On a class of vector-valued entire Dirichlet series in n variables

LAKSHIKA CHUTANI, NIRAJ KUMAR, AND GARIMA MANOCHA

ABSTRACT. We consider a class F of entire Dirichlet series in n variables, whose coefficients belong to a commutative Banach algebra E. With a well defined norm, F is proved to be a Banach algebra with identity. Further results on quasi-invertibility, spectrum and continuous linear functionals are proved for elements belonging to F.

1. Introduction

Let E be a commutative Banach algebra with the identity such that all non-null elements of E are invertible. In this case E is also a field. Let

$$f(s_1, s_2, \dots, s_n) = \sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} \dots \sum_{m_n=1}^{\infty} a_{m_1, m_2, \dots, m_n} e^{\left(\lambda_{1m_1} s_1 + \lambda_{2m_2} s_2 + \dots + \lambda_{nm_n} s_n\right)}$$
(1.1)

be an *n*-tuple Dirichlet series, where $a_{m_1,m_2,\dots,m_n} \in E$, $s_j = \sigma_j + it_j$, $j = 1, 2, \dots, n$, and

$$0 < \lambda_{p_1} < \lambda_{p_2} < \dots < \lambda_{p_k} \to \infty$$
 as $k \to \infty$, for $p = 1, 2, \dots, n$

To simplify the form of *n*-tuple Dirichlet series, we use the following notation:

$$s = (s_1, s_2, \dots, s_n) \in \mathbb{C}^n,$$

$$m = (m_1, m_2, \dots, m_n) \in \mathbb{C}^n,$$

$$\lambda_{n_{m_n}} = (\lambda_{1_{m_1}}, \lambda_{2_{m_2}}, \dots, \lambda_{n_{m_n}}) \in \mathbb{R}^n.$$

We further define

$$\lambda_{n_{m_n}}s = \lambda_{1_{m_1}}s_1 + \lambda_{2_{m_2}}s_2 + \dots + \lambda_{n_{m_n}}s_n,$$

Received September 22, 2016.

 $Key\ words\ and\ phrases.$ Dirichlet series; Banach algebra; quasi-inverse; spectrum; total set.

http://dx.doi.org/10.12697/ACUTM.2018.22.01

²⁰¹⁰ Mathematics Subject Classification. 30B50; 47A10; 46A11; 54D65; 17A35.

$$\begin{vmatrix} \lambda_{n_{m_n}} \end{vmatrix} = \lambda_{1_{m_1}} + \lambda_{2_{m_2}} + \dots + \lambda_{n_{m_n}}, \\ |m| = m_1 + m_2 + \dots + m_n. \end{cases}$$

Thus, the series (1.1) can be written as

$$f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nm_n} s}.$$
(1.2)

Janusauskas [1] showed that if there exists a tuple $p > \bar{0} = (0, 0, ..., 0)$ such that

$$\limsup_{|m|\to\infty} \frac{\sum_{k=1}^{\infty} \log m_k}{p\lambda_{n_{m_n}}} = 0, \qquad (1.3)$$

then the domain of absolute convergence of (1.2) coincides with its domain of convergence. Sarkar [6] proved that a necessary and sufficient condition for the series (1.2) with $a_m \in \mathbb{C}$ and satisfying (1.3) to be entire, i.e., to converge in the whole complex plane, is

$$\lim_{|m|\to\infty} \frac{\log|a_m|}{|\lambda_{n_{m_n}}|} = -\infty.$$
(1.4)

Liang and Gao [5] investigated the convergence and growth of n-tuple Dirichlet series and thus established an equivalence relation between order and the coefficients. Vaish [7] proved a necessary and sufficient condition so that Goldberg order of multiple Dirichlet series defining an entire function remained unaltered under rearrangements of the coefficients of the series. Kumar and Manocha in [2] generalised the condition of weighted norm for a Dirichlet series in one variable. In the present paper, we extend some results from [2] and also prove some new results for a Dirichlet series in n variables.

2. Basic results

In this section, some basic results are proved which are required to prove our main results.

Lemma 1. The following conditions are equivalent.

(a)
$$\limsup_{|m|\to\infty} \frac{\log(m_1+m_2+\dots+m_n)}{\lambda_{1nm_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n}} = D < \infty.$$

(b)
$$\limsup_{m_k \to \infty} \frac{\log m_k}{\lambda_{k_{m_k}}} = D_k < \infty, \quad k \in \mathbb{N} = \{1, 2, \dots\}.$$

(c) There exists α , $0 < \infty$, such that the series

$$\sum_{m_1,m_2,\dots,m_n=1}^{\infty} e^{-\alpha \left(\lambda_{1nm_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n}\right)}$$
(2.1)

converges.

