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On the properties of k-balancing and
k-Lucas-balancing numbers

Prasanta Kumar Ray

Abstract. The k-Lucas-balancing numbers are obtained from a special
sequence of squares of k-balancing numbers in a natural form. In this
paper, we will study some properties of k-Lucas-balancing numbers and
establish relationship between these numbers and k-balancing numbers.

1. Introduction

Balancing numbers and Lucas-balancing numbers cover a wide range
of interest for many number theorists in the recent years. Balancing
numbers Bn are the terms of the sequence {0, 1, 6, 35, 204, . . .} that satisfy
the recurrence relation

Bn+1 = 6Bn −Bn−1, n ≥ 1,

beginning with the values B0 = 0 and B1 = 1 (see [1]). On the other hand,
the numbers closely associate with the balancing numbers are the Lucas-
balancing numbers Cn that are the terms of the sequence

{1, 3, 17, 99, 577, . . .}.
Lucas-balancing numbers are recursively defined in the same way as
balancing numbers but with different initials, that is,

Cn+1 = 6Cn − Cn−1, n ≥ 1,

with initials C0 = 1 and C1 = 3 (see [6]). Binet’s formulas for balancing
and Lucas-balancing numbers are useful tools to derive identities for these
sequences. They are given by the relations

Bn =
λn1 − λn2
λ1 − λ2

, Cn =
λn1 + λn2
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where λ1 = 3 +
√

8 and λ2 = 3−
√

8 (see [1, 6]).
Besides the usual balancing numbers, many kinds of generalizations of

these numbers have been presented in the literature (see [2, 3, 4, 5, 7, 10]).
In particular, one of the generalizations of balancing numbers, namely k-
balancing numbers, were studied extensively in [10]. These numbers are
defined recursively, depending on one real parameter k, by

Bk,0 = 0, Bk,1 = 1, and Bk,n+1 = 6kBk,n −Bk,n−1 for k ≥ 1.

The first few k-balancing numbers are

Bk,0 = 0,

Bk,1 = 1,

Bk,2 = 6k

Bk,3 = 36k2 − 1,

Bk,4 = 216k3 − 12k,

Bk,5 = 1296k4 − 108k2 + 1,

Bk,6 = 7776k5 − 864k3 + 18k,

Bk,7 = 46656k6 − 6480k4 + 216k2 − 1,

Bk,8 = 279936k7 − 46656k5 + 2160k3 − 24k, etc.

It is observed that for k = 1, the usual sequence of balancing numbers
{0, 1, 6, 35, 204, . . .} is obtained.

Like balancing numbers, k-balancing numbers are also generated through
matrices which are called k-balancing matrices and studied in [11].
According to Ray [11], the k-balancing matrix denoted by M is a second
order matrix whose entries are the first three k-balancing numbers 0, 1 and
6k, that is

M =

(
6k −1
1 0

)
.

He has also shown that, for any natural number n,

Mn =

(
Bk,n+1 −Bk,n

Bk,n −Bk,n−1

)
.

Indeed, the matrix representation is a powerful technique for proving many
identities of k-balancing numbers.

Many important identities such as Catalan identity, Simson’s identity etc.
for k-balancing numbers are also shown in [11]. Few properties that the
k-balancing numbers satisfy are summarized below.

• Binet’s formula for k-balancing numbers:

Bk,n =
λnk − λ

−n
k

λk − λ−1k

, λk = 3k +
√

9k2 − 1.
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• Negative extension of k-balancing numbers: Bk,−n = −Bk,n.
• Catalan’s identity for k-balancing numbers:

B2
k,n −Bk,n−rBk,n+r = B2

k,r.

• Simson’s or Cassini’s identity for k-balancing numbers:

B2
k,n −Bk,n−1Bk,n+1 = 1.

• Generating function for k-balancing numbers:

fk(x) =
x

1− 6kx− x2
.

