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On basicity of the degenerate trigonometric system
with excess

Aydin Sh. Shukurov

Abstract. The basis properties (completeness,minimality and Schauder
basicity) of systems of the form {ω(t)ϕn(t)}, where {ϕn(t)} is an expo-
nential or trigonometric (cosine or sine) systems, have been investigated
in several papers. Concrete examples of the weight function ω(t) are
known for which the system itself is not complete and minimal but has
excess − becomes complete and minimal in corresponding Lp space only
after elimination of some of its elements. The aim of this paper is to
show that if ω(t) is any measurable weight function such that the system
{ω(t) sinnt}n∈N has excess, then neither this system itself, nor a system
obtained from it by elimination of an element, is not a Schauder basis.

1. Introduction

The basis properties (completeness, minimality and Schauder basicity) of
systems of the form {ω(t)ϕn(t)}, where {ϕn(t)} is an exponential or trigono-
metric (cosine or sine) systems have been investigated in many papers (see,
for example, [1, 3−11, 13−16, 18−21, 26]). To our knowledge, the first re-
sult in this direction is [1] in which Babenko gave an example {|t|α ·eint}n∈Z,
where |α| < 1/2 and α 6= 0, answering in the affirmative a question of Bari
[2] on the existence of normalized basis for L2(−π, π) that is not a Riesz
basis. The result of Babenko [1] was then extended by V. F. Gaposhkin
in his famous paper [7], where, in particular, some sufficient condition (on
the weight function ω(t)) for the system {ω(t) · eint}n∈Z to be a basis in
L2(−π, π) was found. Eventually, a necessary and sufficient condition in
terms of the weight function ω(t) which ensures the Schauder basicity of the
exponential system {eint}n∈Z in weighted Lebesgue space Lp,ω()(−π, π) has
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been obtained (see, for example, [9, 10, 16, 20]). Such a condition is the
Muckenhoupt condition with respect to the weight function ω(t):

sup
I

(
1

|I|

∫
I
ω(t)dt

)(
1

|I|

∫
I
ω
− 1
p−1 (t)dt

)p−1
<∞,

where sup is taken over all intervals I and |I| is the length of the interval I.
Note that the study of basicity properties of a system in weighted Lebesgue
spaces Lp,ω() is equivalent to the study of analogous properties of this system
with corresponding degenerate coefficient in the “ordinary” Lebesgue space
Lp. Therefore, the mentioned criterion can also be considered as a necessary
and sufficient condition for the Schauder basicity in Lp of the exponential
system with degenerate coefficients {ω(t)eint}n∈Z.

Note that similar properties also hold true for the trigonometric (sine or
cosine) systems, which can be seen from the cited references.

It is known that there are weight functions ω(t) (not satisfying Muck-
enhoupt condition) for which the system {ω(t)ϕn(t)}, where {ϕn(t)} is an
exponential or trigonometric (cosine or sine) system, has excess − becomes
complete and minimal in Lp space only after elimination of some of its terms.
Only some very special choices of such weight functions were found and
bacisity properties of the corresponding systems with degenerate coefficients
have been studied in the papers [4, 8, 13, 21]. For example, in a very
special choice of the weight function ω(t) basicity properties of the system
{ω(t) sinnt}n∈N are investigated in [4]. It is proved in [4] that in this spe-
cial choise of the weight function ω(t) the system obtained from the original
system by elimination of an element is complete and minimal but is not a
Schauder basis in Lp(0, π) space. The aim of this paper is to show that such
system − the system, obtained from {ω(t) sinnt}n∈N by elimination of an
element is not a Schauder basis for any measurable weight function ω(t).

Remark 1.1. The proof of Theorem 3.1 of the paper [4] contains a gap
− the reasoning given there to prove this theorem is not sufficient to state
the validity of the mentioned theorem. Nevertheless, the statement itself is
true which can be seen from the following result.

Proposition 1.2 (see [26]). Let ω(t) be any measurable function on (0, π)
such that mes{t : ω(t) = 0} = 0 and ω(t) sinnt ∈ Lp(0, π), n ∈ N. Then the
system {ω(t) sinnt}n∈N is complete in Lp(0, π) space.