Proof. (a) \Rightarrow (b). Let $\epsilon > 0$ be arbitrary. There exists $M_0 = M_0(\epsilon)$ such that

$$\log\left(m_1 + m_2 + \dots + m_n\right) < (D + \epsilon)\left(\lambda_{1_{m_1}} + \lambda_{2_{m_2}} + \dots + \lambda_{n_{m_n}}\right)$$

for $m_1 + m_2 + \cdots + m_n \ge M_0$. According to the relation

$$\sqrt{m_1 m_2 \dots m_n} \leq (m_1 + m_2 + \dots + m_n),$$

we get

$$\frac{\log m_k}{\lambda_{k_{m_k}}} < 2(D+\epsilon) \frac{\lambda_{1n_{m_1}} + \lambda_{2m_2} + \dots + \lambda_{n_{m_n}}}{\lambda_{k_{m_k}}}, \quad 1 \le k \le n, \quad m_k \ge M,$$

where $M = M(\epsilon)$.

(b) \Rightarrow (c). For arbitrary numbers $\epsilon_k > 0$, $1 \le k \le n$, we may choose $M_k(\epsilon_k)$, $1 \le k \le n$, such that

$$\log m_k < (D_k + \epsilon_k)\lambda_{km_k}, \ 1 \le k \le n, \ m_k \ge M_k(\epsilon_k).$$

Then the series (2.1) converges for $\alpha > \max_{1 \le k \le n} (D_k + \epsilon_k)$.

(c) \Rightarrow (a). Let S be the sum of the series (2.1). There exists $M_0 \in \mathbb{N}$ such that

 $m_{1_0}, m_{2_0}, \dots, m_{n_0}$

$$\sum_{m_1,m_2,\dots,m_n=1}^{\infty} e^{-\alpha \left(\lambda_{1m_1} + \lambda_{2m_2} + \dots + \lambda_{nm_n}\right)} < S \text{ for } m_{1_0}, m_{2_0},\dots,m_{n_0} \ge M_o.$$

Hence

$$m_{1_0}m_{2_0}\dots m_{n_0} e^{-\alpha \left(\lambda_{1m_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n}\right)} \\ \leq \sum_{m_1,m_2,\dots,m_n=1}^{m_{1_0,m_{2_0},\dots,m_{n_0}}} e^{-\alpha \left(\lambda_{1m_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n}\right)} < S < \infty.$$

Thus

$$\lim_{m_1+m_2\cdots+m_n\to\infty} \frac{\log (m_1+m_2+\cdots+m_n)}{\lambda_{1m_1}+\lambda_{2m_2}+\cdots+\lambda_{nm_n}}$$
$$\leq \lim_{m_1+m_2\cdots+m_n\to\infty} \frac{\log (m_1m_2\dots m_n)}{\lambda_{1m_1}+\lambda_{2m_2}+\cdots+\lambda_{nm_n}} \leq \alpha.$$

Theorem 1. A necessary and sufficient condition for the series (1.1) satisfying (1.3) to be entire is that

$$\lim_{m_1+m_2+\dots+m_n\to\infty} \sup_{\lambda_{1_{m_1}}+\lambda_{2_{m_2}}+\dots+\lambda_{n_{m_n}}} = -\infty.$$
(2.2)

Proof. Suppose that (1.1) defines an entire function. Then it converges absolutely for all (s_1, s_2, \ldots, s_n) . Thus, taking the points with coordinates (q, q, \ldots, q) , where q > 0, it follows that

$$\sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} \cdots \sum_{m_n=1}^{\infty} \|a_{m_1,m_2,\dots,m_n}\| e^{\left(\lambda_{1_{m_1}} + \lambda_{2_{m_2}} + \dots + \lambda_{n_{m_n}}\right)q} < \infty.$$

Therefore,

m

$$a_{m_1,m_2,\dots,m_n} \| e^{(\lambda_{1_{m_1}} + \lambda_{2_{m_2}} + \dots + \lambda_{n_{m_n}})q} \le T(q,q,\dots,q) < 1$$

for sufficiently large values of $m_1 + m_2 + \cdots + m_n$. Hence

$$\lim_{1+m_2+\ldots+m_n\to\infty}\frac{\log\|a_{m_1,m_2,\ldots,m_n}\|}{\lambda_{1_{m_1}}+\lambda_{2_{m_2}}+\cdots+\lambda_{n_{m_n}}}<-q.$$

Since q > 0 is arbitrary, the "necessity" part of the theorem is proved.