• For odd k-balancing numbers, Bk,2n+1 = B2
k,n+1 −B2

k,n.

• For even k-balancing numbers, Bk,2n = 1
6k [B2

k,n+1 −B2
k,n−1].

• First combinatorial formula for k-balancing numbers:

Bk,n =

bn−1
2
c∑

i=0

(−1)i
(
n− 1− i

i

)
(6k)n−2i−1.

• Second combinatorial formula for k-balancing numbers:

Bk,n =
1

2n−1

bn−1
2
c∑

i=0

(
n

2i+ 1

)
(6k)n−2i−1(36k2 − 4)i.

An application of Binet’s formula to k-balancing numbers gives the
identity

Bk,mBk,n+1 −Bk,m+1Bk,n = Bk,m−n,

which we call D’Ocagne’s identity for k-balancing numbers.

2. Some identities involving k-Lucas-balancing numbers

Though the sequence of k-Lucas-balancing numbers was introduced in [7],
in the present article, these numbers are studied more elaborately. In [7],
the sequence of k-Lucas-balancing numbers is defined recursively by

Ck,n+1 = 6kCk,n − Ck,n−1, n ≥ 1 (2.1)
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with initial conditions Ck,0 = 1, Ck,1 = 3k. The first few k-Lucas-balancing
numbers are

Ck,0 = 1,

Ck,1 = 3k,

Ck,2 = 18k2 − 1,

Ck,3 = 108k3 − 9k,

Ck,4 = 648k4 − 72k2 + 1,

Ck,5 = 3888k5 − 540k3 + 15k,

Ck,6 = 23328k6 − 3888k4 + 162k2 − 1, etc.

The present section involves some important identities concerning k-
Lucas-balancing numbers. Before establishing the identities, we first prove
the following fact.

Lemma 2.1. For any integer n, the number (9k2−1)B2
k,n +1 is a perfect

square.

Proof. Using Binet’s formula for k-balancing numbers, and since λk −
λ−1k = 2

√
9k2 − 1, we have

B2
k,n =

(λnk − λ−nk

λk − λ−1k

)2
=
λ2nk + λ−2nk − 2

4(9k2 − 1)
.

It follows that, for all integer n,

(9k2 − 1)B2
k,n + 1 =

[λnk + λ−nk ]2

4

which is a perfect square. �

Lemma 2.1 leads to the expression

C2
k,n = (9k2 − 1)B2

k,n + 1 (2.2)

which yields a first kind of consequence for the generation of the k-Lucas-
balancing numbers.

Lemma 2.2 (Binet’s formula). The closed form of k-Lucas-balancing
numbers is given by

Ck,n =
λnk + λ−nk

2
, λk = 3k +

√
9k2 − 1.
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Proof. The characteristic equation λ2−6kλ−1 = 0 of (2.1) gives the roots

λk = 3k+
√

9k2 − 1 and λ−1k = 3k−
√

9k2 − 1. Therefore, the general solution

of (2.1) is Ck,n = Aλnk + Bλ−nk , where A and B are arbitrary constants to
be determined. Applying the initial conditions Ck,0 = 1 and Ck,1 = 3k for
n = 0 and n = 1, we obtain A = 1/2 and B = 1/2 and hence Ck,n. �

In particular, for k = 1, the Binet’s formula for Lucas-balancing numbers
is obtained.

Lemma 2.3 (Asymptotic behavior). If Ck,n are the k-Lucas-balancing

numbers, then lim
n→∞

Ck,n/Ck,n−r = λrk, where λk = 3k +
√

9k2 − 1.

Proof. Since lim
n→∞

Bk,n/Bk,n−r = λrk, using (2.2), we get the desired

result. �

Using Binet’s formula for k-Lucas-balancing numbers gives rise to certain
important identities concerning these numbers.

Theorem 2.4 (Catalan’s identity). For natural numbers n and r with
n ≥ r,

Ck,n−rCk,n+r − C2
k,n =

1

2

[
Ck,2r − 1

]
.

