On the properties of k-balancing and k-Lucas-balancing numbers

Prasanta Kumar Ray

Abstract

The k-Lucas-balancing numbers are obtained from a special sequence of squares of k-balancing numbers in a natural form. In this paper, we will study some properties of k-Lucas-balancing numbers and establish relationship between these numbers and k-balancing numbers.

1. Introduction

Balancing numbers and Lucas-balancing numbers cover a wide range of interest for many number theorists in the recent years. Balancing numbers B_{n} are the terms of the sequence $\{0,1,6,35,204, \ldots\}$ that satisfy the recurrence relation

$$
B_{n+1}=6 B_{n}-B_{n-1}, \quad n \geq 1,
$$

beginning with the values $B_{0}=0$ and $B_{1}=1$ (see [1]). On the other hand, the numbers closely associate with the balancing numbers are the Lucasbalancing numbers C_{n} that are the terms of the sequence

$$
\{1,3,17,99,577, \ldots\} .
$$

Lucas-balancing numbers are recursively defined in the same way as balancing numbers but with different initials, that is,

$$
C_{n+1}=6 C_{n}-C_{n-1}, \quad n \geq 1,
$$

with initials $C_{0}=1$ and $C_{1}=3$ (see [6]). Binet's formulas for balancing and Lucas-balancing numbers are useful tools to derive identities for these sequences. They are given by the relations

$$
B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}, \quad C_{n}=\frac{\lambda_{1}^{n}+\lambda_{2}^{n}}{2},
$$

Received September 15, 2016.
2010 Mathematics Subject Classification. 11B39, 11B83.
Key words and phrases. Balancing numbers, Lucas-balancing numbers, k-balancing numbers, k-Lucas-balancing numbers.
http://dx.doi.org/10.12697/ACUTM.2017.21.18
where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$ (see $[1,6]$).
Besides the usual balancing numbers, many kinds of generalizations of these numbers have been presented in the literature (see $[2,3,4,5,7,10]$). In particular, one of the generalizations of balancing numbers, namely k balancing numbers, were studied extensively in [10]. These numbers are defined recursively, depending on one real parameter k, by

$$
B_{k, 0}=0, B_{k, 1}=1, \text { and } B_{k, n+1}=6 k B_{k, n}-B_{k, n-1} \text { for } k \geq 1 .
$$

The first few k-balancing numbers are

$$
\begin{aligned}
& B_{k, 0}=0 \\
& B_{k, 1}=1 \\
& B_{k, 2}=6 k \\
& B_{k, 3}=36 k^{2}-1, \\
& B_{k, 4}=216 k^{3}-12 k, \\
& B_{k, 5}=1296 k^{4}-108 k^{2}+1, \\
& B_{k, 6}=7776 k^{5}-864 k^{3}+18 k \\
& B_{k, 7}=46656 k^{6}-6480 k^{4}+216 k^{2}-1, \\
& B_{k, 8}=279936 k^{7}-46656 k^{5}+2160 k^{3}-24 k, \text { etc. }
\end{aligned}
$$

It is observed that for $k=1$, the usual sequence of balancing numbers $\{0,1,6,35,204, \ldots\}$ is obtained.

Like balancing numbers, k-balancing numbers are also generated through matrices which are called k-balancing matrices and studied in [11]. According to Ray [11], the k-balancing matrix denoted by M is a second order matrix whose entries are the first three k-balancing numbers 0,1 and $6 k$, that is

$$
M=\left(\begin{array}{cc}
6 k & -1 \\
1 & 0
\end{array}\right) .
$$

He has also shown that, for any natural number n,

$$
M^{n}=\left(\begin{array}{cc}
B_{k, n+1} & -B_{k, n} \\
B_{k, n} & -B_{k, n-1}
\end{array}\right) .
$$

Indeed, the matrix representation is a powerful technique for proving many identities of k-balancing numbers.
Many important identities such as Catalan identity, Simson's identity etc. for k-balancing numbers are also shown in [11]. Few properties that the k-balancing numbers satisfy are summarized below.

- Binet's formula for k-balancing numbers:

$$
B_{k, n}=\frac{\lambda_{k}^{n}-\lambda_{k}^{-n}}{\lambda_{k}-\lambda_{k}^{-1}}, \lambda_{k}=3 k+\sqrt{9 k^{2}-1} .
$$

- Negative extension of k-balancing numbers: $B_{k,-n}=-B_{k, n}$.
- Catalan's identity for k-balancing numbers:

$$
B_{k, n}^{2}-B_{k, n-r} B_{k, n+r}=B_{k, r}^{2} .
$$

- Simson's or Cassini's identity for k-balancing numbers:

$$
B_{k, n}^{2}-B_{k, n-1} B_{k, n+1}=1
$$

- Generating function for k-balancing numbers:

$$
f_{k}(x)=\frac{x}{1-6 k x-x^{2}} .
$$

- For odd k-balancing numbers, $B_{k, 2 n+1}=B_{k, n+1}^{2}-B_{k, n}^{2}$.
- For even k-balancing numbers, $B_{k, 2 n}=\frac{1}{6 k}\left[B_{k, n+1}^{2}-B_{k, n-1}^{2}\right]$.
- First combinatorial formula for k-balancing numbers:

$$
B_{k, n}=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{i}\binom{n-1-i}{i}(6 k)^{n-2 i-1}
$$

- Second combinatorial formula for k-balancing numbers:

$$
B_{k, n}=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 i+1}(6 k)^{n-2 i-1}\left(36 k^{2}-4\right)^{i} .
$$

An application of Binet's formula to k-balancing numbers gives the identity

$$
B_{k, m} B_{k, n+1}-B_{k, m+1} B_{k, n}=B_{k, m-n},
$$

which we call D'Ocagne's identity for k-balancing numbers.

