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Uncertain fuzzy Ostrowski type inequalities for
the generalized (s,m)-preinvex Godunova–Levin

functions of second kind

Artion Kashuri and Rozana Liko

Abstract. In the present paper, the notion of the generalized (s,m)-
preinvex Godunova–Levin function of second kind is introduced and
some uncertain fuzzy Ostrowski type inequalities for the generalized
(s,m)-preinvex Godunova–Levin functions of second kind via classical
integrals and Riemann–Liouville fractional integrals are established.

1. Introduction and preliminaries

The following notation are used throughout this paper. We use I to denote
an interval on the real line R = (−∞,+∞) and I◦ to denote the interior of I.
Let Rn denote an n-dimensional vector space. For any subset K ⊆ Rn,K◦
denotes the interior of K. We denote the set of all fuzzy numbers on the set
of real numbers R by RF . The space of fuzzy Lebesgue integrable functions
on the interval [a, b] is denoted by LF [a, b]. The space of fuzzy continuous
functions on the interval [a, b] is denoted by CF [a, b].

The following result is known in the literature as the Ostrowski inequality
(see [13]), which gives an upper bound for the approximation of the integral

average (b− a)−1
∫ b

a
f(t)dt by the value f(x) at a point x ∈ [a, b].

Theorem 1.1. Let f : I −→ R, where I ⊆ R is an interval, be a mapping
which is differentiable in the interior I◦ of I, and let a, b ∈ I◦ with a < b. If
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|f ′(x)| ≤M for all x ∈ [a, b], then∣∣∣∣f(x)− 1

b− a

∫ b

a
f(t)dt

∣∣∣∣ ≤M(b− a)

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
, x ∈ [a, b]. (1.1)

In the recent years, various generalizations, extensions and variants of
such inequalities have been obtained. For other recent results concerning
Ostrowski type inequalities (see [13], [21]).

Definition 1.2 (see [6]). A nonnegative function f : I −→ [0,+∞) is
said to be a P -function, or P -convex, if

f(tx+ (1− t)y) ≤ f(x) + f(y), x, y ∈ I, t ∈ [0, 1].

Definition 1.3 (see [9]). A function f : I −→ [0,+∞) is said to be a
Godunova–Levin function, briefly f ∈ Q(I), if f is nonnegative and for all
x, y ∈ I, t ∈ (0, 1), it holds that

f(tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t
.

The class Q(I) was firstly described in [9] by Godunova and Levin. Some
further properties of it are given in [6], [15], [16]. Among others, let us note
that nonnegative monotone and nonnegative convex functions belong to this
class of functions.

Definition 1.4 (see [17]). A function f : I −→ [0,+∞) is said to be an
(s,m)-Godunova–Levin function of first kind, briefly f ∈ Q1

(s,m), if for all

s,m ∈ (0, 1], it holds that

f(tx+m(1− t)y) ≤ f(x)

ts
+
mf(y)

1− ts
, x, y ∈ I, t ∈ (0, 1). (1.2)

We would like to mention that Definition 1.4 was also introduced and
studied by Li et al. [12] independently. For m = 1 in Definition 1.4, we
have the definition of s-Godunova–Levin functions of first kind, which was
introduced and investigated by Noor et al. [18].

Definition 1.5 (see [17]). A function f : I −→ [0,+∞) is said to be an
(s,m)-Godunova–Levin function of second kind, briefly f ∈ Q2

(s,m), if (1.2)

holds for all s ∈ [0, 1], m ∈ (0, 1].

It is obvious that, for s = 0, m = 1, (s,m)-Godunova–Levin functions of
second kind reduce to Definition 1.2 of P -functions. If s = 1, m = 1, then
they reduce to Godunova–Levin functions. For m = 1, we have the definition
of s-Godunova–Levin function of second kind introduced and studied by
Dragomir [5].
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Definition 1.6 (see [3]). A set K ⊆ Rn is said to be invex with respect
to the mapping η : K × K −→ Rn, if x + tη(y, x) ∈ K for every x, y ∈ K
and t ∈ [0, 1].

Notice that every convex set is invex with respect to the mapping η(y, x) =
y− x, but the converse is not necessarily true. For more details see [3], [22].

