1.88 849 2604 6344 99.88 100 100 100
Sa 68.79 12.68 0.76 0.18 024 576 3236 98.83 100.00 100 100
Lo 99.56 84.60 24.26 7.96 3.82 20.24 6450 99.96 100 100 100
S5 99.44 7779 2342 9.03 3.77 19.59 60.34 99.87 100.00 100 100
Ls 99.86 88.68 28.48 9.68 6.95 18.32 61.36 99.92 100 100 100
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TABLE 5. Fatique data: Lifetime (in hours) for the
Kevlar/Epoxy strand at 70% stress level.

1,051 1,337 1,389 1,021 1,942 2,322 3,629 4,006 4,012 4,063
4,921 5445 5,620 5817 5905 5956 6,068 6,121 6,473 7,501
7,886 8,108 8546 8,666 8,831 9,106 9,711 9,806 10,205 10,396
10,861 11,026 11,214 11,362 11,604 11,608 11,745 11,762 11,805 12,044
13,520 13,670 14,110 14,496 15,395 16,179 17,092 17,568 17,568

TABLE 6. Breakdown times (in minutes) at each seven levels

of voltage.
Voltage levels mn; breakdown times
26 3 5.79 1579.52  2323.7
28 5 68.85 426.07 110.29 108.29 1067.6
30 11 17.05 22.66 21.02 175.88 139.07 144.12 20.46 43.40
194.90 47.30 7.74
32 15 0.40 82.85 9.88 89.29 215.10 2.75 0.79 15.93
3.91 0.27 0.69 100.58 27.80 13.95 53.24
34 19 0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50
8.27 33.91 32.52 3.16 4.85 2.78 4.67 1.31
12.06 36.71 72.89
36 15 1.97 0.59 2.58 1.69 2.71 25.50 0.35 0.99
3.99 3.67 2.07 0.96 5.35 2.90 13.77
38 8 0.47 0.73 1.40 0.74 .39 1.13 0.09 2.38
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