2. Some identities involving k-Lucas-balancing numbers

Though the sequence of k-Lucas-balancing numbers was introduced in [7], in the present article, these numbers are studied more elaborately. In [7], the sequence of k-Lucas-balancing numbers is defined recursively by

$$
\begin{equation*}
C_{k, n+1}=6 k C_{k, n}-C_{k, n-1}, \quad n \geq 1 \tag{2.1}
\end{equation*}
$$

with initial conditions $C_{k, 0}=1, C_{k, 1}=3 k$. The first few k-Lucas-balancing numbers are

$$
\begin{aligned}
& C_{k, 0}=1 \\
& C_{k, 1}=3 k \\
& C_{k, 2}=18 k^{2}-1, \\
& C_{k, 3}=108 k^{3}-9 k \\
& C_{k, 4}=648 k^{4}-72 k^{2}+1, \\
& C_{k, 5}=3888 k^{5}-540 k^{3}+15 k, \\
& C_{k, 6}=23328 k^{6}-3888 k^{4}+162 k^{2}-1, \text { etc. }
\end{aligned}
$$

The present section involves some important identities concerning k -Lucas-balancing numbers. Before establishing the identities, we first prove the following fact.

Lemma 2.1. For any integer n, the number $\left(9 k^{2}-1\right) B_{k, n}^{2}+1$ is a perfect square.

Proof. Using Binet's formula for k-balancing numbers, and since $\lambda_{k}-$ $\lambda_{k}^{-1}=2 \sqrt{9 k^{2}-1}$, we have

$$
\begin{aligned}
B_{k, n}^{2} & =\left(\frac{\lambda_{k}^{n}-\lambda_{k}^{-n}}{\lambda_{k}-\lambda_{k}^{-1}}\right)^{2} \\
& =\frac{\lambda_{k}^{2 n}+\lambda_{k}^{-2 n}-2}{4\left(9 k^{2}-1\right)} .
\end{aligned}
$$

It follows that, for all integer n,

$$
\left(9 k^{2}-1\right) B_{k, n}^{2}+1=\frac{\left[\lambda_{k}^{n}+\lambda_{k}^{-n}\right]^{2}}{4}
$$

which is a perfect square.
Lemma 2.1 leads to the expression

$$
\begin{equation*}
C_{k, n}^{2}=\left(9 k^{2}-1\right) B_{k, n}^{2}+1 \tag{2.2}
\end{equation*}
$$

which yields a first kind of consequence for the generation of the k-Lucasbalancing numbers.

Lemma 2.2 (Binet's formula). The closed form of k-Lucas-balancing numbers is given by

$$
C_{k, n}=\frac{\lambda_{k}^{n}+\lambda_{k}^{-n}}{2}, \lambda_{k}=3 k+\sqrt{9 k^{2}-1} .
$$

Proof. The characteristic equation $\lambda^{2}-6 k \lambda-1=0$ of (2.1) gives the roots $\lambda_{k}=3 k+\sqrt{9 k^{2}-1}$ and $\lambda_{k}^{-1}=3 k-\sqrt{9 k^{2}-1}$. Therefore, the general solution of (2.1) is $C_{k, n}=A \lambda_{k}^{n}+B \lambda_{k}^{-n}$, where A and B are arbitrary constants to be determined. Applying the initial conditions $C_{k, 0}=1$ and $C_{k, 1}=3 k$ for $n=0$ and $n=1$, we obtain $A=1 / 2$ and $B=1 / 2$ and hence $C_{k, n}$.

In particular, for $k=1$, the Binet's formula for Lucas-balancing numbers is obtained.

Lemma 2.3 (Asymptotic behavior). If $C_{k, n}$ are the k-Lucas-balancing numbers, then $\lim _{n \rightarrow \infty} C_{k, n} / C_{k, n-r}=\lambda_{k}^{r}$, where $\lambda_{k}=3 k+\sqrt{9 k^{2}-1}$.

Proof. Since $\lim _{n \rightarrow \infty} B_{k, n} / B_{k, n-r}=\lambda_{k}^{r}$, using (2.2), we get the desired result.

Using Binet's formula for k-Lucas-balancing numbers gives rise to certain important identities concerning these numbers.

Theorem 2.4 (Catalan's identity). For natural numbers n and r with $n \geq r$,

$$
C_{k, n-r} C_{k, n+r}-C_{k, n}^{2}=\frac{1}{2}\left[C_{k, 2 r}-1\right] .
$$

Proof. Using Binet's formula, the left hand side expression reduces to

$$
\frac{\lambda_{k}^{n-r}+\lambda_{k}^{-n+r}}{2}+\frac{\lambda_{k}^{n+r}+\lambda_{k}^{-n-r}}{2}-\left(\frac{\lambda_{k}^{n}+\lambda_{k}^{-n}}{2}\right)^{2}
$$

After some algebraic manipulations, it further simplifies to $\lambda_{k}^{2 r}+\lambda_{k}^{-2 r}-1 / 2$, and the result follows.

