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Complete asymptotics of the approximation
of function from the Sobolev classes

by the Poisson integrals

I. V. Kal’chuk and Yu. I. Kharkevych

Abstract. We obtain the complete asymptotic expansions of the least
upper bounds of approximation of functions from the classes W r

∞ and
W r

1 , r ∈ N, by their Poisson integrals in the uniform and integral metrics.

1. Problem statement

Let C be the space of 2π-periodic continuous functions with the norm
‖f‖C = maxt |f(t)|, let L∞ be the space of 2π-periodic measurable essentially
bounded functions with the norm ‖f‖∞ = ess supt |f(t)|, and let L be the
space of 2π-periodic Lebesgue summable on the period functions, in which
the norm is ‖f‖L = ‖f‖1 =

∫ π
−π |f(t)|dt.

We consider a boundary value problem in a unit disk for the equation

∆u = 0, (1)

where ∆ is the Laplace operator in the polar coordinates. Thus the equation
(1) can be rewritten as follows:

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂x2
= 0 (0 ≤ ρ < 1, −π ≤ x ≤ π). (2)

The solution of the equation (2) that satisfies the boundary condition

u (ρ, x)
∣∣
ρ=1

= f(x), −π ≤ x ≤ π, (3)

where f is a Lebesgue summable 2π–periodic function, will be denoted by
P (ρ; f ;x) = u(ρ, x). Then the solution of the boundary problem (2)–(3)
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could be represented as follows:

P (ρ; f ;x) =
1

π

π∫
−π

f(t+ x)
{1

2
+
∞∑
k=1

ρk cos kt
}
dt, 0 ≤ ρ < 1. (4)

The equality (4) is referred as the Poisson integral of the function f .

Assuming that ρ = e−
1
δ we will rewrite the Poisson integral by the means of

the formula

Pδ(f ;x) =
1

π

π∫
−π

f(t+ x)
{1

2
+

∞∑
k=1

e−
k
δ cos kt

}
dt, δ > 0.

We denote by W r
p , p = 1, ∞, the class of 2π-periodic functions f having

absolutely continuous derivatives including to (r − 1)-th order and

‖f (r) (t) ‖p ≤ 1. Classes W r
p are called the Sobolev classes.

Let us consider the quantities

E (N;Pδ)C = sup
f∈N
‖f (·)− Pδ (f ; ·)‖C , (5)

E (N;Pδ)1 = sup
f∈N
‖f (·)− Pδ (f ; ·)‖1. (6)

If the function g (δ) = g (N; δ) is found in an explicit form such that

E (N;Pδ)X = g (δ) + o (g (δ)) , δ →∞,

then, in consistence with Stepanets [11], we will say that Kolmogorov–
Nikolsky problem for given class N and Poisson integral Pδ(f ;x) is solved in
the metric of space X.

A formal series
∑∞

n=0 gn (δ) will be called the complete asymptotic expan-
sion or the complete asymptotics of the functions f (δ) as δ → ∞, if for all
n ∈ N,

|gn+1 (δ)| = o (|gn (δ)|) , (7)

and for every natural m,

f (δ) =
m∑
n=0

gn (δ) + o (gm (δ)) , δ →∞. (8)

Briefly, this fact could be written as follows:

f (δ) ∼=
∞∑
n=0

gn (δ).

The purpose of this work is to obtain the complete asymptotic expansions
of the quantities (5) and (6) settings N = W r

p , p = 1,∞, in the terms of 1/δ
as δ →∞ for any r ∈ N.
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We denote by Kn and K̃n the well-known constants of Favard–Akhiezer–
Krein:

Kn =
4

π

∞∑
m=0

(−1)m(n+1)

(2m+ 1)n+1
, n = 0, 1, 2, . . . ,

K̃n =
4

π

∞∑
m=0

(−1)mn

(2m+ 1)n+1
, n ∈ N.

2. Complete asymptotic expansions of the approximation by
Poisson integrals on the classes W r

∞ and W r
1

The first results that are connected with the research of the quantity
E (W r

∞;P (ρ))C were received by Natanson [8]. In particular, he solved the
Kolmogorov–Nikolsky problem on the classes W 1

∞ for the Poisson integral.
Namely, he proved the equality

E
(
W 1
∞;P (ρ)

)
C

=
2

π
(1− ρ) |ln (1− ρ)|+O (1− ρ) , ρ→ 1− . (9)

Timan [12] obtained the exact values of approximation characteristics
E (W r;P (ρ))C as 0 < ρ < 1:

E (W r
∞;P (0))C = Kr;

E
(
W 1
∞;P (ρ)

)
C

=
2

π
(1− ρ) ln

1

1− ρ
+ ερ, (10)

ερ =
2

π

1−ρ∫
0

{
1

1− t
ln

2− t
tt

+ 1

}
dt.