Proof. Using Binet’s formula, the left hand side expression reduces to

λn−rk + λ−n+r
k

2
+
λn+r
k + λ−n−rk

2
−
(
λnk + λ−nk

2

)2

.

After some algebraic manipulations, it further simplifies to λ2rk + λ−2rk − 1/2,
and the result follows. �

In particular, since Ck,2 = 18k2 − 1, the Catalan identity for k-Lucas-
balancing numbers reduces for r = 1 to

Ck,n−1Ck,n+1 − C2
k,n = 9k2 − 1,

which we call Simson’s or Cassini’s identity for k-Lucas-balancing numbers.
Setting k = 1 in Simson’s identity, the Cassini formula Cn−1Cn+1 − C2

n = 8
for Lucas-balancing numbers is obtained.

Expanding the Binet identity for Ck,n, and as λk = 3k +
√

9k2 − 1, the
following combinatorial formula for k-Lucas-balancing numbers can be easily
obtained.

Theorem 2.5 (Combinatorial formula for k-Lucas-balancing numbers).

Let

(
n
r

)
be the usual notation for binomial coefficient, then

Ck,n =

bn
2
c∑

i=0

(
n
2i

)
(3k)n−2i(9k2 − 1)i. (2.3)
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In particular, for k = 1 in (2.3), the combinatorial formula

Cn =

bn
2
c∑

i=0

(
n
2i

)
8i3n−2i

for Lucas-balancing numbers is obtained.

We now present some identities of k-Lucas-balancing numbers that are
related to k-balancing numbers.

Proposition 2.6. For n ≥ 1, we have Bk,n+1 −Bk,n−1 = 2Ck,n.

Proof. The method of induction will apply to prove this result. Clearly,
the result holds for n = 1 as Bk,2 − Bk,0 = 6k = 2Ck,1. Assume that
the result holds until n − 1, that is 2Ck,n−2 = Bk,n−1 − Bk,n−3 and
2Ck,n−1 = Bk,n−Bk,n−2. By virtue of the recurrence relation (2.1), we have
2Ck,n = 6k · 2Ck,n−1− 2Ck,n−2. The desired result will be obtained by using
the hypothesis and the recurrence relation for k-balancing numbers. �

It is observed that, for k = 1, one has 2Cn = Bn+1 −Bn−1 (see [6]).

A similar proof gives rise to the following identity.

Proposition 2.7. For n ≥ 1, we have Ck,n+1−Ck,n−1 = 2(9k2− 1)Bk,n.

Proposition 2.8. For any natural number n, the equality 2Ck,nBk,n =
Bk,2n holds.

Proof. It is enough to use Binet’s formulas to prove this result. �

Theorem 2.9 (Convolution theorem). For m ≥ 1,

Ck,n+1Ck,m − Ck,nCk,m−1 = (9k2 − 1)Bk,n+m.

Proof. We use the induction on m. Clearly the result holds for m = 1,
because, by virtue of Proposition 2.6 and recurrence relations for k-balancing
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and k-Lucas-balancing numbers, we have

Ck,n+1Ck,1 − Ck,nCk,0 = 3kCk,n+1 − Ck,n

=
1

2
[6kCk,n+1 − Ck,n − Ck,n]

=
1

2
[Ck,n+2 − Ck,n]

=
1

4
[Bk,n+3 − 2Bk,n+1 +Bk,n−1]

=
1

4
[6kBk,n+2 − 3Bk,n+1 + 6kBk,n −Bk,n+1]

=
1

4
[6kBk,n+2 − 4Bk,n+1 + 6kBk,n]

=
1

4
[6k(6kBk,n+1 −Bk,n)− 4Bk,n+1 + 6kBk,n]

= (9k2 − 1)Bk,n+1.