Conversely, let (2.2) be satisfied. It is sufficient to prove that (1.1) converges for all (s_1, s_2, \ldots, s_n) . Let $\sigma > 0$ be such that $\Re s_1 < \sigma, \Re s_2 < \sigma, \ldots, \Re s_n < \sigma$. By Lemma 1 we can find $\alpha > 0$ such that the series (2.1) converges. Now we fix $N_0(\alpha)$ such that

$$\frac{\log \|a_{m_1,m_2,\dots,m_n}\|}{\lambda_{1_{m_1}}+\lambda_{2_{m_2}}+\dots+\lambda_{n_{m_n}}} < -\sigma - \alpha \text{ for } m_1,m_2,\dots,m_n \ge N_0(\alpha).$$

Thus

$$||a_{m_1,m_2,\dots,m_n}|| e^{(\lambda_{1m_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n})\sigma} < e^{-\alpha(\lambda_{1m_1}+\lambda_{2m_2}+\dots+\lambda_{nm_n})}.$$

Since the series (2.1) converges, the series (1.1) converges absolutely for all (s_1, s_2, \ldots, s_n) .

From the above notations one gets

$$\lim_{|m|\to\infty} \frac{\log \|a_m\|}{|\lambda_{n_m}|} = -\infty.$$
(2.3)

We denote by F the set of the series (1.2) satisfying (1.3) and for which the sequence of numbers

$$|\lambda_{n_{m_n}}|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2} ||a_m||$$

is bounded, where $c_1, c_2 \ge 0$ and c_1, c_2 are simultaneously not zero. Thus there exists a number G such that

$$\begin{aligned} \left| \lambda_{n_{m_n}} \right|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} ||a_m|| &< G, \\ c_1 \log \left| \lambda_{n_{m_n}} \right| + c_2 \frac{\log (|m|!)}{|\lambda_{n_{m_n}}|} + \frac{\log ||a_m||}{|\lambda_{n_{m_n}}|} &< \frac{\log G}{|\lambda_{n_{m_n}}|}, \\ \frac{\log ||a_m||}{|\lambda_{n_{m_n}}|} &< -\left\{ c_1 \log \left| \lambda_{n_{m_n}} \right| + c_2 \frac{\log (|m|!)}{|\lambda_{n_{m_n}}|} + \frac{\log G}{|\lambda_{n_{m_n}}|} \right\}. \end{aligned}$$

This implies (2.3). Hence by Theorem 1 every element of F represents an entire function.

Define binary operations in F as

$$f(s) + g(s) = \sum_{m=1}^{\infty} (a_m + b_m) e^{\lambda_{n_{m_n}} s},$$

$$\gamma f(s) = \sum_{m=1}^{\infty} (\gamma a_m) e^{\lambda_{n_{m_n}} s}, \quad \gamma \in E,$$

$$f(s) \cdot g(s) = \sum_{m=1}^{\infty} |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} a_m b_m e^{\lambda_{n_{m_n}} s}.$$

The norm in F is defined by

$$||f|| = \sup_{|m| \ge 1} |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} ||a_m||.$$
(2.4)

It is not difficult to see that F forms a linear space over the field E.

3. Main results

Theorem 2. F is a commutative Banach algebra with identity over the field E.

Proof. In order to prove this theorem we need to show that F is complete under the norm defined by (2.4). Let $\{f_{t_1}\}$ be a Cauchy sequence in F, where

$$f_{t_1}(s) = \sum_{m=1}^{\infty} a_m^{(t_1)} e^{\lambda_{n_m n} s}.$$

Then, for given $\epsilon > 0$, we can find $t \ge 1$ such that $||f_{t_1} - f_{t_2}|| < \epsilon$ for $t_1, t_2 \ge t$, i.e.,

$$\sup_{|m|\geq 1} \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} \left\| a_m^{(t_1)} - a_m^{(t_2)} \right\| < \epsilon, \quad t_1, t_2 \geq t.$$