The equalities (9) and (10) as ρ→ 1− allow us to write down constants,
corresponding to the asymptotic term of the least order of the smallness.

In the paper of Shtark [10] the complete asymptotic expansion was ob-
tained for the characteristics E

(
W 1
∞;P (ρ)

)
C

. It enables us to write down
constants of an arbitrary order of smallness. Namely,

E
(
W 1
∞;P (ρ)

)
C
∼=

2

π

∞∑
k=1

{
αk (1− ρ)k ln

1

1− ρ
+ βk (1− ρ)k

}
, (11)

where

αk =
1

k
, βk =

1

k

(1

k
+ ln 2−

k−1∑
i=1

2−i

i

)
.

In the work of Zhyhallo and Kharkevych [14] the complete asymptotic
expansions were established for the quantity E(W r

∞;P (ρ))C in the terms of
(1− ρ) as ρ→ 1−.
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Later, approximation properties of the Poisson integrals were investigated
on other functional classes. In particular, we note the works [1]–[7], [13],
[15]–[17].

We will pay more attention to the work of Baskakov [1]. Note, that in the
works [10] and [14] the complete asymptotic expansions were found in the
terms of (1 − ρ) as ρ → 1−. And in the paper [1], there were obtained the
analogical expansions for the quantities E

(
W 1
∞;Pδ

)
C

, but in terms of 1/δ as
δ →∞:

E
(
W 1
∞;Pδ

)
C

=
2

π

1

δ
ln δ +

1

δ

2 lnπ

π
+

2

π

∞∫
π

(t)2π
t2

dt


+

2

πδ

∞∑
k=1

(−1)k

 ∞∫
π

(t)2π
t2(k+1)

dt− 1

2kπ2k

 1

δ2k
,

(12)

where (f(t))2π is an even 2π-periodic extension of the function f (t), 0 ≤ t ≤
π.

In this paper we continue and generalise the research of Baskakov. Our
aim is to obtain the complete asymptotic expansions for the values
E (W r

∞;Pδ)C and E (W r
1 ;Pδ)1 in terms of 1/δ as δ → ∞ for an arbitrary

r ∈ N. This will allow us to calculate the Kolmogorov–Nikolsky constants
of an arbitrary order of smallness.

Following theorems take place.

Theorem 1. If r = 2l− 1, l ∈ N, then the following complete asymptotic
expansion holds:

E (W r
∞;Pδ)C = E (W r

1 ;Pδ)1
∼=

2

π

(
1

r!

1

δr
ln δ +

∞∑
k=1

βrk
1

δk

)
, δ →∞, (13)

where

βrk =


(−1)k−1

k! ϕr−k, k < r,
1
r!

(
ln 2 +

∑r
i=1

1
i

)
, k = r,

(−1)k−1

k! σk−r, k > r,

(14)

σj =
1

2j−1j!

j∑
i=1

(2i− 1)jaj+1
i − 2j(j − 1)!

(2j)!

j−1∑
i=0

(−1)iCij(j − i)2j ,

aji =

{
1, i = 1, i = j − 1,

aj−1i (2i− 1) + aj−1i−1 (2 (j − i)− 1) , 1 < i < j − 1,
(15)

ϕj =

{ π
2Kj , j = 2m− 1,
π
2 K̃j , j = 2m,

m ∈ N.
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Proof. Using Theorem 4 from the article of Pych [9] for the Poisson inte-
grals, we obtain

E (W r
∞;Pδ)C = E (W r

1 ;Pδ)1 , r ∈ N. (16)

Therefore, it is sufficient to consider the case of the uniform metric.
Timan [12] obtained the following equalities:

E (W r
∞;Pδ)C =

4

π

∞∑
k=0

1− e−
2k+1
δ

(2k + 1)r+1 =
2

π
ϕr (δ) , r = 2l − 1, l ∈ N, (17)

where

ϕr (δ) =

1
δ∫

0

∞∫
tr

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1dt2 . . . dtr

and

ϕn(0) = ϕn :=

{ π
2Kn, n = 2l − 1,
π
2 K̃n, n = 2l,

l ∈ N.

