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Quasi-monomiality and operational identities
for Laguerre–Konhauser-type matrix polynomials

and their applications

Maged G. Bin-Saad and Fadhle B. F. Mohsen

Abstract. It is shown that an appropriate combination of methods,
relevant to matrix polynomials and to operational calculus can be a
very useful tool to establish and treat a new class of matrix Laguerre–
Konhauser polynomials. We explore the formal properties of the
operational identities to derive a number of properties of the new class
of Laguerre–Konhauser matrix polynomials and discuss the links with
classical polynomials.

1. Introduction

The analogous extension to the matrix framework for the classical case
of Humbert, Hermite, Jacobi, Gegenbauer, Laguerre, and Chebyshev poly-
nomials has been carried out in recent years. Properties and applications
of different classes for these matrix polynomials are the focus of a num-
ber of previous papers (see, for example, [5]–[13], [15]–[21] and references
therein). Motivated by the works mentioned above, we aim in this paper
to construct a matrix version of the Laguerre–Konhauser polynomials given
in [1] and exploit the monomiality principle to discuss various properties of
these polynomials.

Throughout this paper, for a matrix A ∈ CN×N , its spectrum is denoted
by σ(A). The two-norm of A is defined by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2
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where, for a vector y ∈ CN×N , ‖y‖2 = (yT y)
1
2 is the Euclidean norm of y. I

will denote the identity matrix in CN×N . We say that a matrix A in CN×N
is positive stable if <(λ) > 0 for all λ ∈ σ(A), where σ(A) is the set of the
eigenvalues of A. If A0, A1, . . . , An are elements of CN×N and An 6= 0, then
we call

P (x) = Anx
n +An−1x

n−1 +An−2x
n−2 + · · ·+A1x+A0

a matrix polynomial of degree n in x. If A+nI is invertible for every integer
n ≥ 0, then

(A)n = A(A+ I)(A+ 2I) · · · (A+ (n− 1)I), n ≥ 1; (A)0 = I.

Thus we have
(A)n = Γ(A+ nI)Γ−1(A).

For any matrix A ∈ CN×N , we have the following relation (see [12])

(1− x)−A =

∞∑
n=0

(A)nx
n

n!
, |x| < 1. (1.1)

In [4] Dattoli and Torre introduced Laguerre polynomials of two variables
in the form

Ln(x, y) = n!

n∑
s=0

(−1)sxsyn−s

(s!)2(n− s)!
,

combined with the principle of monomiality, which provided new means of
analysis for the derivation of the solution of large classes of partial differential
equations often encountered in physical problems. Also two interesting unifi-
cations and generalizations of Laguerre polynomials Ln(x, y) are considered
by Dattoli et al. [2] in the forms

1Ln,ρ(x, y) = n!

n∑
s=0

xs−ρyn−s

s!(n− s)!Γ(ρ+ s+ 1)

and

Lmn (x, y) = (m+ n)!

n∑
s=0

(−1)sxsyn−s

s!(n− s)!(m+ k)!
.

The Konhauser polynomials of second kind are defined by (see [13])

Zβn (x; k) =
Γ(kn+ β + 1)

n!

n∑
j=0

(
n

j

)
xkj

Γ(kj + β + 1)
,

where β ∈ C+
−1, n ∈ N, and k ∈ N. Bin-Saad [1] studied the Laguerre–

Konhauser polynomials kL
(α,β)
n (x, y) as follows:

kL
(α,β)
n (x, y) = n!

n∑
s=0

n−s∑
r=0

(−1)s+rxr+αyks+β

s!r!(n− s− r)!Γ(α+ r + 1)Γ(ks+ β + 1)
, (1.2)
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where k = 1, 2, 3, . . . and α, β ∈ R. These polynomials can be written in the
more elegant forms:

kL
(α,β)
n (x, y) = n!

n∑
s=0

(−1)sxαyks+βLαn−s(x)

s!Γ(α+ n− s+ 1)Γ(ks+ β + 1)
,

and

kL
(α,β)
n (x, y) = n!

n∑
s=0

(−1)sxs+αyβZβn−s(x)

s!Γ(α+ s+ 1)Γ(kn− ks+ β + 1)
.

It may be of interest to point out that the series representation (1.2), in
particular, yields the following relationships:

(−1)ρyn+ρ1L
(ρ,0)
n

(
−x
y

)
= 1Ln,ρ(x, y), (1.3)

(m+ n)!

n!
yn+mx−m1L

(m,0)
n

(
x

y
, 0

)
= Lmn (x, y), (1.4)

Γ(kn+ β + 1)

n!
y−βkL

(0,β)
n (0, y) = Zβn (y; k), (1.5)

Γ(n+ α+ 1)

n!
x−αx−n1L

(α,0)
n (x, 0) = L(α)

n (x).