In particular, since $C_{k, 2}=18 k^{2}-1$, the Catalan identity for k-Lucasbalancing numbers reduces for $r=1$ to

$$
C_{k, n-1} C_{k, n+1}-C_{k, n}^{2}=9 k^{2}-1
$$

which we call Simson's or Cassini's identity for k-Lucas-balancing numbers. Setting $k=1$ in Simson's identity, the Cassini formula $C_{n-1} C_{n+1}-C_{n}^{2}=8$ for Lucas-balancing numbers is obtained.

Expanding the Binet identity for $C_{k, n}$, and as $\lambda_{k}=3 k+\sqrt{9 k^{2}-1}$, the following combinatorial formula for k-Lucas-balancing numbers can be easily obtained.

Theorem 2.5 (Combinatorial formula for k-Lucas-balancing numbers). Let $\binom{n}{r}$ be the usual notation for binomial coefficient, then

$$
\begin{equation*}
C_{k, n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i}(3 k)^{n-2 i}\left(9 k^{2}-1\right)^{i} \tag{2.3}
\end{equation*}
$$

In particular, for $k=1$ in (2.3), the combinatorial formula

$$
C_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} 8^{i} 3^{n-2 i}
$$

for Lucas-balancing numbers is obtained.
We now present some identities of k-Lucas-balancing numbers that are related to k-balancing numbers.

Proposition 2.6. For $n \geq 1$, we have $B_{k, n+1}-B_{k, n-1}=2 C_{k, n}$.
Proof. The method of induction will apply to prove this result. Clearly, the result holds for $n=1$ as $B_{k, 2}-B_{k, 0}=6 k=2 C_{k, 1}$. Assume that the result holds until $n-1$, that is $2 C_{k, n-2}=B_{k, n-1}-B_{k, n-3}$ and $2 C_{k, n-1}=B_{k, n}-B_{k, n-2}$. By virtue of the recurrence relation (2.1), we have $2 C_{k, n}=6 k \cdot 2 C_{k, n-1}-2 C_{k, n-2}$. The desired result will be obtained by using the hypothesis and the recurrence relation for k-balancing numbers.

It is observed that, for $k=1$, one has $2 C_{n}=B_{n+1}-B_{n-1}$ (see [6]).
A similar proof gives rise to the following identity.
Proposition 2.7. For $n \geq 1$, we have $C_{k, n+1}-C_{k, n-1}=2\left(9 k^{2}-1\right) B_{k, n}$.
Proposition 2.8. For any natural number n, the equality $2 C_{k, n} B_{k, n}=$ $B_{k, 2 n}$ holds.

Proof. It is enough to use Binet's formulas to prove this result.
Theorem 2.9 (Convolution theorem). For $m \geq 1$,

$$
C_{k, n+1} C_{k, m}-C_{k, n} C_{k, m-1}=\left(9 k^{2}-1\right) B_{k, n+m}
$$

Proof. We use the induction on m. Clearly the result holds for $m=1$, because, by virtue of Proposition 2.6 and recurrence relations for k-balancing
and k-Lucas-balancing numbers, we have

$$
\begin{aligned}
C_{k, n+1} C_{k, 1}-C_{k, n} C_{k, 0} & =3 k C_{k, n+1}-C_{k, n} \\
& =\frac{1}{2}\left[6 k C_{k, n+1}-C_{k, n}-C_{k, n}\right] \\
& =\frac{1}{2}\left[C_{k, n+2}-C_{k, n}\right] \\
& =\frac{1}{4}\left[B_{k, n+3}-2 B_{k, n+1}+B_{k, n-1}\right] \\
& =\frac{1}{4}\left[6 k B_{k, n+2}-3 B_{k, n+1}+6 k B_{k, n}-B_{k, n+1}\right] \\
& =\frac{1}{4}\left[6 k B_{k, n+2}-4 B_{k, n+1}+6 k B_{k, n}\right] \\
& =\frac{1}{4}\left[6 k\left(6 k B_{k, n+1}-B_{k, n}\right)-4 B_{k, n+1}+6 k B_{k, n}\right] \\
& =\left(9 k^{2}-1\right) B_{k, n+1} .
\end{aligned}
$$

Assume that the formula is valid until $m-1$. Then,

$$
C_{k, n+1} C_{k, m-1}-C_{k, n} C_{k, m-2}=\left(9 k^{2}-1\right) B_{k, n+m-1}
$$

We proceed to show that the result is valid for m. It is observed that

$$
\begin{aligned}
\left(9 k^{2}-1\right) B_{k, n+m}= & \left(9 k^{2}-1\right)\left[6 k B_{k, n+m-1}-B_{k, n+m-2}\right] \\
= & 6 k\left[C_{k, n+1} C_{k, m-1}-C_{k, n} C_{k, m-2}\right] \\
& -C_{k, n+1} C_{k, m-2}+C_{k, n} C_{k, m-3} \\
= & C_{k, n+1}\left[6 k C_{k, m-1}-C_{k, m-2}\right]-C_{k, n}\left[6 k C_{k, m-2}-C_{k, m-3}\right] \\
= & C_{k, n+1} C_{k, m}-C_{k, n} C_{k, m-1}
\end{aligned}
$$

and the proof completes.
The following result is an immediate consequence of Theorem 2.9, by replacing m by $n+1$.