2. Auxiliary facts

Lemma 2.1. Let ω(t) be any nontrivial measurable function on [0, π] such
that ω(t) sinnt ∈ Lp(0, π), 1 ≤ p <∞, for all n ∈ N. Then

inf
n∈N
‖ω(t) sinnt‖Lp(0,π) 6= 0.
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Proof. Assume the contrary: there is a nontrivial measurable function ω(t)
such that ω(t) sinnt ∈ Lp(0, π) for all n ∈ N and infn∈N ‖ω(t) sinnt‖Lp = 0.
Then there is a subset E ⊂ [0, π] of positive measure such that ω(t) 6= 0 for
all t ∈ E. Moreover, our assumption implies the existence of a subsequence
{nk} of natural numbers for which limk→∞ ‖ω(t) sinnkt‖Lp(E) = 0. Then
there is a subsequence {ω(t) sinmkt} of {ω(t) sinnkt} which converges to
zero a.e. on E (see, for example, [17, p. 157]), i.e., there is a set E′ ⊂ E
such that limk→∞ ω(t) sinmkt = 0 on E′ and mesE′ = mesE > 0. We
obtain from here that limk→∞ sinmkt = 0 for all t ∈ E′. This contradicts
the Cantor–Lebesgue theorem (see, for example [17, p. 278]). The lemma is
proved. �

Remark 2.2. Note that the proof of Lemma 2.1 is a modification of the
proof of Lemma 2.2 from author’s paper [22].

Lemma 2.3. If the system {ω(t)sinnt}n∈N\{k0} is complete in Lp(0, π),

then t(t−π)
ω(t) /∈ Lq(0, π), where 1

p + 1
q = 1.

Proof. Assume the contrary: t(t−π)
ω(t) ∈ Lq(0, π). Then, sin k0t

ω(t) ∈ Lq(0, π).

The conditions posed on the function ω(t) imply that sin k0t
ω(t) is a nontrivial

function. Moreover,∫ π

0

sin k0t

ω(t)
· ω(t) sinntdt =

∫ π

0
sin k0t · sinntdt = 0,

for all n 6= k0. But this contradicts the fact that {ω(t) sinnt}n∈N\{k0} is
complete in Lp(0, π). The lemma is proved. �

Lemma 2.4. Let ξ be any complex number and let n,m be any natural
numbers such that n 6= m. Then the function sinnt + ξ · sinmt may have
only finite number of zeros in the segment [0, π].

Proof. Assume the contrary: the function sinnt + ξ · sinmt has an infi-
nite number of zeros. Let {zn}∞n=1 ⊂ [0, π] be its zeros. By the Bolzano–
Weierstrass theorem, the sequence {zn}∞n=1 has a limit point in [0, π]. There-
fore, since the function sinnz + ξ · sinmz is an entire function on the whole
complex plane, the uniqueness theorem for analytic functions implies that
sinnt + ξ · sinmt ≡ 0 on the segment [0, π]. This means that the system
of functions {sinnt, sinmt} is linearly dependent system. Contradiction:
since the system is orthonormal, it is linearly independent. The lemma is
proved. �

Lemma 2.5. Let ω(t) be any measurable function on (0, π) and let N0 be
any natural number. The relation ω(t) sinnt ∈ Lp(0, π), n ≥ N0, is possible
if and only if t(t− π)ω(t) ∈ Lp(0, π).



252 AYDIN SH. SHUKUROV

Proof. Necessity. Denote the zeros of the function sinN0t lying in (0, π)
by z1, . . . , zN0−1. It is easy to see that there are a natural number ki, a
small neighbourhood Ui of the point zi and a positive number αi such that
| sin kit| > αi for all t ∈ Ui and i ∈ {1, . . . , N0 − 1}.

Take arbitrary i ∈ {1, . . . , N0 − 1} and write the function ω(t) sin kit in
the form

ω(t) sin kit = t(t− π)ω(t) · sin kit

t(t− π)
.

There is a positive number µi such that | sin kitt(t−π) | > µi for all t ∈ Ui.

Therefore the estimation

|ω(t) sin kit| ≥ µi · |t(t− π)ω(t)|, t ∈ Ui,
holds. Since ω(t) sin kit ∈ Lp(Ui), the last relation implies that t(t−π)ω(t) ∈
Lp(Ui).

Write the function ω(t) sinN0t in the following form:

ω(t) sinN0t = t(t− π)ω(t) · sinN0t

t(t− π)
. (1)

Consider an auxiliary function, defined on [0, π] \
⋃N0−1
i=1 Ui, by the formula

Φ(t) =


sinN0t
t(t−π) , if t ∈ (0, π);

−N0
π , if t = 0;

(−1)N0N0

π , if t = π.