In this work, we will deal with operational definitions ruled by the opera-
tors D̂x and D̂−1x , where D̂x denotes the derivative operator and D̂−1x defines
the inverse of the derivative. The following two formulas are well-known con-
sequences of the derivative operator D̂x and the integral operator D̂−1x (see
[14]):

D̂m
x x

λ =
Γ(λ+ 1)

Γ(λ−m+ 1)
xλ−m, (1.6)

D̂−mx xλ =
Γ(λ+ 1)

Γ(λ+m+ 1)
xλ+m, (1.7),

where m ∈ N ∪ {0}, λ ∈ C/{−1,−2, . . . }.

2. The Laguerre–Konhauser-type matrix polynomials

Let us consider the generating relation

f (A,B,C)(x, y; t) =
[
1− t(1− D̂−ky )

]−C
1F1

[
C;A+ I;

−xt
1− t(1− D̂−ky )

]
×
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
,

where {A,B,C} ⊂ CN×N , whose eigenvalues µ satisfy <(µ) > 0, and

1F1 [a; c;x] =
∞∑
n=0

(a)nx
n

n!(c)n
(2.1)
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is the confluent hypergeometric series (see [22]). Making use of the series
representation (2.1), the binomial relation (1.1), and applying the results
(1.6) and (1.7), we can conclude that

f (A,B,C)(x, y; t) =
∞∑
n=0

(C)n
n!

{ ∞∑
r=0

n∑
s=0

(−1)r(C + nI)sx
A+rIyB+ksI

r!s!

×Γ−1(A+ (r + 1)I)Γ−1(B + (ks+ 1)I)
}
tn+s.

Thus, we find that[
1− t(1− D̂−ky )

]−C
1F1

[
C;A+ I;

−xt
1− t(1− D̂−ky )

]

×
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
=
∞∑
n=0

(C)nkL
(A,B)
n (x, y)

xn

n!
,

(2.2)

where, for k = 1, 2, 3, . . . ,

kL
A,B
n (x, y) = n!

{
n∑
s=0

n−s∑
r=0

(−1)s+rxA+rIyB+ksI

s!r!(n− s− r)!

×Γ−1(A+ (r + 1)I)Γ−1(B + (ks+ 1)I)
}
,

(2.3)

C is any matrix in CN×N , and A,B are matrices in CN×N whose eigenvalues
µ satisfy <(µ) > 1. When C = A+ I, the generating relation (2.2) simplifies
at once to the following elegant result:[

1− t(1− D̂−ky )
]−A−I

exp

[
−xt

1− t(1− D̂−ky )

]

×
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
=

∞∑
n=0

(A+ I)nkL
(A,B)
n (x, y)

xn

n!
.

(2.4)

The definition (2.3) suggests us (as particular cases) to define the following
matrix versions of the polynomials defined by (1.3), (1.4) and (1.5):

(−1)AyA+nI1L
(A,0)
n

(
−x
y
, 0

)
= n!

n∑
s=0

xsI−Ayn−sΓ−1(A+ (s+ 1)I)

s!(n− s)!
= 1Ln,A(x, y),

Γ(A+ nI + I)

n!
yA+nIx−A1L

(A,0)
n

(
x

y
, 0

)
= Γ(A+ nI + I)

n∑
s=0

(−1)sxsyn−sΓ−1(A+ kI)

s!(n− s)!
= L(A)

n (x, y),
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Γ(B + knI + I)

n!
yB1L

0,B)
n (x, 0)

=
Γ(B + knI + I)

n!

n∑
j=0

(
n

j

)
xkjΓ−1(B + (kj + 1)I) = ZBn (y; k).

(2.5)

Also, it may be of interest to point out that the series representation (2.3)
yields the relationship

Γ(A+ nI + I)

n!
(λx)−A1L

(A,0)
n (xλ, 0) = L(A,λ)

n (x), (2.6)

where L
(A,λ)
n (x) is the known Laguerre matrix polynomial of one variable

(see [11]). Further, in view of relations (2.5) and (2.6) we may write the
series representation (2.4) in the more elegant forms

kL
(A,B)
n (x, y) = n!

{
n∑
s=0

(−1)sxA+sIyBZBn (y; k)

s!

×Γ−1(A+ (s+ 1)I)Γ−1(B + (kn− ks+ 1)I)
}

and

kL
(A,B)
n (xλ, y) = n!

{
n∑
s=0

(−1)sxAyB+ksIL
(A,λ)
n (x, y)

s!

×Γ−1(A+ (n− s+ 1)I)Γ−1(B + (ks+ 1)I)
}
.