Corollary 2.10. For $n \geq 1, C_{k, n+1}^{2}+C_{k, n}^{2}=\left(9 k^{2}-1\right) B_{k, 2 n+1}$.
Observation 2.11. In particular, for $k=1$, the identity of Theorem 2.9 reduces to a known formula concerning balancing and Lucas-balancing numbers, $C_{n+1} C_{m}-C_{n} C_{m-1}=8 B_{n+m}$ (see [6]). Further, putting $k=1$ in the expression given in Corollary 2.10 yields $C_{n+1}^{2}-C_{n}^{2}=8 B_{2 n+1}$. It is also observed that, for $m=1$, the expression of Theorem 2.9 leads to $3 k C_{k, n+1}-C_{k, n}=\left(9 k^{2}-1\right) B_{k, n+1}$ which is equivalent to $C_{k, n+2}-3 k C_{k, n+1}=$ $\left(9 k^{2}-1\right) B_{k, n+1}$. Consequently, replacing n by $n-1$ in the last expression gives the formula $C_{k, n+1}-3 k C_{k, n}=\left(9 k^{2}-1\right) B_{k, n}$.

Theorem 2.12 (D'Ocagne's identity). For $m \geq n$,

$$
C_{k, m} C_{k, n+1}-C_{k, m+1} C_{k, n}=-B_{k, m-n}
$$

Proof. By using induction on n, it is obvious that the identity holds for $n=0$, because

$$
C_{k, m} C_{k, 1}-C_{k, m+1} C_{k, 0}=-\left(C_{k, m+1}-3 k C_{k, m}\right)=-\left(9 k^{2}-1\right) B_{k, m},
$$

by Observation 2.10. Assume that the identity holds until $n-1$. That is, by inductive hypothesis, we have

$$
C_{k, m} C_{k, n-1}-C_{k, m+1} C_{k, n-2}=-\left(9 k^{2}-1\right) B_{k, m-(n-2)}
$$

and

$$
C_{k, m} C_{k, n}-C_{k, m+1} C_{k, n-1}=-\left(9 k^{2}-1\right) B_{k, m-(n-1)} .
$$

In the inductive step, using recurrence relation for k-Lucas-balancing numbers, the expression $C_{k, m} C_{k, n+1}-C_{k, m+1} C_{k, n}$ reduces to

$$
C_{k, m}\left(6 k C_{k, n}-C_{k, n-1}\right)-C_{k, m+1}\left(6 k C_{k, n-1}-C_{k, n-2}\right) .
$$

A further simplification leads to

$$
6 k\left(C_{k, m} C_{k, n}-C_{k, m+1} C_{k, n-1}\right)+\left(C_{k, m} C_{k, n-1}+C_{k, m+1}-C_{k, n-2}\right),
$$ and the result follows by using the inductive hypothesis.

Cassini's formula for k-Lucas-balancing numbers can also be obtained from D'Ocagne's identity by setting $n=m-1$.

The k-Lucas-balancing numbers can also be generated through matrices. Let

$$
N=\left(\begin{array}{cc}
3 k & 9 k^{2}-1 \\
1 & 3 k
\end{array}\right)
$$

be the matrix representation of k-Lucas-balancing numbers. Indeed, the matrix N is determined by taking into account the matrix $S=\left(\begin{array}{ll}3 & 8 \\ 1 & 3\end{array}\right)$ which was introduced in [9]. It is easy to verify by induction that

$$
N^{n}=\left(\begin{array}{cc}
C_{k, n} & \left(9 k^{2}-1\right) B_{k, n} \\
B_{k, n} & C_{k, n}
\end{array}\right) .
$$

Consider the matrix

$$
I-s N=\left(\begin{array}{cc}
1-3 k s & -\left(9 k^{2}-1\right) s \\
-s & 1-3 k s
\end{array}\right)
$$

where I denotes the identity matrix of same order as N. The determinant $|I-s N|=1-6 k s+s^{2}$ is nonzero and hence the matrix $I-s N$ is invertible and

$$
(I-s N)^{-1}=\frac{1}{1-6 k s+s^{2}}\left(\begin{array}{cc}
1-3 k s & \left(9 k^{2}-1\right) s \\
s & 1-3 k s
\end{array}\right) .
$$

Further,

$$
(I-s N)^{-1}=\sum_{n=0}^{\infty} s^{n} N^{n}
$$

which follows that

$$
s^{0} N^{0}+s^{1} N^{1}+s^{2} N^{2}+\ldots=\left(\begin{array}{cc}
\frac{1-3 k s}{1-6 k s+s^{2}} & \frac{\left(9 k^{2}-1\right) s}{1-66 s+s^{2}} \\
\frac{1-6 k s+s^{2}}{1-6 k s+s} & \frac{1-6 k s+s^{2}}{1-6 k+}
\end{array}\right) .
$$

Comparing the $(1,1)$ entries from the both sides, the generating function for k-Lucas-balancing numbers $G(s)$ is obtained as follows:

$$
G(s)=C_{k, 0}+s C_{k, 1}+s^{2} C_{k, 2}+\ldots=\sum_{n=0}^{\infty} s^{n} C_{k, n}=\frac{1-3 k s}{1-6 k s+s^{2}} .
$$

An application of the generating function gives the following combinatorial identity for k-Lucas-balancing numbers.