This shows that $\{a_m^{(t_1)}\}$ forms a Cauchy sequence in a Banach space E for all values of $|m| \ge 1$. Hence

$$\lim_{t_1 \to \infty} a_m^{(t_1)} = a_m, \quad |m| \ge 1.$$

Letting $t_2 \to \infty$, we get

$$\sup_{|m|\geq 1} \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} \left\| a_m^{(t_1)} - a_m \right\| < \epsilon, \quad t_1 \geq t.$$

Thus $f_{t_1} \to f$ as $t_1 \to \infty$. Also

$$\sup_{|m|\geq 1} \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} \left\| a_m \right\| \leq \sup_{|m|\geq 1} \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} \left\| a_m^{(t_1)} - a_m \right\|$$

+
$$\sup_{|m|\geq 1} |\lambda_{n_{m_n}}|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2} ||a_m^{(t_1)}|| < \infty.$$

The identity element in F is

$$e(s) = \sum_{m=1}^{\infty} e \left| \lambda_{n_{m_n}} \right|^{-c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{-c_2} e^{\lambda_{n_{m_n}} s},$$

where e is the identity element of E. Now, if $f, g \in F$, then

$$\|f \cdot g\| = \sup_{|m| \ge 1} |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} \left\{ \left\| |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} a_m b_m \right\| \right\}$$

$$\leq \|f\| \|g\|.$$

This proves the theorem.

Theorem 3. The function (1.2) is invertible in F if and only if the sequence

$$\left\{ \left\| d_m \left| \lambda_{n_{m_n}} \right|^{-c_1 \left| \lambda_{n_{m_n}} \right|} \left(|m|! \right)^{-c_2} \right\| \right\}$$

$$(3.1)$$

is bounded, where d_m is the inverse of a_m .

Proof. Let $f \in F$ be invertible and let $g(s) = \sum_{m=1}^{\infty} b_m e^{\lambda_{n_m n} s}$ be its inverse. Then $f(s) \cdot g(s) = e(s)$. Therefore,

$$|\lambda_{n_{m_n}}|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2} a_m b_m = e \left|\lambda_{n_{m_n}}\right|^{-c_1|\lambda_{n_{m_n}}|} (|m|!)^{-c_2},$$

which implies that

$$\left|\lambda_{n_{m_n}}\right|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2} ||b_m|| = \left\|e\left\{\left|\lambda_{n_{m_n}}\right|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2}a_m\right\}^{-1}\right\|$$

or, equivalently,

$$\left|\lambda_{n_{m_n}}\right|^{c_1\left|\lambda_{n_{m_n}}\right|} \left(|m|!\right)^{c_2} \|b_m\| = \left\|d_m \left|\lambda_{n_{m_n}}\right|^{-c_1\left|\lambda_{n_{m_n}}\right|} \left(|m|!\right)^{-c_2}\right\|.$$

Thus (3.1) is a bounded sequence since $g \in F$.

Conversely, suppose that the sequence (3.1) is bounded. Define $g(\boldsymbol{s})$ such that

$$g(s) = \sum_{m=1}^{\infty} e \left| \lambda_{n_{m_n}} \right|^{-2c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{-2c_2} a_m^{-1} e^{\lambda_{n_{m_n}} s}.$$

Then

$$f(s) \cdot g(s) = \sum_{m=1}^{\infty} e \left| \lambda_{n_{m_n}} \right|^{-c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{-c_2} e^{\lambda_{n_{m_n}} s} = e(s).$$

The proof is complete.

Definition 1. A function $g \in F$ is said to be quasi-inverse of $f \in F$ if f(s) * g(s) = 0, where

$$f(s) * g(s) = f(s) + g(s) + f(s) \cdot g(s).$$

Theorem 4. An element (1.2) is quasi-invertible in F if and only if

$$\inf_{|m|\geq 1} \left\{ \left\| 1 + \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} a_m \right\| \right\} > 0.$$
(3.2)

The quasi-inverse of f is the function $g(s) = \sum_{m=1}^{\infty} b_m e^{\lambda_{n_m s} s}$, where

$$b_m = \frac{-a_m}{1 + |\lambda_{n_m_n}|^{c_1 |\lambda_{n_m_n}|} (|m|!)^{c_2} a_m}.$$
(3.3)

Proof. Let $f \in F$ be quasi-invertible, then there exists $g \in F$ such that f(s) * g(s) = 0. This implies

$$a_m + b_m + |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2} a_m b_m = 0 \text{ for } |m| \ge 1.$$

Suppose that (3.2) does not hold, that is,

$$\inf_{|m|\geq 1} \left\{ \left\| 1 + \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} a_m \right\| \right\} = 0.$$
(3.4)

