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On the properties of k-balancing and
k-Lucas-balancing numbers

PrasanTA KuMAR RAY

ABSTRACT. The k-Lucas-balancing numbers are obtained from a special
sequence of squares of k-balancing numbers in a natural form. In this
paper, we will study some properties of k-Lucas-balancing numbers and
establish relationship between these numbers and k-balancing numbers.

1. Introduction

Balancing numbers and Lucas-balancing numbers cover a wide range
of interest for many number theorists in the recent years. Balancing
numbers B,, are the terms of the sequence {0,1,6,35,204,...} that satisfy
the recurrence relation

Byy1 =68, —B,1, n=>1,
beginning with the values By = 0 and B; =1 (see [1]). On the other hand,

the numbers closely associate with the balancing numbers are the Lucas-
balancing numbers C), that are the terms of the sequence

{1,3,17,99,577,...}.

Lucas-balancing numbers are recursively defined in the same way as
balancing numbers but with different initials, that is,

Cn+1 = GCn - Cn—lv n > 17

with initials Cyp = 1 and C; = 3 (see [6]). Binet’s formulas for balancing
and Lucas-balancing numbers are useful tools to derive identities for these
sequences. They are given by the relations
_ AT =AY o AT+ A5
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where A\; = 3 ++/8 and Ay = 3 — /8 (see [1, 6]).

Besides the usual balancing numbers, many kinds of generalizations of
these numbers have been presented in the literature (see [2, 3, 4, 5, 7, 10]).
In particular, one of the generalizations of balancing numbers, namely k-
balancing numbers, were studied extensively in [10]. These numbers are
defined recursively, depending on one real parameter k, by

Bk,O = 07 Bk71 = 1, and Bk,nJ’,l = GkBk,n - Bk,nfl for k Z 1.

The first few k-balancing numbers are

Byo =0,
Bj1 =1,
By = 6k
B3 = 36k* — 1,

By 4 = 216k® — 12k,

Bys = 1296k — 108k% 41,

By ¢ = TTT6k° — 864k> + 18k,

By.7 = 46656k° — 6480k + 216k% — 1,

Byg = 279936k" — 46656k° + 2160k> — 24k, etc.
It is observed that for £k = 1, the usual sequence of balancing numbers
{0,1,6,35,204, ...} is obtained.

Like balancing numbers, k-balancing numbers are also generated through

matrices which are called k-balancing matrices and studied in [11].

According to Ray [11], the k-balancing matrix denoted by M is a second
order matrix whose entries are the first three k-balancing numbers 0, 1 and

6k, that is
6k —1
M= ( A ) .
He has also shown that, for any natural number n,

Bipnt1  —Bg
M" = ot o).
( Bk,n _Bk,n—l

Indeed, the matrix representation is a powerful technique for proving many
identities of k-balancing numbers.

Many important identities such as Catalan identity, Simson’s identity etc.
for k-balancing numbers are also shown in [11]. Few properties that the
k-balancing numbers satisfy are summarized below.

e Binet’s formula for k-balancing numbers:

AL — AT
Bin M = 3k + V/9k2 —

:)\k—A r
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e Negative extension of k-balancing numbers: By _,, = —Bj, p.
e Catalan’s identity for k-balancing numbers:

2 2
Bk,n - Bk,n*TBkarT‘ = Bk,r'
e Simson’s or Cassini’s identity for k-balancing numbers:

2
Bk,n - Bk,nlek,nJrl =L

e Generating function for k-balancing numbers:
x
filw) = 1 — 6kx — 22’
e For odd k-balancing numbers, By 2,41 = B,% il = B,? -
e For even k-balancing numbers, By, 2, = &[B,anﬂ — Bg’n_l].
e First combinatorial formula for k-balancing numbers:

125+

Bin= Y (-1 (” T Z> (6k)"21,

=0

Second combinatorial formula for k-balancing numbers:

125+

_ 1 n n—2i—1 2 i
Bin = 5y z; <2i +1) (6k) (36k2 — 4)".