Proposition 2.13. One has

$$
C_{k, n}=\frac{1}{2} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i}(6 k)^{n-2 i} .
$$

Proof. The Chebyshev polynomial of the second kind is given as

$$
\begin{equation*}
\frac{1}{1-2 t z+z^{2}}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i}{i}(2 t)^{n-2 i}\right) z^{n} . \tag{2.4}
\end{equation*}
$$

Putting $z=s$ and $t=3 k$ in (2.4), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} C_{k, n} s^{n} & =\frac{1}{1-6 k s+s^{2}}-\frac{3 k s}{1-6 k s+s^{2}} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i}{i}(6 k)^{n-2 i}\right) s^{n} \\
& -3 k \sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i}{i}(6 k)^{n-2 i}\right) s^{n+1} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i}{i}(6 k)^{n-2 i}\right) s^{n} \\
& -\frac{1}{2} \sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n-i-1}{i}(6 k)^{n-2 i}\right) s^{n}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
C_{k, n} & =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\left\{\binom{n-i}{i}-\frac{1}{2}\binom{n-i-1}{i}\right\}(6 k)^{n-2 i} \\
& =\frac{1}{2} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i} \frac{n}{n-i}\binom{n-i}{i}(6 k)^{n-2 i},
\end{aligned}
$$

which completes the proof.
We end this section by establishing a product formula for k-Lucasbalancing numbers.

Theorem 2.14. For $n \geq 2$, we have

$$
\begin{equation*}
\prod_{i=1}^{n-1} C_{k, 2^{i}}=\frac{1}{6 k 2^{n-1}} B_{k, 2^{n}} \tag{2.5}
\end{equation*}
$$

Proof. Once again the method of induction is used to prove the result. Clearly the result is true for $n=2$, because

$$
\prod_{i=1}^{1} C_{k, 2}=18 k^{2}-1=\frac{1}{12 k} B_{k, 4} .
$$

Assume that the result holds for n. Then, by inductive hypothesis, (2.5) holds. In the inductive step, $\prod_{i=1}^{n} C_{k, 2^{i}}$ splits into the expression $C_{k, 2^{n}} \prod_{i=1}^{n-1} C_{k, 2^{i}}$. Using (2.5), a further simplification leads to

$$
\prod_{i=1}^{n} C_{k, 2^{i}}=\frac{1}{6 k 2^{n-1}} B_{k, 2^{n}} C_{k, 2^{n}}
$$

By virtue of Proposition 2.7, we have $\prod_{i=1}^{n} C_{k, 2^{i}}=\frac{1}{6 k 2^{n}} B_{k, 2^{n+1}}$, which completes the proof.

In particular, for $k=1$, for both balancing and Lucas-balancing numbers, we have $\prod_{i=1}^{n-1} C_{2^{i}}=\frac{1}{6 \cdot 2^{n-1}} B_{2^{n}}$.

3. Some identities involving common factors of k-balancing and k-Lucas-balancing numbers

In this section, we present some generalized identities involving common factors of k-balancing and k-Lucas-balancing numbers. For the derivation of
the identities we shall use Binet's formulas for both these numbers. Recall that Binet's formulas for k-balancing and k-Lucas-balancing numbers are, respectively,

$$
\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \text { and } \frac{\lambda_{k_{1}}^{n}+\lambda_{k_{2}}^{n}}{2}
$$

where $\lambda_{k_{1}}=3 k+\sqrt{9 k^{2}-1}$ and $\lambda_{k_{2}}=3 k-\sqrt{9 k^{2}-1}$. It is observed that

$$
\lambda_{k_{1}}+\lambda_{k_{2}}=6 k, \lambda_{k_{1}}-\lambda_{k_{2}}=2 \sqrt{9 k^{2}-1} \text { and } \lambda_{\mathrm{k}_{1}} \lambda_{\mathrm{k}_{2}}=1
$$

Proposition 3.1. For $n \geq m+1$, we have $B_{k, n+m} B_{k, n-m}-B_{k, n}^{2}=-B_{k, m}^{2}$.
Proof. Using Binet's formula for k-balancing numbers, the left hand side expression reduces to

$$
\frac{1}{\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2}}\left[-\lambda_{k_{1}}^{n+m} \lambda_{k_{2}}^{n-m}-\lambda_{k_{2}}^{n+m} \lambda_{k_{1}}^{n-m}+2\right]
$$

Since $\lambda_{k_{1}} \lambda_{k_{2}}=1$, the expression simplifies to

$$
-\frac{1}{\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2}}\left[\lambda_{k_{1}}^{2 m}+\lambda_{k_{2}}^{2 m}-2\right]
$$

which is $B_{k, m}^{2}$.
The following result can be proved analogously.
Proposition 3.2. For $n \geq m+1, C_{k, n+m} C_{k, n-m}-C_{k, n}^{2}=\left(9 k^{2}-1\right)$.
Proposition 3.3. For $n \geq 1$ and $p \geq 0, B_{k, 4 n+p}-B_{k, p}=2 B_{k, 2 n} C_{k, 2 n+p}$.
Proof. For $n \geq 1$ and $p \geq 0$,