Next, in view of the definition of Kampé de Fériet’s double hypergeometric
series (see [22], p. 27(28))

F p:q;kl:m;n

(ap) : (bq); (ck);
x, y

(dl) : (em); ( fn);


=

∞∑
r,s=0

∏p
j=1(aj)r+s

∏q
j=1(bj)r

∏k
j=1(cj)sx

rys∏l
j=1(dj)r+s

∏m
j=1(ej)r

∏n
j=1(fj)sr!s!

,

we can easily establish the following series representation for the polynomials

kL
(A,B)
n (x, y):

kL
(A,B)
n (x, y) =

{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
× F 1:0;0

0:1;k

−nI : −; −;

x,
( y
k

)k
− : A+ I; 4(k;B + I);

 , (2.7)

where, and in what follows, 4(k;B) abbreviates the array of k parameters
B
k ,

B+I
k , . . . , B+kI−I

k , k ≥ 1, and dashed line “−” means that the number of

parameters is zero. Another interesting operational formula for kL
(A,B)
n (x, y)
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can be derived, as a consequence of the explicit representation (2.7). Indeed,
since

r!D̂−rx = xr,

formula (2.7) yields

kL
(A,B)
n (x, y) =

{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
× F 1:1;k

0:1;k

−nI : I; 4(k; I);

D̂−1x , D̂k
y

− : A+ I; 4(k;B + I); 0

 .
On the other hand, if we employ the result

D̂r+s
y yn =

n!yn−r−s

(n− s− r)!
,

then we find that

yA+nILA,Bn (x/y, y) =
{
yBΓ−1(A+ I)Γ−1(B + I)

}
× 0F1

[
−;4(k;B + I);−

(y
k

)k
yD̂y

]
exp(−D̂−1x D̂y){xAyn},

or equivalently,

yA+nILA,Bn (x/y, y) =
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
× 0F1

[
−;4(k;B + I);−

(y
k

)k
yD̂y

]
1F1

[
I;A+ I;−D̂xD̂

−1
y

]
{yn}.

Further, according to the inverse operator (1.7), we can rewrite kL
(A,B)
n (x, y)

in the series representation

kL
(A,B)
n (x, y) =

{
n∑
s=0

n−s∑
r=0

(−n)s+rD̂
−r
x D̂−ksy

s!r!

×
[
xAyBΓ−1(A+ I)Γ−1(B + I)

]}
.

(2.8)

This yields the Rodrigue-type formula

kL
(A,B)
n (x, y) =

(
1− D̂−1x − D̂−ky

)n {
xAyBΓ−1(A+ I)Γ−1(B + I)

}
. (2.9)

Directly from (2.8), by exploiting the same procedure leading to equation
(2.8), we can establish the following operational connecting relationships of

kL
(A,B)
n (x, y) with the Laguerre matrix polynomials L

(A,λ)
n (x) and Konhauser

matrix polynomials ZBn (y; k):

kL
(A,B)
n (x, y) = n!yBΓ−1(knI +B + I)(1− D̂−1x )n

× ZBn (y/(1− D̂−1x ); k){xAΓ−1(A+ I)}
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and

kL
(A,B)
n (xλ, y) = n!xAΓ−1(A+ nI + I)(1− D̂−ky )n

× L(A,λ)
n (y/(1− D̂−ky )){yBΓ−1(B + I)}.

3. Quasi-monomiality and operational identities

The Laguerre–Konhauser polynomials kL
(A,B)
n (x, y) are quasi-monomials

under the action of the operators (see [3])

M̂ = 1− D̂−1x − D̂−ky ,

P̂1 = −xAD̂xx
−A+ID̂x, (3.1)

P̂2 = −1

k
yB−kI+ID̂yy

−B+kID̂k
y . (3.2)

According to the quasi-monomiality properties we have

M̂kL
(A,B)
n (x, y) = kL

A,B
n+1(x, y),

P̂1kL
(A,B)
n (x, y) = n kL

A,B
n−1(x, y),

P̂2kL
(A,B)
n (x, y) = n kL

A,B
n−1(x, y),

1

2
(P̂1 + P̂2)kL

(A,B)
n (x, y) = n kL

A,B
n−1(x, y),

which can be combined to prove that kL
(A,B)
n (x, y) satisfy the following dif-

ferential equations:[
(xD̂x +A− 1)D̂xD̂

k
y + xD̂2

x + (I −A)D̂x − (A+ nI)D̂k
y

]
kL

(A,B)
n (x, y) = 0,[

y(1− xD̂x)D̂k
y + (kI −B)(1− D̂x)D̂k

y + yD̂xD̂
k
y

−(knI +B)D̂x

]
kL

(A,B)
n (x, y) = 0.