We find the complete asymptotic expansions of the functions ϕr(δ) in the
terms 1/δ as δ →∞.

Let

ϕr(δ) = αr1
1

δ
ln δ + o

(
1

δ
ln δ

)
,

then

αr1 = lim
δ→∞

ϕr (δ)
1
δ ln δ

= − lim
1
δ
→0

ϕr(δ)
1
δ ln 1

δ

.

In the case

ϕr(δ) = αr1
1

δ
ln δ + βr1

1

δ
+ o

(
1

δ

)
we obtain

βr1 = lim
δ→∞

ϕr(δ)− αr1 1δ ln δ
1
δ

= lim
1
δ
→0

ϕr(δ) + αr1
1
δ ln 1

δ
1
δ

.

Thus, the possibility to write down the asymptotic expansion of functions
ϕr (δ) in the form

ϕr (δ) ∼=
∞∑
k=1

{
αrk

1

δk
ln δ + βrk

1

δk

}
(18)

is equivalent to the fact that the coefficients αrk and βrk are connected with
the function ϕr (δ) through the equalities

αrk = lim
δ→∞

1
1
δk

ln δ

ϕr (δ)−
k−1∑
j=1

(
αrj

1

δj
ln δ + βrj

1

δj

) , (19)
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βrk = lim
δ→∞

1
1
δk

ϕr (δ)− αrk
1

δk
ln δ −

k−1∑
j=1

(
αrj

1

δj
ln δ + βrj

1

δj

) . (20)

To check the conditions (7) and (8), it is necessary to assume that

g2k−1 = αrk
1

δk
ln δ, g2k = βrk

1

δk
.

Using the L’Hospital rule k times, we obtain that if k = 1 and r > 1, then

αr1 = lim
δ→∞

ϕr (δ)
1
δ ln δ

= lim
1
δ
→0

−1

1 + ln 1
δ

∞∫
1
δ

∞∫
tr−1

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−1 = 0,

βr1 = lim
δ→∞

ϕr (δ)
1
δ

= lim
1
δ
→0

∞∫
1
δ

∞∫
tr−1

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−1 = ϕr−1.

If k = 2 and r > 2, then

αr2 = lim
δ→∞

1
1
δ2

ln δ

{
ϕr (δ)− ϕr−1

1

δ

}

= lim
1
δ
→0

−1

2 ln 1
δ + 3

∞∫
1
δ

∞∫
tr−2

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−2 = 0,

βr2 = lim
δ→∞

ϕr (δ)− ϕr−1 1δ
1
δ2

= − lim
1
δ
→0

1

2

∞∫
1
δ

∞∫
tr−2

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−2 = −1

2
ϕr−2.

In the case of k ≤ r − 1, using the obvious equalities

dkϕr (δ)

d
(
1
δ

)k = (−1)k−1
∞∫
1
δ

∞∫
tr−k

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−k,

dk

d
(
1
δ

)k( 1

δk
ln

1

δ

)
= k!

(
ln

1

δ
+

k∑
i=1

1

i

)
, (21)
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we get

αrk = lim
δ→∞

1
1
δk

ln δ

{
ϕr (δ)−

k−1∑
i=1

βri
1

δi

}

= lim
1
δ
→0

(−1)k

k!
(

ln 1
δ +

k∑
i=1

1
i

)
∞∫
1
δ

∞∫
tr−k

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−k

= 0,

(22)

βrk = lim
δ→∞

1
1
δk

{
ϕr (δ)−

k−1∑
i=1

βri
1

δi

}

= lim
1
δ
→0

1

k!
(−1)k−1

∞∫
1
δ

∞∫
tr−k

. . .

∞∫
t2

ln
1 + e−t1

1− e−t1
dt1 dt2 . . . dtr−k

=
(−1)k−1

k!
ϕr−k.

(23)

If k = r, then we have

αrr = lim
δ→∞

1
1
δr ln δ

{
ϕr (δ)−

r−1∑
i=1

βri
1

δi

}
= lim

1
δ
→0

−1

r!
(

ln 1
δ +

r∑
i=1

1
i

) drϕr (δ)

d
(
1
δ

)r ,

βrr = lim
δ→∞

1
1
δr

{
ϕr (δ)− αrr

1

δr
ln δ −

r−1∑
i=1

βri
1

δi

}

= lim
1
δ
→0

1

r!