$$
\begin{aligned}
2 B_{k, 2 n} C_{k, 2 n+p} & =\left(\frac{\lambda_{k_{1}}^{2 n}-\lambda_{k_{2}}^{2 n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{n}+\lambda_{k_{2}}^{n}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{4 n+p}-\lambda_{k_{2}}^{4 n+p}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)-\left(\frac{\lambda_{k_{1}}^{2 n+p} \lambda_{k_{2}}^{2 n}-\lambda_{k_{2}}^{2 n+p} \lambda_{k_{1}}^{2 n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, 4 n+p}-\frac{\lambda_{k_{1}}^{p}-\lambda_{k_{2}}^{p}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \\
& =B_{k, 4 n+p}-B_{k, p},
\end{aligned}
$$

which completes the proof.
Proposition 3.4. For $n \geq 1$ and $p \geq 0, B_{k, 4 n+p}+B_{k, p}=2 B_{k, 2 n+p} C_{k, 2 n}$.
Proof. The proof of this result is analogous to Proposition 3.3.
Proposition 3.5. For $n \geq 1$ and $p \geq 0, C_{k, 4 n+p}+C_{k, p}=2 C_{k, 2 n+p} C_{k, 2 n}$.

Proof. For $n \geq 1$ and $p \geq 0$,

$$
\begin{aligned}
2 C_{k, 2 n} C_{k, 2 n+p} & =\left(\lambda_{k_{1}}^{2 n}+\lambda_{k_{2}}^{2 n}\right)\left(\frac{\lambda_{k_{1}}^{2 n+p}+\lambda_{k_{2}}^{2 n+p}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{4 n+p}+\lambda_{k_{2}}^{4 n+p}}{2}\right)-\left(\frac{\lambda_{k_{1}}^{2 n+p} \lambda_{k_{2}}^{2 n}+\lambda_{k_{2}}^{2 n+p} \lambda_{k_{1}}^{2 n}}{2}\right) \\
& =C_{k, 4 n+p}+\frac{\lambda_{k_{1}}^{p}+\lambda_{k_{2}}^{p}}{2} \\
& =C_{k, 4 n+p}+C_{k, p} .
\end{aligned}
$$

This ends the proof.
The following result can be shown similarly.
Proposition 3.6. For $n \geq 1$ and $p \geq 0$,

$$
C_{k, 4 n+p}-C_{k, p}=\left(18 k^{2}-2\right) B_{k, 2 n+p} B_{k, 2 n} .
$$

Proposition 3.7. For $n \geq 1$ and $p \geq 0$,

$$
B_{k, 4 n+p}-B_{k, p}=4 B_{k, n} C_{k, n} C_{k, 2 n+p} .
$$

Proof. For $n \geq 1$ and $p \geq 0$,

$$
\begin{aligned}
4 B_{k, n} C_{k, n} C_{k, 2 n+p} & =4\left(\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{n}+\lambda_{k_{2}}^{n}}{2}\right)\left(\frac{\lambda_{k_{1}}^{2 n+p}+\lambda_{k_{2}}^{2 n+p}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\lambda_{k_{1}}^{3 n+p}+\lambda_{k_{2}}^{3 n+p}+\lambda_{k_{1}}^{n} \lambda_{k_{2}}^{2 n+p}+\lambda_{k_{2}}^{n} \lambda_{k_{1}}^{2 n+p}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{4 n+p}-\lambda_{k_{2}}^{4 n+p}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)-\frac{\lambda_{k_{1}}^{p}-\lambda_{k_{2}}^{p}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \\
& =B_{k, 4 n+p}-B_{k, p},
\end{aligned}
$$

as desired.
The proof of the following proposition is analogous to Proposition 3.5.
Proposition 3.8. For $n \geq 1$ and $p \geq 0$,

$$
C_{k, 4 n+p}-C_{k, p}=\left(36 k^{2}-4\right) B_{k, n} C_{k, n} B_{k, 2 n+p}
$$

Proposition 3.9. For $n \geq 1$ and $p \geq 0, B_{k, 3 n+p}-B_{k, n+p}=2 B_{k, n} C_{k, 2 n+p}$.

Proof. For $n \geq 1$ and $p \geq 0$,

$$
\begin{aligned}
2 B_{k, n} C_{k, 2 n+p} & =2\left(\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{2 n+p}+\lambda_{k_{2}}^{2 n+p}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{3 n+p}-\lambda_{k_{2}}^{3 n+p}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)-\left(\frac{\lambda_{k_{1}}^{2 n+p} \lambda_{k_{2}}^{n}-\lambda_{k_{2}}^{2 n+p} \lambda_{k_{1}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, 3 n+p}-\frac{\lambda_{k_{1}}^{n+p}-\lambda_{k_{2}}^{n+p}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \\
& =B_{k, 3 n+p}-B_{k, n+p}
\end{aligned}
$$

which completes the proof.
Proposition 3.10. For $n \geq 1$ and $p \geq 0$,

$$
B_{k, 3 n+p}+B_{k, n+p}=2 B_{k, 2 n+p} C_{k, n}
$$

Proof. The proof of this result is analogous to Proposition 3.9.
Proposition 3.11. For $n \geq 1$ and $p \geq 0$,