Definition 1.7 (see [19]). A function f defined on an invex set K ⊆ Rn
is said to be preinvex with respect to η, if for every x, y ∈ K and t ∈ [0, 1],
it holds that

f (x+ tη(y, x)) ≤ (1− t)f(x) + tf(y).

The concept of preinvexity is more general than convexity since every
convex function is preinvex with respect to the mapping η(y, x) = y−x, but
the converse is not true.

Definition 1.8 (see [7]). A set K ⊆ Rn is said to be m-invex with respect
to the mapping η : K × K × (0, 1] −→ Rn for some fixed m ∈ (0, 1], if
mx+ tη(y, x,m) ∈ K holds for each x, y ∈ K and any t ∈ [0, 1].

Remark 1.9. In Definition 1.8, under certain conditions, the mapping
η(y, x,m) may reduce to η(y, x). For example when m = 1, then the m-
invex set degenerates to an invex set on K.

We next give a new definition of generalized (s,m)-preinvex Godunova–
Levin function of second kind.

Definition 1.10. Let K ⊆ R be an open m-invex set with respect to
η : K ×K × (0, 1] −→ R. If, for f : K −→ R and any fixed s ∈ [0, 1] and
m ∈ (0, 1], the inequality

f(my + tη(x, y,m)) ≤ f(x)

ts
+

mf(y)

(1− t)s
(1.3)

holds for all x, y ∈ K, t ∈ (0, 1), then we say that f is a generalized (s,m)-
preinvex Godunova–Levin function of second kind with respect to η, and
write f ∈ Q?2(s,m).

Remark 1.11. In Definition 1.10, it is worthwhile to note that a general-
ized (s,m)-preinvex Godunova–Levin function of second kind is an (s,m)-
Godunova–Levin function of second kind on K with respect to η(x, y,m) =
x−my.

Fractional calculus (see [14]) was introduced at the end of the nineteenth
century by Liouville and Riemann. It has become a rapidly growing area
and has found applications in diverse fields ranging from physical sciences
and engineering to biological sciences and economics.
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Definition 1.12. Let f ∈ CF [a, b] and 0 < α ≤ 1. The fuzzy fractional
left Riemann–Liouville operator Iαa+f and fuzzy fractional right Riemann–
Liouville operator Iαb−f are defined, respectively, by

Iαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt, x ∈ [a, b],

and

Iαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt, x ∈ [a, b],

where Γ(α) is the Euler gamma function. In the case of α = 1, the fractional
integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended
the study of fractional Hermite–Hadamard, Grüss, or Ostrowski type in-
equalities to functions of different classes (see [14]).

Since fuzziness is a natural reality different than randomness and deter-
minism, Anastassiou (see [1],[2]) established fuzzy Ostrowski’s inequalities.
These inequalities have been applied to Euler’s beta mapping (see [20]) and
special means such as the arithmetic mean, geometric mean, harmonic mean,
and others. Concepts of fuzzy Riemann integrals were introduced by Wu [4].
A fuzzy Riemann integral is a closed interval whose end points are the clas-
sical Riemann integrals.

Definition 1.13 (see [4]). A fuzzy number is a mapping u : R −→ [0, 1]
with the following properties:

(1) u is upper semi-continuous, i.e., for any small positive ε, u(x) always
is less than u(x0) + ε for all x in some neighborhood of x0;

(2) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)};
(3) u is normal, i.e., there exists x0 ∈ R for which u(x0) = 1;
(4) the closure of the support of u is compact, where supp u =

{
x ∈

R|u(x) > 0
}
.

Definition 1.14 (see [8]). An arbitrary fuzzy number is represented by
an ordered pair of functions (u−(α), u+(α)) , 0 ≤ α ≤ 1, that satisfies the
following requirements:

(1) u−(α) is a bounded left continuous nondecreasing function over [0, 1],
with respect to any α;

(2) u+(α) is a bounded left continuous nonincreasing function over [0, 1],
with respect to any α;

(3) u−(α) ≤ u+(α), 0 ≤ α ≤ 1.