Assume that the formula is valid until m− 1. Then,

Ck,n+1Ck,m−1 − Ck,nCk,m−2 = (9k2 − 1)Bk,n+m−1.

We proceed to show that the result is valid for m. It is observed that

(9k2 − 1)Bk,n+m = (9k2 − 1)[6kBk,n+m−1 −Bk,n+m−2]

= 6k[Ck,n+1Ck,m−1 − Ck,nCk,m−2]

− Ck,n+1Ck,m−2 + Ck,nCk,m−3

= Ck,n+1[6kCk,m−1 − Ck,m−2]− Ck,n[6kCk,m−2 − Ck,m−3]

= Ck,n+1Ck,m − Ck,nCk,m−1,

and the proof completes. �

The following result is an immediate consequence of Theorem 2.9, by
replacing m by n+ 1.

Corollary 2.10. For n ≥ 1, C2
k,n+1 + C2

k,n = (9k2 − 1)Bk,2n+1.

Observation 2.11. In particular, for k = 1, the identity of Theorem
2.9 reduces to a known formula concerning balancing and Lucas-balancing
numbers, Cn+1Cm − CnCm−1 = 8Bn+m (see [6]). Further, putting k = 1
in the expression given in Corollary 2.10 yields C2

n+1 − C2
n = 8B2n+1. It

is also observed that, for m = 1, the expression of Theorem 2.9 leads to
3kCk,n+1−Ck,n = (9k2−1)Bk,n+1 which is equivalent to Ck,n+2−3kCk,n+1 =
(9k2 − 1)Bk,n+1. Consequently, replacing n by n − 1 in the last expression
gives the formula Ck,n+1 − 3kCk,n = (9k2 − 1)Bk,n.

Theorem 2.12 (D’Ocagne’s identity). For m ≥ n,

Ck,mCk,n+1 − Ck,m+1Ck,n = −Bk,m−n.
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Proof. By using induction on n, it is obvious that the identity holds for
n = 0, because

Ck,mCk,1 − Ck,m+1Ck,0 = −(Ck,m+1 − 3kCk,m) = −(9k2 − 1)Bk,m,

by Observation 2.10. Assume that the identity holds until n − 1. That is,
by inductive hypothesis, we have

Ck,mCk,n−1 − Ck,m+1Ck,n−2 = −(9k2 − 1)Bk,m−(n−2)

and
Ck,mCk,n − Ck,m+1Ck,n−1 = −(9k2 − 1)Bk,m−(n−1).

In the inductive step, using recurrence relation for k-Lucas-balancing
numbers, the expression Ck,mCk,n+1 − Ck,m+1Ck,n reduces to

Ck,m(6kCk,n − Ck,n−1)− Ck,m+1(6kCk,n−1 − Ck,n−2).

A further simplification leads to

6k(Ck,mCk,n − Ck,m+1Ck,n−1) + (Ck,mCk,n−1 + Ck,m+1 − Ck,n−2),

and the result follows by using the inductive hypothesis. �

Cassini’s formula for k-Lucas-balancing numbers can also be obtained
from D’Ocagne’s identity by setting n = m− 1.

The k-Lucas-balancing numbers can also be generated through matrices.
Let

N =

(
3k 9k2 − 1
1 3k

)
be the matrix representation of k-Lucas-balancing numbers. Indeed, the

matrix N is determined by taking into account the matrix S =

(
3 8
1 3

)
which was introduced in [9]. It is easy to verify by induction that

Nn =

(
Ck,n (9k2 − 1)Bk,n

Bk,n Ck,n

)
.

Consider the matrix

I − sN =

(
1− 3ks −(9k2 − 1)s
−s 1− 3ks

)
,

where I denotes the identity matrix of same order as N . The determinant
|I − sN | = 1− 6ks+ s2 is nonzero and hence the matrix I − sN is invertible
and

(I − sN)−1 =
1

1− 6ks+ s2

(
1− 3ks (9k2 − 1)s

s 1− 3ks

)
.