It is evident that the function Φ(t) is continuous and never vanishes at

the closed set [0, π]\
⋃N0−1
i=1 Ui. Therefore, there is a positive number m such

that |Φ(t)| > m for all t ∈ [0, π] \
⋃N0−1
i=1 Ui. Using these inequalities in (1),

we obtain the estimation

|ω(t) sinN0t| ≥ m · |t(t− π)ω(t)|, t ∈ [0, π] \
N0−1⋃
i=1

Ui.

This estimation implies that

t(t− π)ω(t) ∈ Lp([0, π] \
N0−1⋃
i=1

Ui),

since ω(t) sinN0t ∈ Lp(0, π) by the condition of the lemma. Since we have
also t(t − π)ω(t) ∈ Lp(Ui) for all i ∈ {1, . . . , N0 − 1}, the necessity part of
the lemma is proved.

Sufficiency. Assume that t(t− π)ω(t) ∈ Lp(0, π). Take arbitrary natural
number n and write the function ω(t) sinnt in the form

ω(t) sinnt = t(t− π)ω(t) · sinnt

t(t− π)
. (2)
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Consider an auxiliary function

Φn(t) =


sinnt
t(t−π) , if t ∈ (0, π);

−n
π , if t = 0;

(−1)nn
π , if t = π.

It is evident that the function Φn(t) is continuous on [0, π]. Therefore, there
is a number Mn such that |Φn(t)| < Mn for all t ∈ [0, π]. Using these
inequalities in (2), we obtain the estimation

|ω(t) sinnt| ≤Mn · |t(t− π)ω(t)|, t ∈ [0, π].

Since t(t−π)ω(t) ∈ Lp(0, π), the last estimation implies ω(t) sinnt ∈ Lp(0, π).
The lemma is proved. �

Lemma 2.6. Let ω(t) be a measurable function on (0, π) such that
ω(t) sinnt ∈ Lp(0, π) for all sufficiently large values of n. Then ω(t) sinnt ∈
Lp(0, π) for all values of n.

Proof. The validity of this fact follows directly from Lemma 2.5. �

Lemma 2.7. If the system {ω(t) sinnt}n∈N\{k0} is minimal in Lp(0, π),
then it has a biorthogonal system {bn(t)}N\{k0} which is of the form

bn(t) =
2

π
· sinnt+ ξn · sin k0t

ω(t)
(3)

for all sufficiently large values of n, where ξn are some complex numbers.

Proof. The fact that {ω(t) sinnt}n∈N\{k0} has a biorthogonal system fol-
lows from its minimality. Denote the biorthogonal system by {bn(t)}N\{k0}.
Take arbitrary sufficiently large natural number n 6= k0 (n > k0 + 2 is suffi-
cient for our purposes). By the definition of the biorthogonal system,∫ π

0
bn(t) · ω(t) sin ktdt = 0, k 6= n, k0,

and ∫ π

0
bn(t) · ω(t) sinntdt = 1.

These relations imply the validity of the equality∫ π

0
bn(t) · ω(t) sin ktdt = ξn,k (4)

for all k = −1, 0, 1, 2, 3, . . . , where numbers ξn,k are defined as

ξn,k =


−ξn, if k = −1;

ξn, if k = 1;

1, if k = n;

0, if k 6= −1, 1, n;
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if k0 = 1, and as

ξn,k =


ξn, if k = k0;

1, if k = n;

0, if k 6= k0, n;

if k0 > 1, where ξn are some complex numbers.
Relations (4) imply that∫ π

0
bn(t) · ω(t) sin(k − 1)tdt = ξn,k−1,∫ π

0
bn(t) · ω(t) sin(k + 1)tdt = ξn,k+1

for all k = 0, 1, 2, 3, . . . . By subtracting the first of these equalities from the
latter one, we obtain that∫ π

0
bn(t)ω(t) sin t · cos ktdt =

ξn,k+1 − ξn,k−1
2

(5)

for all k = 0, 1, 2, 3, . . . .
Since ω(t) sin t ∈ Lp(0, π) (apply Lemma 2.6 if k0 = 1), bn(t)ω(t) sin t ∈

L1(0, π). Therefore, relations (5), along with the fact that the Fourier coeffi-
cients of a summable function with respect to the cosine system are unique,
imply that

bn(t)ω(t) sin t =
1

π
· ξn,1 − ξn,−1

2
+

2

π

∞∑
k=1

ξn,k+1 − ξn,k−1
2

cos kt.

Taking into account the definition of numbers ξn,k given above, we find from
here the validity of the statement of the lemma. �

For simplicity, let us denote

Φn(t) = sinnt+ ξn sin k0t.