An application of Binet’s formula to k-balancing numbers gives the
identity

Bk,mBk,n+1 - Bk,m—i—lBk,n = Bk,m—ny

which we call D’Ocagne’s identity for k-balancing numbers.

2. Some identities involving k-Lucas-balancing numbers

Though the sequence of k-Lucas-balancing numbers was introduced in [7],
in the present article, these numbers are studied more elaborately. In [7],
the sequence of k-Lucas-balancing numbers is defined recursively by

Cin+1 = 6kCrp — Crppm1, n2>1 (2.1)
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with initial conditions Cj g = 1, Cj 1 = 3k. The first few k-Lucas-balancing
numbers are

Ck,O = 17
Ck,l = Bku
Chro = 18k* — 1,

C.3 = 108k — 9k,

Chq = 648K — 72k% 41,

Ch.5 = 3888k> — 540k> + 15k,

C6 = 23328k° — 3888k* + 162k — 1, etc.

The present section involves some important identities concerning k-
Lucas-balancing numbers. Before establishing the identities, we first prove
the following fact.

Lemma 2.1. For any integer n, the number (9k* — 1)B,§ o+ 1 is a perfect
square.

Proof. Using Binet’s formula for k-balancing numbers, and since A\ —

)\,;1 = 2v/9k% — 1, we have

2 (AQ—M"f

B = ALY
A A 2
4(9k2 — 1)
It follows that, for all integer n,

A\ AT 2

Ok —1)B}, +1= AT +4 )
which is a perfect square. O

Lemma 2.1 leads to the expression

Cin=(9K*-1)B;, +1 (2.2)

which yields a first kind of consequence for the generation of the k-Lucas-
balancing numbers.

Lemma 2.2 (Binet’s formula). The closed form of k-Lucas-balancing
numbers is given by

AL+ A"
Crn = F5m M =3k 4+ VOR? — L
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Proof. The characteristic equation A2 —6kA—1 = 0 of (2.1) gives the roots
A = 3k+v9k2 — 1 and )\,;1 = 3k—+/9k2 — 1. Therefore, the general solution
of (2.1) is Cy,, = AN} + BA.", where A and B are arbitrary constants to
be determined. Applying the initial conditions Cyg = 1 and C}; = 3k for
n=0and n =1, we obtain A =1/2 and B = 1/2 and hence Cj,,. O

In particular, for £ = 1, the Binet’s formula for Lucas-balancing numbers
is obtained.

Lemma 2.3 (Asymptotic behavior). If Cy,, are the k-Lucas-balancing
numbers, then lim Cy,/Ckpn—r = A}, where N\ = 3k + V9k? — 1.
n—oo
Proof. Since lim By, /Bgn,—r = A}, using (2.2), we get the desired
n—oo
result. ]

Using Binet’s formula for k-Lucas-balancing numbers gives rise to certain
important identities concerning these numbers.

Theorem 2.4 (Catalan’s identity). For natural numbers n and r with
n>r,

1
Ck,n—rckz,n—i—r - Cl%,n = 5 [Ck,Qr - 1:| .
Proof. Using Binet’s formula, the left hand side expression reduces to

)‘Z_T + )\;n—i-r N )‘Z+T + )\I;n—r - <)\Z + )\’;n>2 |

2 2 2
After some algebraic manipulations, it further simplifies to A\¥" + )\;27" -1/2,
and the result follows. O

In particular, since Cj o = 18k% — 1, the Catalan identity for k-Lucas-
balancing numbers reduces for r = 1 to

Ck,n—lc’k,n—f—l - C]%,n = 9k2 - 17

which we call Simson’s or Cassini’s identity for k-Lucas-balancing numbers.
Setting k = 1 in Simson’s identity, the Cassini formula C,,_1Cp11 — C2 =8
for Lucas-balancing numbers is obtained.