Further,

(I − sN)−1 =
∞∑
n=0

snNn,
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which follows that

s0N0 + s1N1 + s2N2 + . . . =

(
1−3ks

1−6ks+s2
(9k2−1)s
1−6ks+s2

s
1−6ks+s2

1−3ks
1−6ks+s2

)
.

Comparing the (1, 1) entries from the both sides, the generating function for
k-Lucas-balancing numbers G(s) is obtained as follows:

G(s) = Ck,0 + sCk,1 + s2Ck,2 + . . . =
∞∑
n=0

snCk,n =
1− 3ks

1− 6ks+ s2
.

An application of the generating function gives the following combinatorial
identity for k-Lucas-balancing numbers.

Proposition 2.13. One has

Ck,n =
1

2

bn
2
c∑

i=0

(−1)i
n

n− i

(
n− i
i

)
(6k)n−2i.

Proof. The Chebyshev polynomial of the second kind is given as

1

1− 2tz + z2
=

∞∑
n=0

bn2 c∑
i=0

(−1)i
(
n− i
i

)
(2t)n−2i

 zn. (2.4)

Putting z = s and t = 3k in (2.4), we get

∞∑
n=0

Ck,ns
n =

1

1− 6ks+ s2
− 3ks

1− 6ks+ s2

=
∞∑
n=0

bn2 c∑
i=0

(−1)i
(
n− i
i

)
(6k)n−2i

 sn

− 3k

∞∑
n=0

bn2 c∑
i=0

(−1)i
(
n− i
i

)
(6k)n−2i

 sn+1

=

∞∑
n=0

bn2 c∑
i=0

(−1)i
(
n− i
i

)
(6k)n−2i

 sn

− 1

2

∞∑
n=0

bn2 c∑
i=0

(−1)i
(
n− i− 1

i

)
(6k)n−2i

 sn.
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It follows that

Ck,n =

bn
2
c∑

i=0

(−1)i
{(

n− i
i

)
− 1

2

(
n− i− 1

i

)}
(6k)n−2i

=
1

2

bn
2
c∑

i=0

(−1)i
n

n− i

(
n− i
i

)
(6k)n−2i,

which completes the proof. �

We end this section by establishing a product formula for k-Lucas-
balancing numbers.

Theorem 2.14. For n ≥ 2, we have

n−1∏
i=1

Ck,2i =
1

6k2n−1
Bk,2n . (2.5)

Proof. Once again the method of induction is used to prove the result.
Clearly the result is true for n = 2, because

1∏
i=1

Ck,2 = 18k2 − 1 =
1

12k
Bk,4.

Assume that the result holds for n. Then, by inductive hypothesis,

(2.5) holds. In the inductive step,

n∏
i=1

Ck,2i splits into the expression

Ck,2n
∏n−1

i=1 Ck,2i . Using (2.5), a further simplification leads to

n∏
i=1

Ck,2i =
1

6k2n−1
Bk,2nCk,2n .

By virtue of Proposition 2.7, we have

n∏
i=1

Ck,2i =
1

6k2n
Bk,2n+1 , which

completes the proof. �

In particular, for k = 1, for both balancing and Lucas-balancing numbers,

we have

n−1∏
i=1

C2i =
1

6 · 2n−1
B2n .

3. Some identities involving common factors of k-balancing
and k-Lucas-balancing numbers

In this section, we present some generalized identities involving common
factors of k-balancing and k-Lucas-balancing numbers. For the derivation of
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the identities we shall use Binet’s formulas for both these numbers. Recall
that Binet’s formulas for k-balancing and k-Lucas-balancing numbers are,
respectively,

λnk1 − λ
n
k2

λk1 − λk2
and

λnk1 + λnk2
2

,

where λk1 = 3k +
√

9k2 − 1 and λk2 = 3k −
√

9k2 − 1. It is observed that

λk1 + λk2 = 6k, λk1 − λk2 = 2
√

9k2 − 1 and λk1λk2 = 1.