The α-level set [u]α of a fuzzy set u on R is defined as

[u]α =
{
x ∈ R|u(x) ≥ α

}
, for each α ∈ (0, 1], (1.4)
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and as

[u]0 =
⋃

α∈(0,1]

[u]α, for α = 0, (1.5)

where A denotes the closure of A.
For u, v ∈ RF and λ ∈ R, we define the sum [u ⊕ v]α and the product

[λ� u]α by

[u⊕ v]α = [u]α + [v]α, [λ� u]α = λ[u]α, α ∈ [0, 1],

where [u]α + [v]α means the usual addition of two integrals (as subsets of R)
and λ[u]α means the usual product between a scalar and a subset of R.

Define D : RF × RF −→ [0,+∞) by

D(u, v) := sup
α∈[0,1]

max
{
|u−α − v−α |, |u+α − v+α |

}
, (1.6)

where

[v]α = [v−α , v
+
α ], v ∈ RF . (1.7)

It is easy to show that D is a metric on RF and (RF , D) is a complete metric
space with the following properties:

(1) D(u⊕ w, v ⊕ w) = D(u, v), u, v, w ∈ RF ;
(2) D(k � u, k � v) = |k|D(u, v), u, v ∈ RF , ∀k ∈ R;
(3) D(u⊕ v, w ⊕ e) = D(u,w) +D(v, e), u, v, w, e ∈ RF ;
(4) D(u⊕ v, 0̃) ≤ D(u, 0̃) +D(v, 0̃), u, v ∈ RF ;
(5) D(u⊕ v, w) ≤ D(u,w) +D(v, 0̃), u, v, w ∈ RF .

where 0̃ ∈ RF is defined by 0̃(x) = 0 for all x ∈ R.
Let u, v ∈ RF . If there exists a w ∈ RF such that u = v ⊕w, then we call

w the H-difference of u and v; it is denoted by w = u	 v.
Let [a, b] ⊂ R, we say that the function f : [a, b] −→ RF is fuzzy Riemann

integrable on [a, b] if there exist I ∈ RF satisfying the following property:
for every ε > 0 there exists δ > 0 such that for any partition P =

{
a = x0 <

x1 < . . . < xn
}

of [a, b] with ‖P‖ < δ, and any points ξi ∈ [xi, xi+1], i =
0, 1, . . . , n− 1, we have

D

(
n−1∑
i=0

(xi+1 − xi)� f(ξi), I

)
< ε.

We write

I := (FR)

∫ b

a
f(x)dx. (1.8)

We also call an f as above (FR)-integrable.
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Let f : [a, b] −→ RF be fuzzy continuous. Then it is easy to show that

(FR)

∫ b

a
f(x)dx exists and it belongs to RF . Furthermore,[∫ b

a
f(x)dx

]α
=

[∫ b

a
f−α (x)dx,

∫ b

a
f+α (x)dx

]α
, α ∈ [0, 1].

Let f, g ∈ CF [a, b] and c1, c2 ∈ [a, b]. Then

(FR)

∫ b

a

(
c1f(x) + c2g(x)

)
dx = c1(FR)

∫ b

a
f(x)dx+ c2(FR)

∫ b

a
g(x)dx.

Also, if f, g : [a, b] −→ RF are fuzzy continuous functions, then the function

F : [a, b] −→ [0,+∞), defined by F (x) = D
(
f(x), g(x)

)
, is continuous on

[a, b] and

D

(
(FR)

∫ b

a
f(x)dx, (FR)

∫ b

a
g(x)dx

)
≤
∫ b

a
D
(
f(x), g(x)

)
dx. (1.9)

In the following we present the definition of H-differentiability which will
be used in the remaining part of the paper.

Definition 1.15. Let T := [x0, x0 + β] ⊂ R, β > 0. A function f : T −→
RF is H-differentiable at x ∈ T if there exists f ′(x) ∈ RF such that, in the
metric D,

(1) lim
h−→0+

f(x+ h)	 f(x)

h
= lim

h−→0+

f(x)	 f(x− h)

h
= f ′(x), or

(2) lim
h−→0+

f(x)	 f(x+ h)

−h
= lim

h−→0+

f(x− h)	 f(x)

−h
= f ′(x), or

(3) lim
h−→0+

f(x+ h)	 f(x)

h
= lim

h−→0+

f(x− h)	 f(x)

−h
= f ′(x), or

(4) lim
h−→0+

f(x)	 f(x+ h)

−h
= lim

h−→0+

f(x)	 f(x− h)

h
= f ′(x).