Expanding the Binet identity for Cj ., and as \y = 3k + v9k? — 1, the
following combinatorial formula for k-Lucas-balancing numbers can be easily
obtained.

Theorem 2.5 (Combinatorial formula for k-Lucas-balancing numbers).

Let <Z> be the usual notation for binomial coefficient, then

L3]

Chn = ") (3k) 2 (9K% — 1), (2.3)
k pr <21>

V|3
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In particular, for £ =1 in (2.3), the combinatorial formula

,i
|3

J

C, = (Z) Qign—2i
i=0

for Lucas-balancing numbers is obtained.

We now present some identities of k-Lucas-balancing numbers that are
related to k-balancing numbers.

Proposition 2.6. For n > 1, we have By, ;41 — By pn—1 = 2C 5.

Proof. The method of induction will apply to prove this result. Clearly,
the result holds for n = 1 as By — Brg = 6k = 2C, ;. Assume that
the result holds until n — 1, that is 2Cy,—2 = Bipp—1 — Bipn—3 and
2C% n—1 = B n — Brn—2. By virtue of the recurrence relation (2.1), we have
2Cyn = 6k - 2C) ,—1 — 2C} p—2. The desired result will be obtained by using
the hypothesis and the recurrence relation for k-balancing numbers. O

It is observed that, for k = 1, one has 2C,, = B,,+1 — By,—1 (see [6]).

A similar proof gives rise to the following identity.
Proposition 2.7. Forn > 1, we have Cj, p41 — Crpn—1 = 2(9k? — 1)By. .

Proposition 2.8. For any natural number n, the equality 2C}, By, =
Bk’gn holds.

Proof. It is enough to use Binet’s formulas to prove this result. O

Theorem 2.9 (Convolution theorem). For m > 1,

Ckm,—l—lck,m - Ck:,nck,m—l = (9k2 - 1)Bk,n+m'

Proof. We use the induction on m. Clearly the result holds for m = 1,
because, by virtue of Proposition 2.6 and recurrence relations for k-balancing
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and k-Lucas-balancing numbers, we have
Cin+1Ck1 — CknCro = 3kCh g1 — Crn

1
= — [Gka,nH - C’k,n - Ck,n]

[Chkn+2 — Crnl

[Bk,n+3 - 2Bk,n+l + Bk,n—l]

[GkBk,n+2 - BBk,n—H + 6kiBlg,n - Bk,n—f—l]

[6kBynt2 — 4B 1 + 6kBy )

e Y Eal VI

=1 [6k(6kBrny1 — Bin) — 4Bk i1 + 6k By ]
= (9%% — 1) By 11

Assume that the formula is valid until m — 1. Then,
Ck,n—i—lck,m—l - Ck,nck,m—2 = (9k2 - 1)Bk’,n+m—l'
We proceed to show that the result is valid for m. It is observed that
(9k2 - 1)Bk,n+m = (9k2 - 1)[6kBk,n+m—l - Bk,n+m—2]
= 6k[Ckn+1Ckm-1 — CknChim—2]
- Ck,nJrle,me + Ck,nck,m%S
= Ck,n+1[6kck,mfl - Ck,m72] - Ck,n[Gka,me - Ck,m73]
= Ck,n+lck,m - Ck,nck,m—h
and the proof completes. O
The following result is an immediate consequence of Theorem 2.9, by
replacing m by n + 1.
Corollary 2.10. Forn > 1, C’z’nH + Cl%m = (9k2% — 1) By 2n41-
Observation 2.11. In particular, for £k = 1, the identity of Theorem
2.9 reduces to a known formula concerning balancing and Lucas-balancing
numbers, Cy,11Cy, — C,Cp—1 = 8Bp4+m (see [6]). Further, putting £ = 1
in the expression given in Corollary 2.10 yields C2 11— C? = 8Bgpy1. It
is also observed that, for m = 1, the expression of Theorem 2.9 leads to
3kChnt1—Crn = (9k*—1) By, 1 which is equivalent to C 10— 3kC ni1 =

(9k% — 1)Byj n+1. Consequently, replacing n by n — 1 in the last expression
gives the formula Cy 1 — 3kCh, = (9% — 1) B .