From the lowering operators P̂1 and P̂2, we can define operators playing
the role of the inverse operators P̂−11 and P̂−12 (see [4], equation (15)). Thus
we get

P̂−11 = −xAD̂−1x x−A−ID̂−1x ,

P̂−12 = −kyBD̂−1y y−B−ID̂−ky ,

and they satisfy

P̂−11 kL
(A,B)
n (x, y) =

kL
A,B
n+1(x, y)

(n+ 1)
= P̂−12 kL

(A,B)
n (x, y).

Clearly, we have

P̂1P̂
−1
1 kL

(A,B)
n (x, y) = kL

(A,B)
n (x, y).
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Regarding the Lie bracket [ , ], defined by [A,B] = AB −BA, we are led to

[P̂1, M̂ ]kL
(A,B)
n (x, y) = kL

(A,B)
n (x, y), [P̂2, M̂ ]kL

(A,B)
n (x, y) = kL

(A,B)
n (x, y),

From relations (3.1) and (3.2), it is also proved that the set of polynomials

kL
(A,B)
n (x, y) satisfy the partial differential equation[

xA
∂

∂x
x−A+I

∂

∂x
− 1

k
yB−kI+I

∂

∂y
y−B+kI ∂

k

∂yk

]
kL

(A,B)
n (x, y) = 0.

4. Some applications

By starting from identity (2.9), multiplying both sides of (2.9) by tn/n!
and then taking the sum, we obtain

∞∑
n=0

kL
(A,B)
n (x, y)

tn

n!
= exp

(
t(1− D̂−1x − D̂−ky )

)
×
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
.

(4.1)

Now, according to the facts that

exp
(
tD̂−1x

){
xAΓ−1(A+ I)

}
=
{
xAΓ−1(A+ I)

}
0F1[−;A+ I;−tx]

and

exp
(
tD̂−ky )

){
yBΓ−1(B + I)

}
=
{
yBΓ−1(B + I)

}
× 0Fk

[
−;4(k;B + I);−

(y
k

)k
t

]
,

the generating function (4.1) further yields the interesting generating relation
∞∑
n=0

kL
(A,B)
n (x, y)

tn

n!
=
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
0F1[−;A+ I;−tx]

× 0Fk

[
−;4(k;B + I);−

(y
k

)k
t

]
.

A similar procedure yields
∞∑
n=0

kL
(A,B)
n (x, y)tn =

{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
× 1

(1− t)1
F1

[
I;A+ I;

−tx
(1− t)

]
1Fk

[
I;4(k;B + I);−

(y
k

)k t

(1− t)

]
.

On account of the identity(
1− t(1− D̂−ky )

)−C {
yBΓ−1(B + I)

}
=
{
yBΓ−1(B + I)

}
(1− t)−C

× 0Fk

[
−;4(k;B + I);−

(y
k

)k
t

]
,
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the generating relation (2.4) can be written in the more compact form{
xAyB(1− t)−A−IΓ−1(A+ I)Γ−1(B + I)

}
× F 1:0;0

0:1;k

A+ I : −; −;
−tx
(1−t) ,−

t
(1−t)

( y
k

)k
− : A+ I; 4(k;B + I);


=
∞∑
n=0

(A+ I)nkL
(A,B)
n (x, y)

xn

n!
.

From relation (2.9), we can state that

(1− M̂)n
{
xAyBΓ−1(A+ I)Γ−1(B + I)

}
=

n∑
s=0

−1)s
(
n

s

)
kL

(A,B)
n (x, y)

=
{
xA+nIyBΓ−1(A+ nI + I)Γ−1(B + I)

}
× 2Fk

[
−nI,−A− nI;4(k;B + I);−

(y
k

)k
/x

]
.

(4.2)

The Jacobi matrix polynomials P
(A,B)
n (x), n ∈ N, have been given in [7],

for parameter matrices A and B whose eigenvalues µ satisfy <(µ) > 0, as
follows:

P (A,B)
n (x) = Γ−1(B + I)Γ(B + (n+ 1)I)

(−1)n

n!

× 2F1

[
A+B + nI,−nI;B + I;

x+ 1

2

]
.

(4.3)

Now, in view of representation (4.2), equation (4.3) provides us the following

connection between Laguerre matrix polynomials kL
(A,B)
n (x, y) and Jacobi

matrix polynomials PA,Bn (x, y) in the form:
n∑
s=0

(−1)s
(
n

s

)
1L

(−A−B,B)
n

(
x,−x(x+ 1)

2

)
= (−1)−1n!xA+nIyBΓ−1(B + (n+ 1)I)Γ−1(−A−B + (n+ 1)I)PA,Bn (x, y).
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