$$
C_{k, 3 n+p}-C_{k, n+p}=\left(18 k^{2}-2\right) B_{k, n} B_{k, 2 n+p}
$$

Proof. For $n \geq 1$ and $p \geq 0$,

$$
\begin{aligned}
\left(18 k^{2}-2\right) B_{k, n} B_{k, 2 n+p} & =\frac{1}{2}\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2} B_{k, n} B_{k, 2 n+p} \\
& =\frac{1}{2}\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2}\left(\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{2 n+p}-\lambda_{k_{2}}^{2 n+p}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{3 n+p}+\lambda_{k_{2}}^{3 n+p}}{2}\right)-\left(\frac{\lambda_{k_{1}}^{2 n+p} \lambda_{k_{2}}^{n}+\lambda_{k_{2}}^{2 n+p} \lambda_{k_{1}}^{n}}{2}\right) \\
& =C_{k, 3 n+p}-\frac{\lambda_{k_{1}}^{n+p}+\lambda_{k_{2}}^{n+p}}{2} \\
& =C_{k, 3 n+p}-C_{k, n+p}
\end{aligned}
$$

as required.
The following result can be shown analogously.
Proposition 3.12. For $n \geq 1$ and $p \geq 0$,

$$
C_{k, 3 n+p}+C_{k, n+p}=2 C_{k, n} C_{k, 2 n+p}
$$

Proposition 3.13. For any natural numbers n, m and r,

$$
B_{k, n+m} B_{k, r+m}-B_{k, n} B_{k, r}=B_{k, m} B_{k, m+n+r}
$$

Proof. For any natural numbers n, m and r,

$$
\begin{aligned}
B_{k, n+m} B_{k, r+m}- & B_{k, n} B_{k, r} \\
= & \frac{\lambda_{k_{1}}^{n+m}-\lambda_{k_{2}}^{n+m}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \frac{\lambda_{k_{1}}^{r+m}-\lambda_{k_{2}}^{r+m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}-\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \frac{\lambda_{k_{1}}^{r}-\lambda_{k_{2}}^{r}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \\
= & \frac{1}{\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2}}\left[\lambda_{k_{1}}^{n+2 m+r}-\lambda_{k_{1}}^{n+r}+\lambda_{k_{2}}^{n+2 m+r}-\lambda_{k_{2}}^{n+r}\right] \\
= & \frac{1}{\left(\lambda_{k_{1}}-\lambda_{k_{2}}\right)^{2}}\left[\lambda_{k_{1}}^{n+m+r} \lambda_{k_{1}}^{m}-\lambda_{k_{1}}^{n+m+r} \lambda_{k_{2}}^{m}\right. \\
& \left.+\lambda_{k_{2}}^{n+m+r} \lambda_{k_{2}}^{m}-\lambda_{k_{2}}^{n+m+r} \lambda_{k_{1}}^{m}\right] \\
= & \frac{\lambda_{k_{1}}^{n+m+r}-\lambda_{k_{2}}^{n+m+r}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \frac{\lambda_{k_{1}}^{m}-\lambda_{k_{2}}^{m}}{\lambda_{k_{1}}-\lambda_{k_{2}}} \\
= & B_{k, m+n+r} B_{k, m},
\end{aligned}
$$

which completes the proof.
Applications of Binet's formulas for k-balancing and k-Lucas-balancing numbers give rise to the following identities.

Proposition 3.14. For any natural numbers n and m,

$$
C_{k, n m} C_{k, n}+\left(9 k^{2}-1\right) B_{k, n m} B_{k, n}=C_{k,(m+1) n} .
$$

Proposition 3.15. For any natural numbers n and m,

$$
B_{k, n m} C_{k, n}+C_{k, n m} B_{k, n}=B_{k,(m+1) n}
$$

Proposition 3.16. For any natural numbers n and m,

$$
C_{k, m+n}^{2}-C_{k, m}^{2}=4\left(9 k^{2}-1\right) B_{k, 2 n+m} B_{k, m}
$$

Proposition 3.17. For any natural numbers n and m,

$$
C_{k, n+m} C_{k, n}-C_{k, n-m} C_{k, n}=\left(9 k^{2}-1\right) B_{k, 2 n} B_{k, m}
$$

Proposition 3.18. For any natural numbers n, m and r,

$$
B_{k, m+2 r n} B_{k, 2 n+m}-B_{k, 2 r n} B_{k, 2 n}=B_{k, 2(r+1) n+m} B_{k, m}
$$

4. Generalized identities on the products of k-balancing and k-Lucas-balancing numbers

In this section, some generalized identities concerning the products of k balancing and k-Lucas-balancing numbers are presented. Once again Binet's formulas play the key role to derive such identities.

Proposition 4.1. For $n \geq m+1, B_{k, n+m}-B_{k, n-m}=2 B_{k, m} C_{k, n}$.

Proof. For $n \geq m+1$,

$$
\begin{aligned}
2 B_{k, m} C_{k, n} & =2\left(\frac{\lambda_{k_{1}}^{m}-\lambda_{k_{2}}^{m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{n}+\lambda_{k_{2}}^{n}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{m+n}-\lambda_{k_{2}}^{m+n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)+\left(\frac{\lambda_{k_{1}}^{m} \lambda_{k_{2}}^{n}-\lambda_{k_{2}}^{m} \lambda_{k_{1}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, m+n}-\left(\lambda_{k_{1}} \lambda_{k_{2}}\right)^{m}\left(\frac{\lambda_{k_{1}}^{n-m}-\lambda_{k_{2}}^{n-m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, m+n}-B_{k, n-m}
\end{aligned}
$$

which ends the proof.
Observation 4.2. For $m=0$, the left hand side expression given in Proposition 4.1 is zero for $n \geq 1$, while for $m=1$ and $m=2$, it reduces to the identities $2 C_{k, n}=B_{k, n+1}-B_{k, n-1}$ for $n \geq 2$ and $6 n C_{k, n}=B_{k, n+2}-B_{k, n-2}$ for $n \geq 3$ and so on.