Proposition 3.1. For n ≥ m+1, we have Bk,n+mBk,n−m−B2
k,n=−B2

k,m.

Proof. Using Binet’s formula for k-balancing numbers, the left hand side
expression reduces to

1

(λk1 − λk2)2

[
−λn+m

k1
λn−mk2

− λn+m
k2

λn−mk1
+ 2
]
.

Since λk1λk2 = 1, the expression simplifies to

− 1

(λk1 − λk2)2
[
λ2mk1 + λ2mk2 − 2

]
which is B2

k,m. �

The following result can be proved analogously.

Proposition 3.2. For n ≥ m+ 1, Ck,n+mCk,n−m − C2
k,n = (9k2 − 1).

Proposition 3.3. For n ≥ 1 and p ≥ 0, Bk,4n+p−Bk,p = 2Bk,2nCk,2n+p.

Proof. For n ≥ 1 and p ≥ 0,

2Bk,2nCk,2n+p =

(
λ2nk1 − λ

2n
k2

λk1 − λk2

)(
λnk1 + λnk2

2

)

=

(
λ4n+p
k1

− λ4n+p
k2

λk1 − λk2

)
−

(
λ2n+p
k1

λ2nk2 − λ
2n+p
k2

λ2nk1
λk1 − λk2

)

= Bk,4n+p −
λpk1 − λ

p
k2

λk1 − λk2
= Bk,4n+p −Bk,p,

which completes the proof. �

Proposition 3.4. For n ≥ 1 and p ≥ 0, Bk,4n+p +Bk,p = 2Bk,2n+pCk,2n.

Proof. The proof of this result is analogous to Proposition 3.3. �

Proposition 3.5. For n ≥ 1 and p ≥ 0, Ck,4n+p +Ck,p = 2Ck,2n+pCk,2n.
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Proof. For n ≥ 1 and p ≥ 0,

2Ck,2nCk,2n+p =
(
λ2nk1 + λ2nk2

)(λ2n+p
k1

+ λ2n+p
k2

2

)

=

(
λ4n+p
k1

+ λ4n+p
k2

2

)
−

(
λ2n+p
k1

λ2nk2 + λ2n+p
k2

λ2nk1
2

)

= Ck,4n+p +
λpk1 + λpk2

2
= Ck,4n+p + Ck,p.

This ends the proof. �

The following result can be shown similarly.

Proposition 3.6. For n ≥ 1 and p ≥ 0,

Ck,4n+p − Ck,p = (18k2 − 2)Bk,2n+pBk,2n.

Proposition 3.7. For n ≥ 1 and p ≥ 0,

Bk,4n+p −Bk,p = 4Bk,nCk,nCk,2n+p.

Proof. For n ≥ 1 and p ≥ 0,

4Bk,nCk,nCk,2n+p = 4

(
λnk1 − λ

n
k2

λk1 − λk2

)(
λnk1 + λnk2

2

)(
λ2n+p
k1

+ λ2n+p
k2

2

)

=

(
λnk1 − λ

n
k2

λk1 − λk2

)
(λ3n+p

k1
+ λ3n+p

k2
+ λnk1λ

2n+p
k2

+ λnk2λ
2n+p
k1

)

=

(
λ4n+p
k1

− λ4n+p
k2

λk1 − λk2

)
−
λpk1 − λ

p
k2

λk1 − λk2
= Bk,4n+p −Bk,p,

as desired. �

The proof of the following proposition is analogous to Proposition 3.5.

Proposition 3.8. For n ≥ 1 and p ≥ 0,

Ck,4n+p − Ck,p = (36k2 − 4)Bk,nCk,nBk,2n+p.