There exists a subsequence $\{m_t\}$ of a sequence of indices $\{m\}$ such that

$$\left|\lambda_{n_{m_{t_n}}}\right|^{c_1 \left|\lambda_{n_{m_{t_n}}}\right|} (|m_t|!)^{c_2} ||a_{m_t}|| = -1 \text{ as } |t| \to \infty.$$
(3.5)

Now (3.3) implies that

$$\left|\lambda_{n_{m_{t_n}}}\right|^{c_1\left|\lambda_{n_{m_{t_n}}}\right|} \left(|m_t|!\right)^{c_2} \|b_{m_t}\| \ge \frac{\left|\lambda_{n_{m_{t_n}}}\right|^{c_1\left|\lambda_{n_{m_{t_n}}}\right|} \left(|m_t|!\right)^{c_2} \|a_{m_t}\|}{\left\|1 + \left|\lambda_{n_{m_{t_n}}}\right|^{c_1\left|\lambda_{n_{m_{t_n}}}\right|} |m_t!|^{c_2} a_{m_t}\right\|}.$$

Using (3.4) and (3.5), we see that

$$||g_t(s)|| \to \infty \text{ as } |t| \to \infty,$$

which is a contradiction.

Conversely, if (3.2) holds, then the function g belongs to F and

$$f(s) * g(s) = \sum_{m=1}^{\infty} \{a_m + b_m + |\lambda_{n_{m_n}}|^{c_1|\lambda_{n_{m_n}}|} (|m|!)^{c_2} a_m b_m\} e^{\lambda_{n_{m_n}} s}$$

= 0.

Hence f is quasi-invertible. This completes the proof of the theorem. \Box

Definition 2. Let $f \in F$. The set

 $\sigma(f) = \{l \in \mathbb{C} : f - le \text{ is not invertible}\}\$

is called the spectrum of f.

Theorem 5. The spectrum $\sigma(f)$, where $f \in F$, is precisely of the form

$$\sigma(f) = cl \left\{ \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} a_m : |m| \ge 1 \right\}.$$

Proof. By Theorem 3, $f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nm_n} s}$ is invertible in F if and only if the sequence (3.1) is a bounded. Thus, the function $\{f(s) - \alpha e(s)\}$ is not invertible if and only if

$$\left\{ \left\| (a_m - \alpha e \mid \lambda_{n_{m_n}} \mid ^{-c_1 \mid \lambda_{n_{m_n}} \mid} (|m|!)^{-c_2})^{-1} \cdot \left(\left| \lambda_{n_{m_n}} \mid ^{-c_1 \mid \lambda_{n_{m_n}} \mid} (|m|!)^{-c_2} \right) \right\| \right\}$$

is not bounded. This is possible only if there exists a subsequence $\{m_r\}$ of the sequence of indices $\{m\}$ such that

$$\left\| \left| \lambda_{n_{m_{r_n}}} \right|^{c_1 \left| \lambda_{n_{m_{r_n}}} \right|} \left(|m_r|! \right)^{c_2} a_{m_r} - \alpha \right\| \to 0 \text{ as } |r| \to \infty.$$

Thus $\alpha \in cl \left\{ \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} a_m : |m| \ge 1 \right\}$. The proof is complete.

Theorem 6. Every continuous linear functional $\theta: F \to E$ is of the form

$$\theta(f) = \sum_{m=1}^{\infty} a_m \ p_m |\lambda_{n_{m_n}}|^{c_1 |\lambda_{n_{m_n}}|} (|m|!)^{c_2},$$

where f is defined by (1.2) and $\{p_m\}$ is a bounded sequence in E.

Proof. Assume that $\theta: F \to E$ is a continuous linear functional. Since θ is continuous,

$$\theta(f) = \theta\left(\lim_{M \to \infty} f^{(M)}\right),$$

where

$$f^{(M)}(s) = \sum_{m=1}^{M} a_m e^{\lambda_{nm_n} s}.$$

Define a sequence $\{f_m\} \subseteq F$ as

$$f_m(s) = e \left| \lambda_{n_{m_n}} \right|^{-c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{-c_2} e^{\lambda_{n_{m_n}} s}.$$

Therefore, using also the linearity of θ , we have

$$\theta(f) = \theta\left(\lim_{M \to \infty} \sum_{m=1}^{M} a_m \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} f_m \right)$$

$$= \lim_{M \to \infty} \sum_{m=1}^{M} a_m \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2} \theta(f_m).$$