Theorem 2.12 (D’Ocagne’s identity). For m > n,

Ck,mck,n—‘rl - Ck,m—l—lck,n = _Bk,m—n-
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Proof. By using induction on n, it is obvious that the identity holds for
n = 0, because

CrmCri1 — Chom+1Ck0 = —(Crmt1 — 3kChm) = —(9k* — 1) By,

by Observation 2.10. Assume that the identity holds until n — 1. That is,
by inductive hypothesis, we have

CromChin-1 — Chmt1Chn—2 = —(9k* — 1) Bl m—(n—2)

and

Ck,ka,n - Ck,erle,nfl = _(9k2 - 1)Bk,m7(n71)'
In the inductive step, using recurrence relation for k-Lucas-balancing
numbers, the expression Cy ;,Ck nt1 — Ckm+1Ck,n reduces to

Ck,m(ﬁkck,n - Ck,n—l) - Ck,m+1(6kck‘,n—l - Ck,n—?)-
A further simplification leads to
Gk(ok,mckm, - Ck,m-i—lck’,n—l) + (Ck:,mck,n—l + Ck7m+1 - Ck:,n—2)7
and the result follows by using the inductive hypothesis. O

Cassini’s formula for k-Lucas-balancing numbers can also be obtained
from D’Ocagne’s identity by setting n = m — 1.

The k-Lucas-balancing numbers can also be generated through matrices.

Let )
3k 9k°—1
v ()

be the matrix representation of k-Lucas-balancing numbers. Indeed, the

matrix N is determined by taking into account the matrix S = ( i’ g >

which was introduced in [9]. It is easy to verify by induction that

n __ Ck,n (9k2 - 1)Bk,n
N = ( Bk,n Ck,n .

Consider the matrix

_( 1-3ks —(9k*—1)s
I_SN< —s 1— 3ks >’

where I denotes the identity matrix of same order as N. The determinant
|I —sN| =1—6ks+ s is nonzero and hence the matrix I — sN is invertible

and ( ) )
_ 1 1—-3ks (9k“—1)s
— 1—7
(I=sN) _1—6k:s+52< s 1 —3ks >

Further,

e}

(I—sN)"'=> s"N",

n=0
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which follows that

Tarl | 272 1—3ks Ok —1)s
sS'NO + "Nt + > N? 4 . = [ T-6ksts? 1-6ksis® |
1—6ks+s?2 1—6ks+s2

Comparing the (1, 1) entries from the both sides, the generating function for
k-Lucas-balancing numbers G(s) is obtained as follows:

G(s) = Co+ sCr1 + 320k,2 +...= Z §"Crp =

n=0

1—3ks
1 — 6ks + s2°

An application of the generating function gives the following combinatorial
identity for k-Lucas-balancing numbers.

Proposition 2.13. One has
1 ) . n n—1 ;
Cim = 3 (—-1) ( ) ) (6k)" 2.

n—1 7
i=0

Proof. The Chebyshev polynomial of the second kind is given as

. o (3] |
WZZ E(—l)’< ; )(275)”‘21 2" (2.4)

n=0 \ i=0

Putting z = s and t = 3k in (2.4), we get

1 3ks
n _ J—
;Ck’"s - 1—6ks+s2 1—6ks+s2
o [l5] 4 . '
=5 (Y -y ( o ) (6k)"2 | 5"
n=0 \ i=0
o [l5] )
~3k> (—1) < et > (6k)"2 | gt
n=0 =0
o [l3] ‘ ‘
=3 > ( e ) (6k)"2 ) "
n=0 i=0
o [l%] .
_ % (_1>Z ( n 72 —1 ) <6k)n72i s".
n=0 \ ¢=0
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It follows that

=B {() 4 (1
|

> (M ) ek

n—1
i=0

which completes the proof. O
We end this section by establishing a product formula for k-Lucas-
balancing numbers.