Proposition 3.9. For n ≥ 1 and p ≥ 0, Bk,3n+p−Bk,n+p = 2Bk,nCk,2n+p.
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Proof. For n ≥ 1 and p ≥ 0,

2Bk,nCk,2n+p = 2

(
λnk1 − λ

n
k2

λk1 − λk2

)(
λ2n+p
k1

+ λ2n+p
k2

2

)

=

(
λ3n+p
k1

− λ3n+p
k2

λk1 − λk2

)
−

(
λ2n+p
k1

λnk2 − λ
2n+p
k2

λnk1
λk1 − λk2

)

= Bk,3n+p −
λn+p
k1
− λn+p

k2

λk1 − λk2
= Bk,3n+p −Bk,n+p,

which completes the proof. �

Proposition 3.10. For n ≥ 1 and p ≥ 0,

Bk,3n+p +Bk,n+p = 2Bk,2n+pCk,n.

Proof. The proof of this result is analogous to Proposition 3.9. �

Proposition 3.11. For n ≥ 1 and p ≥ 0,

Ck,3n+p − Ck,n+p = (18k2 − 2)Bk,nBk,2n+p.

Proof. For n ≥ 1 and p ≥ 0,

(18k2 − 2)Bk,nBk,2n+p =
1

2
(λk1 − λk2)2Bk,nBk,2n+p

=
1

2
(λk1 − λk2)2

(
λnk1 − λ

n
k2

λk1 − λk2

)(
λ2n+p
k1

− λ2n+p
k2

λk1 − λk2

)

=

(
λ3n+p
k1

+ λ3n+p
k2

2

)
−

(
λ2n+p
k1

λnk2 + λ2n+p
k2

λnk1
2

)

= Ck,3n+p −
λn+p
k1

+ λn+p
k2

2
= Ck,3n+p − Ck,n+p,

as required. �

The following result can be shown analogously.

Proposition 3.12. For n ≥ 1 and p ≥ 0,

Ck,3n+p + Ck,n+p = 2Ck,nCk,2n+p.

Proposition 3.13. For any natural numbers n,m and r,

Bk,n+mBk,r+m −Bk,nBk,r = Bk,mBk,m+n+r.
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Proof. For any natural numbers n,m and r,

Bk,n+mBk,r+m −Bk,nBk,r

=
λn+m
k1

− λn+m
k2

λk1 − λk2

λr+m
k1
− λr+m

k2

λk1 − λk2
−
λnk1 − λ

n
k2

λk1 − λk2

λrk1 − λ
r
k2

λk1 − λk2

=
1

(λk1 − λk2)2

[
λn+2m+r
k1

− λn+r
k1

+ λn+2m+r
k2

− λn+r
k2

]
=

1

(λk1 − λk2)2

[
λn+m+r
k1

λmk1 − λ
n+m+r
k1

λmk2

+λn+m+r
k2

λmk2 − λ
n+m+r
k2

λmk1

]
=
λn+m+r
k1

− λn+m+r
k2

λk1 − λk2

λmk1 − λ
m
k2

λk1 − λk2
= Bk,m+n+rBk,m,

which completes the proof. �

Applications of Binet’s formulas for k-balancing and k-Lucas-balancing
numbers give rise to the following identities.

Proposition 3.14. For any natural numbers n and m,

Ck,nmCk,n + (9k2 − 1)Bk,nmBk,n = Ck,(m+1)n.

Proposition 3.15. For any natural numbers n and m,

Bk,nmCk,n + Ck,nmBk,n = Bk,(m+1)n.

Proposition 3.16. For any natural numbers n and m,

C2
k,m+n − C2

k,m = 4(9k2 − 1)Bk,2n+mBk,m.

Proposition 3.17. For any natural numbers n and m,

Ck,n+mCk,n − Ck,n−mCk,n = (9k2 − 1)Bk,2nBk,m.

Proposition 3.18. For any natural numbers n,m and r,

Bk,m+2rnBk,2n+m −Bk,2rnBk,2n = Bk,2(r+1)n+mBk,m.