We call f ′ the derivative, or H-derivative, of f at x. If f is H-differentiable
at any x ∈ T , we call the f differentiable, or H-differentiable.

In the present paper, the notion of (s,m)-preinvex Godunova–Levin func-
tion of second kind is applied to establish uncertain fuzzy Ostrowski type
integral inequalties. The paper is organized as follows. In Section 2, some
uncertain fuzzy Ostrowski type inequalities for generalized (s,m)-preinvex
Godunova–Levin functions of second kind via fractional integrals are given.
Also, some special cases of our theorems via classical integrals are deduced.
In Section 3, some conclusions and an insight to the future research are
given.
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2. Uncertain fuzzy Ostrowski type inequalities for
generalized (s,m)-preinvex Godunova–Levin functions of

second kind via fractional integrals

In this section, in order to prove our main results regarding some uncertain
fuzzy Ostrowski type inequalities for generalized (s,m)-preinvex Godunova–
Levin functions of second kind via fractional integrals, we need the following
lemma.

Lemma 2.1. Let K ⊆ R be an open m-invex subset with respect to η :
K×K×(0, 1] −→ R for some fixed m ∈ (0, 1], and let a, b ∈ K, a < b, satisfy
ma < ma+η(b, a,m). Assume that f : K −→ RF is a differentiable function
on K◦ and f ′ ∈ CF [ma,ma + η(b, a,m)]

⋂
LF [ma,ma + η(b, a,m)]. Then,

for each x ∈ [ma,ma+ η(b, a,m)] and 0 < α ≤ 1, we have that G = H ⊕ J,
where

G =
ηα(x, a,m)� f(ma+ η(x, a,m))	 ηα(x, b,m)� f(mb+ η(x, b,m))

η(b, a,m)
,

H =
Γ(α+ 1)

η(b, a,m)
�
[
Iα(ma+η(x,a,m))−f(ma)	 Iα(mb+η(x,b,m))−f(mb)

]
,

J =
ηα+1(x, a,m)

η(b, a,m)
� (FR)

∫ 1

0
tα � f ′(ma+ tη(x, a,m))dt

	 ηα+1(x, b,m)

η(b, a,m)
� (FR)

∫ 1

0
tα � f ′(mb+ tη(x, b,m))dt.

Here Γ(α) =

∫ +∞

0
e−uuα−1du is the Euler gamma function.

Proof. By integration by parts and using properties of the α-cut of fuzzy
numbers, we have the following identities:

J =
ηα+1(x, a,m)

η(b, a,m)
�
[
tα � f(ma+ tη(x, a,m))

η(x, a,m)

∣∣∣1
0

	α� (FR)

∫ 1

0

tα−1 � f(ma+ tη(x, a,m))

η(x, a,m)
dt

]
	 ηα+1(x, b,m)

η(b, a,m)
�
[
tα � f(mb+ tη(x, b,m))

η(x, b,m)

∣∣∣1
0

	α� (FR)

∫ 1

0

tα−1 � f(mb+ tη(x, b,m))

η(x, b,m)
dt

]
=
ηα+1(x, a,m)

η(b, a,m)
�
[
f(ma+ η(x, a,m))

η(x, a,m)

	 Γ(α+ 1)

ηα+1(x, a,m)
� Iα(ma+η(x,a,m))−f(ma)

]
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	 ηα+1(x, b,m)

η(b, a,m)
�
[
f(mb+ η(x, b,m))

η(x, b,m)

	 Γ(α+ 1)

ηα+1(x, b,m)
� Iα(mb+η(x,b,m))−f(mb)

]
= G	H.

�

By using Lemma 2.1, one can obtain the following results.

Theorem 2.2. Let A ⊆ [0,+∞) be an open m-invex subset with respect to
η : A×A×(0, 1] −→ [0,+∞) for any fixed m ∈ (0, 1], and let a, b ∈ A, a < b,
satisfy ma < ma + η(b, a,m). Assume that f : A −→ RF is a differentiable
function on A◦, with f ′ ∈ CF [ma,ma+η(b, a,m)]

⋂
LF [ma,ma+η(b, a,m)].