Theorem 2.14. For n > 2, we have

n—1 1
C) 9 = ———Bpon. 2.5
}—Il k,2 6kon—1 k2 ( )

Proof. Once again the method of induction is used to prove the result.
Clearly the result is true for n = 2, because

1
1
Cro=18k> —1= — B} 4.
21;[1 k,2 12k k.4

Assume that the result holds for n. Then, by inductive hypothesis,
n

(2.5) holds. In the inductive step, HC,C’QZ- splits into the expression
i=1
Cl.on H?;ll Cj 2. Using (2.5), a further simplification leads to

n

1
Hck,zi = WBk,anmn-
=1
= 1
By virtue of Proposition 2.7, we have 1_[10&21' = WBIC’WH’ which
1=
completes the proof. O

In particular, for £ = 1, for both balancing and Lucas-balancing numbers,
n—1
1

we have H 02i == W‘an
=1

3. Some identities involving common factors of k-balancing
and k-Lucas-balancing numbers

In this section, we present some generalized identities involving common
factors of k-balancing and k-Lucas-balancing numbers. For the derivation of
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the identities we shall use Binet’s formulas for both these numbers. Recall
that Binet’s formulas for k-balancing and k-Lucas-balancing numbers are,
respectively,

MM g MM

Ny — Ny 2
where \g, = 3k + V9k? — 1 and A\, = 3k — V9k? — 1. Tt is observed that

)‘kl + /\k2 = 6k, Akl - /\].C2 =2v/9k2 — 1 and )‘kl)‘kz =1.
Proposition 3.1. Forn > m—+1, we have Bk,n+mBk’n,m—B£’n: —Bivm.

Proof. Using Binet’s formula for k-balancing numbers, the left hand side
expression reduces to

1
+ - + -
(Aky = Aky)? [_)\Zl A A AT 2} '
Since Ak, Ak, = 1, the expression simplifies to
1

_ )\2m + )\2m -9

()\k’l _ )\kz)2 [ k1 ko ]
which is B . O

The following result can be proved analogously.
Proposition 3.2. Forn>m+1, Ci pntmCrn—m — C,gn = (9K —1).
Proposition 3.3. Forn > 1 and p > 0, By ant+p — Brp = 2Bk 2,Ck 2n4p-

Proof. Forn > 1 and p > 0,

AQn _ )\2n AL \R
2B, 20 Crontp = ( o k2> ( o k2>

Ay — Ak 2
An+ 4n+ 2n+ 2n+
e A W S VAT
)\kl - )‘k2 >‘k‘1 - >‘k2
)\P _ )\p

- B Tk ko

k,An+p )\kl — )\k2
= Bk,4n+p - Bk,pa

which completes the proof. ]

Proposition 3.4. Forn > 1 and p > 0, By an+p + Bip = 2Bk 2n4+pCh 2n-
Proof. The proof of this result is analogous to Proposition 3.3. O

Proposition 3.5. Forn >1 and p >0, Cj, an+p + Crp = 2Ck 2n+pCh2n-
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Proof. Forn > 1 and p > 0,

)\2n+p + )\2n+p
QCk,Qan,%H-p = (/\%711 + )‘%Z) (2

<A4n+p + )\4n+p) <A2n+;0)\2n + )\27L+P)\2n>

Ay T Xy
2
= Ck74n+p + Ckvp'

= Ck,4n+p +

This ends the proof. O

The following result can be shown similarly.
Proposition 3.6. Forn>1 andp > 0,
Chantp — Crp = (18%% = 2) By 2n4p B 2n-
Proposition 3.7. Forn>1 andp >0,
B antp — Brp = 4B nCr nCr 2n4p-