Denoting $\theta(f_m) = p_m$, we may write

$$\theta(f) = \lim_{M \to \infty} \sum_{m=1}^{M} a_m p_m \left| \lambda_{n_{m_n}} \right|^{c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{c_2}$$

We now show that $\{p_m\}$ is a bounded sequence in E. Indeed,

Thus $\{p_m\}$ is a bounded sequence in E. This proves the theorem.

$$|p_m|| = ||\theta(f_m)|| \le \tau ||f_m||$$

and $||f_m|| = 1$ imply

$$\|p_m\| \le \tau.$$

Theorem 7. Let $f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nm_n} s} \in F$, where $a_m \neq 0$ for every $|m| \geq 1$, and let $K \in \mathbb{C}^n$ be a set having at least one finite limit point. Define

$$f_{\tau}(s) = \sum_{m=1}^{\infty} a_m \left| \lambda_{n_{m_n}} \right|^{-c_1 \left| \lambda_{n_{m_n}} \right|} (|m|!)^{-c_2} e^{\lambda_{n_{m_n}}(s+\tau)}.$$
(3.6)

Then the set $A_f = \{f_\tau : \tau \in K\}$ is a total set with respect to the family of continuous linear functionals $\phi : F \to E$.

Proof. Note that, for all $\tau \in \mathbb{C}^n$,

$$\|f_{\tau}\| = \sum_{m=1}^{\infty} \|a_m\| e^{\Re \left(\lambda_{nm_n} \tau\right)}.$$

Since (1.2) is an entire Dirichlet series which converges absolutely in the whole complex plane, the series on the right hand side of the above equality is convergent for every $\tau \in K$. Hence $f_{\tau}(s) \in F$ for every $\tau \in K$.

Let ϕ be a continuous linear functional such that $\phi(A_f) \equiv 0$, that is $\phi(f_{\tau}) = 0$ for all $\tau \in K$. Then, by Theorem 6,

$$h(s) = \sum_{m=1}^{\infty} a_m p_m e^{\lambda_{nm_n} s} = 0 \text{ for all } \tau \in K.$$

Since $\{p_m\}$ is a bounded sequence in E and $f \in F$, the function h also belongs to F. But

$$h(\tau) = \sum_{m=1}^{\infty} a_m p_m e^{\lambda_{n_m} \tau} = 0 \text{ for all } \tau \in K.$$

Since K has a finite limit point, we have that $h \equiv 0$. This however implies that

$$a_m p_m = 0$$
 for all $|m| \ge 1$,

The assumption $a_m \neq 0$ implies that $p_m = 0$ for all $|m| \ge 1$. Thus $\phi = 0$ and the proof is complete.

References

- A. I. Janusauskas, Elementary theorems on the convergence of double Dirichlet series, Dokl. Akad. Nauk. SSSR 234 (1977), 610–614. (Russian)
- [2] N. Kumar and G. Manocha, On a class of entire functions represented by Dirichlet series, J. Egypt. Math. Soc. 21 (2013), 21–24.
- [3] R. Larsen, Banach Algebras. An Introduction, Marcel Dekker, Inc., New York, 1973.
- [4] R. Larsen, Functional Analysis: an Introduction, Marcel Dekker, Inc., New York, 1973.
- [5] M. Liang and Z. Gao, Convergence and Growth of multiple Dirichlet series, Acta Math. Sci. 30(5) (2010), 1640–1648.
- [6] P. K. Sarkar, On the Goldberg order and Goldberg type of an entire function of several complex variables represented by multiple Dirichlet series, Indian J. Pure Appl. Math. 13(10) (1982), 1221–1229.
- [7] S. K. Vaish, On the coefficients of entire multiple Dirichlet series of several complex variables, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 46(94)(3-4) (2003), 195–202.

DEPARTMENT OF MATHEMATICS, NETAJI SUBHAS INSTITUTE OF TECHNOLOGY, SEC-TOR 3 DWARKA, NEW DELHI-110078, INDIA

E-mail address: lakshika91.chutani@gmail.com *E-mail address*: nirajkumar2001@hotmail.com

DEPARTMENT OF MATHEMATICS, BHAGWAN PARSHURAM INSTITUTE OF TECHNOLOGY, PSP-4, DR KN KATJU MARG, SECTOR 17 ROHINI, NEW DELHI-110089, INDIA

E-mail address: garima89.manocha@gmail.com