If D
(
f ′(x), 0̃

)
is a generalized (s,m)-preinvex Godunova–Levin function of

second kind on [ma,ma + η(b, a,m)] for any fixed s ∈ [0, 1), then for each
x ∈ [ma,ma+ η(b, a,m)] and 0 < α ≤ 1, we have

D(G,H) ≤ 1

(α− s+ 1)|η(b, a,m)|
D(f ′(x), 0̃)

×
[
|η(x, a,m)|α+1 + |η(x, b,m)|α+1

]
+

mΓ (α+ 1) Γ (1− s)
Γ(α− s+ 2)|η(b, a,m)|

×
[
|η(x, a,m)|α+1D(f ′(a), 0̃) + |η(x, b,m)|α+1D(f ′(b), 0̃)

]
.

(2.1)

Proof. Using Lemma 2.1, we have

D(G,H) ≤ |η(x, a,m)|α+1

|η(b, a,m)|

∫ 1

0
tαD(f ′(ma+ tη(x, a,m)), 0̃)dt

+
|η(x, b,m)|α+1

|η(b, a,m)|

∫ 1

0
tαD(f ′(mb+ tη(x, b,m)), 0̃)dt

≤ |η(x, a,m)|α+1

|η(b, a,m)|

∫ 1

0
tα
[

1

ts
D(f ′(x), 0̃) +

m

(1− t)s
D(f ′(a), 0̃)

]
dt

+
|η(x, b,m)|α+1

|η(b, a,m)|

∫ 1

0
tα
[

1

ts
D(f ′(x), 0̃) +

m

(1− t)s
D(f ′(b), 0̃)

]
dt

=
1

(α− s+ 1)|η(b, a,m)|
D(f ′(x), 0̃)

[
|η(x, a,m)|α+1

+|η(x, b,m)|α+1
]

+
mΓ (α+ 1) Γ (1− s)

Γ(α− s+ 2)|η(b, a,m)|

×
[
|η(x, a,m)|α+1D(f ′(a), 0̃) + |η(x, b,m)|α+1D(f ′(b), 0̃)

]
.

(2.2)

�
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Corollary 2.3. Under the assumptions of Theorem 2.2, putting α = 1,
we get

D(P,Q) ≤ 1

(2− s)|η(b, a,m)|
D(f ′(x), 0̃)

[
η2(x, a,m) + η2(x, b,m)

]
+
mβ(2, 1− s)
|η(b, a,m)|

[
η2(x, a,m)D(f ′(a), 0̃) + η2(x, b,m)D(f ′(b), 0̃)

]
,

where

P =
η(x, a,m)� f(ma+ η(x, a,m))	 η(x, b,m)� f(mb+ η(x, b,m))

η(b, a,m)
,

Q =
1

η(b, a,m)
�

[
(FR)

∫ ma+η(x,a,m)

ma
f(u)du	 (FR)

∫ mb+η(x,b,m)

mb
f(u)du

]
.

Remark 2.4. In Theorem 2.2, if we choose m = 1 and η(x, y,m) = x−my,
then inequality (2.1) reduces to

D

(
(x− a)α 	 (x− b)α

b− a
� f(x),

Γ(α+ 1)

b− a
�
[
Iαx−f(a)	 Iαx−f(b)

])
≤ 1

(α− s+ 1)(b− a)
D(f ′(x), 0̃)

[
(x− a)α+1 + (b− x)α+1

]
+

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)(b− a)

[
(x− a)α+1D(f ′(a), 0̃) + (b− x)α+1D(f ′(b), 0̃)

]
.

The corresponding version for powers of the first derivative is contained
in the following results.

Theorem 2.5. Let A, a, b, and f be the same as in Theorem 2.2. If
Dq
(
f ′(x), 0̃

)
is a generalized (s,m)-preinvex Godunova–Levin function of

second kind on [ma,ma + η(b, a,m)] for any fixed s ∈ [0, 1), q > 1, p−1 +
q−1 = 1, and 0 < α ≤ 1, then for each x ∈ [ma,ma+ η(b, a,m)], we have

D(G,H) ≤ 1

(1 + pα)1/p
1

(1− s)1/q
1

|η(b, a,m)|

×
{
|η(x, a,m)|α+1

[
Dq(f ′(x), 0̃) +mDq(f ′(a), 0̃)

] 1
q

+|η(x, b,m)|α+1
[
Dq(f ′(x), 0̃) +mDq(f ′(b), 0̃)

] 1
q

}
.