Proof. Forn > 1 and p > 0,

>\n _ )\n )\n + )\n )\2n+p + )\2n+p
4Bk’ TLCk‘ an Qn_;’_p = 4 k1 ko k1 ko
7 7 7 /\k1 - )\kg 2 9

_ <)‘Z1 - >\22> ()\?];n—i-p + )\3n+p + )\n )\2n+p + )\n )\2n+p)
1

Ay — Ak
4dn+ 4An+
_ >‘k1 p—)\k2 p B /\ﬁl—)\zQ
Ay — Ay My — Ay
= Bk,4n+p - Bk,p7
as desired. O

The proof of the following proposition is analogous to Proposition 3.5.
Proposition 3.8. Forn >1 and p > 0,
Ck:,4n+p Ck P (36k - 4)Bk an an 2n+p-

Proposition 3.9. Forn > 1 andp > 0, By, 3p4+p—Bin+p = 2B nCk 2n4p-
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Proof. Forn > 1 and p > 0,

2n+ 2n+
— o (MM D R P v
knYk2n+p — )\k: — )\k 2
1 2

3n+p 3In+p 2n4+pyn 2n+pyn
_ (Akl B )\k'Q ) _ ()\kl )\kQ B )\k'Q Ak1)

)\kl — )\kg )\kl — )\kg
n+p _ yn+p
= Blanip — u
- b n p
Ay — Ay

= Bk,3n+p - Bk,n—i—pa

which completes the proof. O
Proposition 3.10. Forn >1 and p > 0,
Bisntp + Bimtp = 2Bk 2n4pChin-
Proof. The proof of this result is analogous to Proposition 3.9. O

Proposition 3.11. Forn >1 and p > 0,
Ck,3n+p - Ck:,n-i—p = (18k2 - 2>Bk7an,2n+p'

Proof. Forn > 1 and p > 0,

1
(18k2 - 2)-Bk,n-Bk,2n—|—p = §(>\k1 - )\kg)sz,an,Zn-l—p
2+ 2n+
:1()\]C _Ak)2< Zl_ ZQ) )\k?p_)\k;lp
2 ! 2 )\kl - )\kz )\kl - )\k2

_ <)\ZL+P + )\?];;H-P) - ()\ZH-PXI;LQ + )\i;H-P)\Zl)
2

2

n-+p n-+p
—C Akl + )\kg
= LUk 3n+p — f

= Ck3n+p — Ckntp
as required.
The following result can be shown analogously.
Proposition 3.12. Forn >1 and p > 0,
Ck,3n+p t Ckntp = 2Ck nCr 2n4p-
Proposition 3.13. For any natural numbers n,m and r,

Bk,n+mBk,r+m - Bk,an,r = Bk,mBk,m—i—n—H‘-
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Proof. For any natural numbers n, m and r,
Bk,n—i—mBk,r-‘rm - Bk:,an:,T
n+m n+m yr+m r+m n n r r
s Y N . At = Mo M~ Ak
Ay — Ak Ay — Ak Aky — by Moy — Ak

1
+2m+ + +2m+ +
()\kl )\k2)2 |:)‘Zl m—+r )‘Zl r )\22 m+r )‘ZQ r
1
>\n+m+r )\m )\n+m+r )\m
()\kl — )\k2)2 [ k1 ky k1 k2

n+m-+rym n+m-+rym
+)\k2 )\kz - )\kg )\kl:|
n+m-+r n+m—+r \ym m
/\kl - )\kg )‘kl T ko
Ay — Ay Ay — Ak

= Bk,m+n+er,ma

which completes the proof. ]

Applications of Binet’s formulas for k-balancing and k-Lucas-balancing
numbers give rise to the following identities.