The following result can be shown similarly.
Proposition 4.3. For $n \geq m+1, C_{k, n+m}-C_{k, n-m}=2\left(9 k^{2}-1\right) B_{k, m} B_{k, n}$.
Proposition 4.4. For $n \geq 1$ and $m \geq 0$,

$$
2 B_{k, n} C_{k, 2 n+m}=B_{k, 3 n+m}-B_{k, n+m}
$$

Proof. For $n \geq 1$ and $m \geq 0$,

$$
\begin{aligned}
2 B_{k, n} C_{k, 2 n+m} & =2\left(\frac{\lambda_{k_{1}}^{n}-\lambda_{k_{2}}^{n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{2 n+m}+\lambda_{k_{2}}^{2 n+m}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{3 n+m}-\lambda_{k_{2}}^{3 n+m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)+\left(\lambda_{k_{1}} \lambda_{k_{2}}\right)^{n}\left(\frac{\lambda_{k_{2}}^{n+m}-\lambda_{k_{1}}^{n+m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, 3 n+m}-B_{k, n+m},
\end{aligned}
$$

which completes the proof.
Observation 4.5. For $m=0$, the expression given in Proposition 4.3 leads to $2 B_{k, n} C_{k, 2 n}=B_{k, 3 n}-B_{k, n}$ for $n \geq 1$, while for $m=1$, it reduces to the identity $2 B_{k, n} C_{k, 2 n+1}=B_{k, 3 n+1}-B_{k, n+1}$ for $n \geq 1$ and so on.

Proposition 4.6. For $n \geq 1$ and $m \geq 0$,

$$
2 B_{k, 2 n+m} C_{k, n}=B_{k, 3 n+m}+B_{k, n+m}
$$

Proof. The proof of this result is similar to Proposition 4.4.
Proposition 4.7. For $n \geq 1$ and $m \geq 0$,

$$
2 B_{k, 2 n} C_{k, 2 n+m}=B_{k, 4 n+m}-B_{k, m}
$$

Proof. For $n \geq 1$ and $m \geq 0$,

$$
\begin{aligned}
2 B_{k, 2 n} C_{k, 2 n+m} & =2\left(\frac{\lambda_{k_{1}}^{2 n}-\lambda_{k_{2}}^{2 n}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)\left(\frac{\lambda_{k_{1}}^{2 n+m}+\lambda_{k_{2}}^{2 n+m}}{2}\right) \\
& =\left(\frac{\lambda_{k_{1}}^{4 n+m}-\lambda_{k_{2}}^{4 n+m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right)+\left(\lambda_{k_{1}} \lambda_{k_{2}}\right)^{2 n}\left(\frac{\lambda_{k_{2}}^{m}-\lambda_{k_{1}}^{m}}{\lambda_{k_{1}}-\lambda_{k_{2}}}\right) \\
& =B_{k, 4 n+m}-B_{k, m},
\end{aligned}
$$

which ends the proof.
The following result can be shown similarly.
Proposition 4.8. For $n \geq 1$ and $m \geq 0$,

$$
2 B_{k, 2 n+m} C_{k, 2 n}=B_{k, 4 n+m}+B_{k, m}
$$

Observation 4.9. For $m=0$, the expressions given in Proposition 4.6 and Proposition 4.7 lead to $2 B_{k, 2 n} C_{k, 2 n}=B_{k, 4 n}$ for $n \geq 1$, while for $m=1$, these expressions reduce to the identities $2 B_{k, 2 n} C_{k, 2 n+1}=B_{k, 4 n+1}-1$ and $2 B_{k, 2 n+1} C_{k, 2 n}=B_{k, 4 n+1}+1$ for $n \geq 1$ and so on.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), 98-105.
[2] A. B́erczes, K. Liptai, and I. Pink, On generalized balancing sequences, Fibonacci Quart. 48 (2010), 121-128.
[3] T. Komatsu and L. Szalay, Balancing with binomial coefficients, Intern. J. Number Theory 10 (2014), 1729-1742.
[4] K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42 (2004), 330-340.
[5] K. Liptai, F. Luca, Á. Pintér, and L. Szalay, Generalized balancing numbers, Indag. Math. (N. S.) 20 (2009), 87-100.
[6] G. K. Panda, Some fascinating properties of balancing numbers, in: Proceedings of Eleventh International Conference on Fibonacci Numbers and Their Applications, Congr. Numer. 194 (2009), 185-189.
[7] B. K. Patel, N. Irmak, and P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep. (Bucur.), in press.
[8] P. K. Ray, Some congruences for balancing and Lucas-balancing numbers and their applications, Integers 14 (2014), Paper No. A8, 8 pp.
[9] P. K. Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Rep. 17(67) (2015), 225-233.
[10] P. K. Ray, On the properties of k-balancing numbers, Ain Shams Eng. J. (2016), in press.
[11] P. K. Ray, Balancing polynomials and their derivatives, Ukrain. Mat. Zh. 69 (2017), 646-663.

```
Sambalpur University, Jyoti-Vihar, Burla-768019, India
```

E-mail address: prasantamath@suniv.ac.in