(2.3)

Proof. Suppose that q > 1. Using Lemma 2.1 and Hölder’s inequality, in
view of the first inequality from (2.2), we have

D(G,H) ≤ |η(x, a,m)|α+1

|η(b, a,m)|

(∫ 1

0
tpαdt

) 1
p
(∫ 1

0
Dq(f ′(ma+tη(x, a,m)), 0̃)dt

) 1
q

+
|η(x, b,m)|α+1

|η(b, a,m)|

(∫ 1

0
tpαdt

) 1
p
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×
(∫ 1

0
Dq(f ′(mb+ tη(x, b,m)), 0̃)dt

) 1
q

≤ |η(x, a,m)|α+1

|η(b, a,m)|

(∫ 1

0
tpαdt

) 1
p

×
[∫ 1

0

(
1

ts
Dq(f ′(x), 0̃) +

m

(1− t)s
Dq(f ′(a), 0̃)

)
dt

] 1
q

+
|η(x, b,m)|α+1

|η(b, a,m)|

(∫ 1

0
tpαdt

) 1
p

×
[∫ 1

0

(
1

ts
Dq(f ′(x), 0̃) +

m

(1− t)s
Dq(f ′(b), 0̃)

)
dt

] 1
q

=
1

(1 + pα)1/p
1

(1− s)1/q
1

|η(b, a,m)|

×
{
|η(x, a,m)|α+1

[
Dq(f ′(x), 0̃) +mDq(f ′(a), 0̃)

] 1
q

+|η(x, b,m)|α+1
[
Dq(f ′(x), 0̃) +mDq(f ′(b), 0̃)

] 1
q

}
.

�

Corollary 2.6. Under the assumptions of Theorem 2.5, for α = 1, we
get

D(P,Q) ≤ 1

(p+ 1)1/p
1

(1− s)1/q
1

|η(b, a,m)|

×
{
η2(x, a,m)

[
Dq
(
f ′(x), 0̃

)
+mDq

(
f ′(a), 0̃

)] 1
q

+η2(x, b,m)
[
Dq
(
f ′(x), 0̃

)
+mDq

(
f ′(b), 0̃

)] 1
q

}
.

Remark 2.7. In Theorem 2.5, if we choose m = 1 and η(x, y,m) = x−my,
then inequality (2.3) reduces to

D

(
(x− a)α 	 (x− b)α

b− a
� f(x),

Γ(α+ 1)

b− a
�
[
Iαx−f(a)	 Iαx−f(b)

])
≤ 1

(1 + pα)1/p
1

(1− s)1/q
1

b− a

×
{

(x− a)α+1
[
Dq(f ′(x), 0̃) +Dq(f ′(a), 0̃)

] 1
q

+(b− x)α+1
[
Dq(f ′(x), 0̃) +Dq(f ′(b), 0̃)

] 1
q

}
.

Theorem 2.8. Let A, a, b, and f be the same as in Theorem 2.2. If
Dq
(
f ′(x), 0̃

)
is a generalized (s,m)-preinvex Godunova–Levin function of
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second kind on [ma,ma + η(b, a,m)] for any fixed s ∈ [0, 1), q ≥ 1 and
0 < α ≤ 1, then for each x ∈ [ma,ma+ η(b, a,m)] we have

D(G,H) ≤ 1

(1 + α)
1− 1

q

|η(x, a,m)|α+1

|η(b, a,m)|

×
[
Dq(f ′(x), 0̃)

α− s+ 1
+mDq(f ′(a), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q

+
1

(1 + α)
1− 1

q

|η(x, b,m)|α+1

|η(b, a,m)|

×
[
Dq(f ′(x), 0̃)

α− s+ 1
+mDq(f ′(b), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q

.