Lemma 2.8. If limn→∞ ξn = 0, then:
1) there is a natural number n0 such that Φ′n0

(0) 6= 0 and Φ′n0
(π) 6= 0;

2) given any number t0 ∈ (0, π), there is a natural number n0 such that
Φn0(t0) 6= 0.

Proof. Part 1) follows from the fact that |ξn| 6= n/k0 for all sufficiently
large values of n. Part 2) of the lemma follows from the fact that
limn→∞ sinnt0 = 0 is possible if and only if sin t0 = 0. The lemma is
proved. �

Lemma 2.9. If the system {ω(t) sinnt}n∈N\{k0} is complete and mini-
mal in Lp(0, π), then the numbers ξn in (3) are uniquely determined and
limn→∞ ξn 6= 0 (if this limit exists).
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Proof. The uniqueness of the numbers ξn follows from the fact that a
biorthogonal system of the complete and minimal system is unique.

To prove the second part, assume the contrary: limn→∞ ξn = 0.
By Lemma 2.8, there is a natural number n0 for which Φ′n0

(0) 6= 0 and
Φ′n0

(π) 6= 0. The function sinn0t + ξn0 sin k0t may have (see Lemma 2.4) a
finite number of zeros on [0, π]. If it has no zeros, then the relation bn0(t) ∈
Lq(0, π) implies that 1

ω(t) ∈ Lq(0, π) which is impossible by Lemma 2.3.

Now, assume that sinn0t + ξn0 sin k0t has m zeros on [0, π] and let z1 =
0, z2 = π, . . . , zm be its zeros. It is easy to see (Lemma 2.8) that for every
i 6= 1, 2 there are a natural number ni, a neighbourhood Ui of the point zi
and a positive number αi such that | sinnit+ ξni sin k0t| > αi for all t ∈ Ui.
Therefore, the relation bn(t) ∈ Lq(0, π) implies that

sinnit+ ξni sin k0t

ω(t)
∈ Lq(Ui),

and thus
1

ω(t)
∈ Lq(Ui), i 6= 1, 2. (6)

Write the function bn0(t) in the following form:

bn0(t) =
2

π
· t(t− π)

ω(t)
· g0(t), (7)

where

g0(t) =
sinn0t+ ξn0 sin k0t

t(t− π)
.

If we extend the definition of the function g0(t) to the points 0 and π by
assigning values −Φ′n0

(0)/π and Φ′n0
(π)/π at the points 0 and π, respectively,

it is easy to see that the obtained function is continuous and never vanishes at
the compact set [0, π]\

⋃m
i 6=1,2 Ui. Then, according to the Weierstass theorem,

there is a positive number α such that |g0(t)| > α for all t ∈ [0, π]\
⋃m
i 6=1,2 Ui.

Therefore, the relation bn0(t) ∈ Lq(0, π) and representation (7) imply that
t(t−π)
ω(t) ∈ Lq

(
[0, π] \

⋃m
i 6=1,2 Ui

)
. This relation and (6) imply that t(t−π)

ω(t) ∈
Lq(0, π) which contradicts Lemma 2.3. The lemma is proved. �

3. Main result and its proof

Theorem 3.1. Let ω(t) be a measurable function and let k0 be a natural
number. Then the system {ω(t) sinnt}n∈N\{k0} is not a Schauder basis in
the Lp(0, π) space.

Proof. Assume the contrary: there is a measurable function ω(t) and a
natural number k0 such that the system {ω(t) sinnt}n∈N\{k0} is a Schauder
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basis in Lp(0, π). Then ω(t) sin k0t ∈ Lp(0, π) by Lemma 2.6. Therefore, it
has an expansion (in the Lp(0, π) norm) of the form

ω(t) sin k0t =

∞∑
n=1,n 6=k0

cn · ω(t) sinnt. (8)

Take an arbitrary sufficiently large natural number n 6= k0 (the relation
n > k0+2 is sufficient for our reasonings to hold). Applying the biorthogonal
system (3) to both sides of (8), we obtain that cn = ξn. Thus, the series∑∞

n=1,n 6=ko ξn · ω(t) sinnt is convergent. Therefore, by a necessary condition
for the convergence of the series,

lim
n→∞

‖ξn · ω(t) sinnt‖Lp(0,π) = 0.

This equality and Lemma 2.1 imply that limn→∞ ξn = 0. But this is impos-
sible by Lemma 2.9. The theorem is proved. �

Note that negative results on Schauder basicity of some systems of a
certain form were also studied earlier in papers [12, 22−25].
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