Proposition 3.14. For any natural numbers n and m,
ChamCrn + (96* = 1) By um B = Ch (m1)n-
Proposition 3.15. For any natural numbers n and m,
B umCrn + CrnmBrn = Bie (mt-1)n-
Proposition 3.16. For any natural numbers n and m,
CF mmin — Chm = 4(9%% = 1) By, 204 m B -
Proposition 3.17. For any natural numbers n and m,
CrntmChin — Cln-mCrin = (9 = 1) Br20 Bjon-
Proposition 3.18. For any natural numbers n,m and r,
Bim+2rn B 2n+m — Br,2rn Bk,2n = B 2(r41)n+mBk,m-
4. Generalized identities on the products of k-balancing and
k-Lucas-balancing numbers

In this section, some generalized identities concerning the products of k-
balancing and k-Lucas-balancing numbers are presented. Once again Binet’s
formulas play the key role to derive such identities.

Proposition 4.1. For n > m +1, By nim — Bin—m = 2Bk mCin-
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Proof. Forn >m+1,

7m 7n_

Ay — Ak 2
(Y (Azz X, — A A)
Ay — ko Ay — Ak
ARTm _ \n—m
= Blnsn — (g Ay)™ [ —2—
k’, + ( k‘l k?2) ( )\kl _ )\k2 )

= Bk:,m—i—n - Bk,n—ma
which ends the proof. ]

Observation 4.2. For m = 0, the left hand side expression given in
Proposition 4.1 is zero for n > 1, while for m = 1 and m = 2, it reduces to the
identities 2CY%, p, = Bg nt+1 — Brn—1 for n > 2 and 6nCy,,, = B pt2 — Brn—2
for n > 3 and so on.

The following result can be shown similarly.
Proposition 4.3. Forn > m+1, Ckntm—Crkn-m = 2(9k*>—1) By B .-
Proposition 4.4. Forn >1 and m > 0,
2B ,Cr.2n+m = Bi3n+m — Brntm-
Proof. For n > 1 and m > 0,

n __\n )\2n+m+)\2n+m
2By Choomim — 2 < k1 k2> ( ky ko

)\kl — )\k2 2

Azn—&-m . )\3n+m )\n-‘,-m . )\n+m
1 ko n ko k1
= Aky A e
( Aky = Ak + D) Ak = Aky

= Bk,3n+m - Bk,n+m7

which completes the proof. ]

Observation 4.5. For m = 0, the expression given in Proposition 4.3
leads to 2By, ,,Ck 2n = B 3n — B for n > 1, while for m = 1, it reduces to
the identity 2By, ,,Ck 2n+1 = Bi,3n+1 — Brnt1 for n > 1 and so on.

Proposition 4.6. Forn >1 and m > 0,

2B 2n4+mChn = Bi3n+m + Brntm-
Proof. The proof of this result is similar to Proposition 4.4. O
Proposition 4.7. Forn >1 and m > 0,

2Bk‘,2n0k,2n+m = Bk74n+m - Bk m:

)
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Proof. For n > 1 and m > 0,

)\271 _ )\277, )\2n+m + )\2n+m
2Bk,2an,2n+m =2 b ko b ko

)\kl — )\/€2 2
)\iner _ )\4n+m AT\
1 ko 2n ko k1
= Ak A — L
/\k1 - )‘kz - ( b k2) <)‘k1 - )‘k2)
= Bk:,4n+m - Bk,mv
which ends the proof. O

The following result can be shown similarly.
Proposition 4.8. Forn >1 and m > 0,
2Bk,2n+m0k,2n = Bk,4n+m + Bk,m~

Observation 4.9. For m = 0, the expressions given in Proposition 4.6
and Proposition 4.7 lead to 2By, 2,Ck 2n = Bj apn for n > 1, while for m =1,
these expressions reduce to the identities 2By, 2,Cj 2n+1 = Bjan+1 — 1 and
23k,2n+10k,2n = Bk,4n+l + 1 for n > 1 and so on.
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