(2.4)

Proof. Let q ≥ 1. Using Lemma 2.1, the first inequality from (2.2), and
the well-known power mean inequality, we have

D(G,H) ≤ |η(x, a,m)|α+1

|η(b, a,m)|

(∫ 1

0
tαdt

)1− 1
q

×
(∫ 1

0
tαDq(f ′(ma+ tη(x, a,m)), 0̃)dt

) 1
q

+
|η(x, b,m)|α+1

|η(b, a,m)|

(∫ 1

0
tαdt

)1− 1
q

×
(∫ 1

0
tαDq(f ′(mb+ tη(x, b,m)), 0̃)dt

) 1
q

≤ |η(x, a,m)|α+1

|η(b, a,m)|

(∫ 1

0
tαdt

)1− 1
q

×
[∫ 1

0
tα
(

1

ts
Dq(f ′(x), 0̃) +

m

(1− t)s
Dq(f ′(a), 0̃)

)
dt

] 1
q

+
|η(x, b,m)|α+1

|η(b, a,m)|

(∫ 1

0
tαdt

)1− 1
q

×
[∫ 1

0
tα
(

1

ts
Dq(f ′(x), 0̃) +

m

(1− t)s
Dq(f ′(b), 0̃)

)
dt

] 1
q

=
1

(1 + α)
1− 1

q

|η(x, a,m)|α+1

|η(b, a,m)|

×
[
Dq(f ′(x), 0̃)

α− s+ 1
+mDq(f ′(a), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q
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+
1

(1 + α)
1− 1

q

|η(x, b,m)|α+1

|η(b, a,m)|

×
[
Dq(f ′(x), 0̃)

α− s+ 1
+mDq(f ′(b), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q

.

�

Corollary 2.9. Under the assumptions of Theorem 2.8, if we put α = 1,
we get

D(P,Q)≤
(

1

2

)1− 1
q η2(x, a,m)

|η(b, a,m)|

[
Dq(f ′(x), 0̃)

2− s
+mβ(2, 1−s)Dq(f ′(a), 0̃)

] 1
q

+

(
1

2

)1− 1
q η2(x, b,m)

|η(b, a,m)|

[
Dq(f ′(x), 0̃)

2− s
+mβ(2, 1−s)Dq(f ′(b), 0̃)

] 1
q

.

Remark 2.10. In Theorem 2.8, if we choose m = 1 and η(x, y,m) = x−my,
then inequality (2.4) reduces to

D

(
(x− a)α 	 (x− b)α

b− a
� f(x),

Γ(α+ 1)

b− a
�
[
Iαx−f(a)	 Iαx−f(b)

])

≤ 1

(1 + α)
1− 1

q

(x− a)α+1

b− a

[
Dq(f ′(x), 0̃)

α− s+ 1
+Dq(f ′(a), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q

+
1

(1 + α)
1− 1

q

(b− x)α+1

b− a

[
Dq(f ′(x), 0̃)

α− s+ 1
+Dq(f ′(b), 0̃)

Γ (α+ 1) Γ (1− s)
Γ(α− s+ 2)

] 1
q

.

Remark 2.11. For M > 0 and q ≥ 1, if D(f ′(x), 0̃) ≤M or Dq(f ′(x), 0̃) ≤
M, then by our theorems of this paper, we can get some special kinds of
fuzzy Ostrowski type inequalities.

3. Conclusions

In this paper, we investigated uncertain fuzzy Ostrowski type inequalities
for the functions whose derivatives are generalized (s,m)-preinvex Godunova–
Levin functions of second kind via Riemann–Liouville fractional integrals.
Some special cases of our theorems via classical integrals are also deduced.
These results can be applied to find new inequalities for special means such
as geometric, arithmetic, logarithmic means etc.

We hope that this new class of generalized (s,m)-preinvex Godunova–
Levin functions of second kinds could motivate for fellow researchers and
scientists working in the same domain.

We conclude that our methods considered here may be useful for further
investigations concerning uncertain fuzzy and fuzzy Ostrowski and Hermite–
Hadamard type integral inequalities for various kinds of preinvex functions
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involving classical integrals, Riemann–Liouville fractional integrals, k-frac-
tional integrals, local fractional integrals, fractional integral operators,
q-calculus, (p, q)-calculus, time scale calculus, and conformable fractional
integrals.

Acknowledgements. We thank anonymous referees and editors for their
valuable suggestions regarding the manuscript.
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