4. Generalized identities on the products of k-balancing and
k-Lucas-balancing numbers

In this section, some generalized identities concerning the products of k-
balancing and k-Lucas-balancing numbers are presented. Once again Binet’s
formulas play the key role to derive such identities.

Proposition 4.1. For n ≥ m+ 1, Bk,n+m −Bk,n−m = 2Bk,mCk,n.
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Proof. For n ≥ m+ 1,

2Bk,mCk,n = 2

(
λmk1 − λ

m
k2

λk1 − λk2

)(
λnk1 + λnk2

2

)
=

(
λm+n
k1

− λm+n
k2

λk1 − λk2

)
+

(
λmk1λ

n
k2
− λmk2λ

n
k1

λk1 − λk2

)

= Bk,m+n − (λk1λk2)m

(
λn−mk1

− λn−mk2

λk1 − λk2

)
= Bk,m+n −Bk,n−m,

which ends the proof. �

Observation 4.2. For m = 0, the left hand side expression given in
Proposition 4.1 is zero for n ≥ 1, while for m = 1 and m = 2, it reduces to the
identities 2Ck,n = Bk,n+1 −Bk,n−1 for n ≥ 2 and 6nCk,n = Bk,n+2 −Bk,n−2
for n ≥ 3 and so on.

The following result can be shown similarly.

Proposition 4.3. For n ≥ m+1, Ck,n+m−Ck,n−m = 2(9k2−1)Bk,mBk,n.

Proposition 4.4. For n ≥ 1 and m ≥ 0,

2Bk,nCk,2n+m = Bk,3n+m −Bk,n+m.

Proof. For n ≥ 1 and m ≥ 0,

2Bk,nCk,2n+m = 2

(
λnk1 − λ

n
k2

λk1 − λk2

)(
λ2n+m
k1

+ λ2n+m
k2

2

)

=

(
λ3n+m
k1

− λ3n+m
k2

λk1 − λk2

)
+ (λk1λk2)n

(
λn+m
k2

− λn+m
k1

λk1 − λk2

)
= Bk,3n+m −Bk,n+m,

which completes the proof. �

Observation 4.5. For m = 0, the expression given in Proposition 4.3
leads to 2Bk,nCk,2n = Bk,3n −Bk,n for n ≥ 1, while for m = 1, it reduces to
the identity 2Bk,nCk,2n+1 = Bk,3n+1 −Bk,n+1 for n ≥ 1 and so on.

Proposition 4.6. For n ≥ 1 and m ≥ 0,

2Bk,2n+mCk,n = Bk,3n+m +Bk,n+m.

Proof. The proof of this result is similar to Proposition 4.4. �

Proposition 4.7. For n ≥ 1 and m ≥ 0,

2Bk,2nCk,2n+m = Bk,4n+m −Bk,m.
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Proof. For n ≥ 1 and m ≥ 0,

2Bk,2nCk,2n+m = 2

(
λ2nk1 − λ

2n
k2

λk1 − λk2

)(
λ2n+m
k1

+ λ2n+m
k2

2

)

=

(
λ4n+m
k1

− λ4n+m
k2

λk1 − λk2

)
+ (λk1λk2)2n

(
λmk2 − λ

m
k1

λk1 − λk2

)
= Bk,4n+m −Bk,m,

which ends the proof. �

The following result can be shown similarly.

Proposition 4.8. For n ≥ 1 and m ≥ 0,

2Bk,2n+mCk,2n = Bk,4n+m +Bk,m.

Observation 4.9. For m = 0, the expressions given in Proposition 4.6
and Proposition 4.7 lead to 2Bk,2nCk,2n = Bk,4n for n ≥ 1, while for m = 1,
these expressions reduce to the identities 2Bk,2nCk,2n+1 = Bk,4n+1 − 1 and
2Bk,2n+1Ck,2n = Bk,4n+1 + 1 for n ≥ 1 and so on.
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