{
drϕr (δ)

d
(
1
δ

)r + αrrr!

(
ln

1

δ
+

r∑
i=1

1

i

)}
.

So, considering the validity of the equality

drϕr (δ)

d
(
1
δ

)r = ln(1 + e−
1
δ )− ln(1− e−

1
δ ),

we get

αrr = lim
1
δ
→0

ln(1− e−
1
δ )− ln(1 + e−

1
δ )

r!

(
ln 1

δ +
r∑
i=1

1
i

) =
1

r!
, (24)
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βrr = lim
1
δ
→0

1

r!

(
ln
(

1 + e−
1
δ

)
− ln

(
1− e−

1
δ

)
+ ln

1

δ
+

r∑
i=1

1

i

)

=
1

r!

(
ln 2 +

r∑
i=1

1

i

)
.

(25)

Now we study the case when k > r. It is possible to show that

dkϕr (δ)

d
(
1
δ

)k =

(−1)k−12
k−r∑
i=1

ak−r+1
i e(2i−1)

1
δ(

e
2
δ − 1

)k−r , (26)

where aji are defined by correlation (15), and

dk

d
(
1
δ

)k ( 1

δµ
ln

1

δ

)
= (−1)k−µ−1µ!(k − µ− 1)!δk−µ, k > µ. (27)

If k = r + 1, then

αrr+1 = lim
δ→∞

1
1

δr+1 ln δ

{
ϕr (δ)− αrr

1

δr
ln δ −

r∑
i=1

βri
1

δi

}

= lim
1
δ
→0

−1

(r + 1)!

(
ln 1

δ +
r+1∑
i=1

1
i

) {dr+1ϕr (δ)

d
(
1
δ

)r+1 + αrr
dr+1

(
1
δr ln 1

δ

)
d
(
1
δ

)r+1

}

= lim
1
δ
→0

−1

(r + 1)!

(
ln 1

δ +
r+1∑
i=1

1
i

) (− 2e
1
δ

e
2
δ − 1

+ δ

)
= 0.

Further, using similar transformations, we obtain

βrr+1 = lim
1
δ
→0

1

(r + 1)!

(
− 2e

1
δ

e
2
δ − 1

+ δ

)
= 0.

From the equalities (26), (27), and the formulas (19) and (20) we get, that
if k > r, then the following equalities hold:

αrk = lim
δ→∞

1
1
δk

ln δ

{
ϕr (δ)− αrr

1

δr
ln δ −

k−1∑
i=1

βri
1

δi

}

= lim
1
δ
→0

−1

k!

(
ln 1

δ +
k∑
i=1

1
i

) {dkϕr (δ)

d
(
1
δ

)k + αrr
dk

d
(
1
δ

)k ( 1

δr
ln

1

δ

)}
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= lim
1
δ
→0

(−1)k

k!

(
ln 1

δ +
k∑
i=1

1
i

)Ak−r (δ) ,

βrk = lim
δ→∞

1
1
δk

{
ϕr (δ)− αrr

1

δr
ln δ −

k−1∑
i=1

βri
1

δi

}

= lim
1
δ
→0

1

k!

{
dkϕr (δ)

d
(
1
δ

)k + αrr
dk

d
(
1
δ

)k ( 1

δr
ln

1

δ

)}

= lim
1
δ
→0

(−1)k−1

k!
Ak−r (δ) ,

where

Aj (δ) :=

2
j∑
i=1

aj+1
i e(2i−1)

1
δ

(e
2
δ − 1)j

− (j − 1)!
1
δj

.

Obviously

σj = lim
1
δ
→0

Aj(δ) =
1

2j
lim
1
δ
→0

2 1
δj

j∑
i=1

aj+1
i e(2i−1)

1
δ − (j − 1)!

(
e

2
δ − 1

)j
1
δ2j

.

Further, using the L’Hospital rule 2j times, we obtain

σj =
1

2j
lim
1
δ
→0


2

j∑
k=0

Ck2j
j!

(j−k)!
1

δj−k

j∑
i=1

aj+1
i (2i− 1)2j−ke(2i−1)

1
δ

(2j)!

−
(j − 1)!

j−1∑
i=0

Cij(−1)i22j(j − i)2je
2(j−i)
δ

(2j)!



=
1

2j

2Cj2jj!
j∑
i=1

aj+1
i (2i− 1)j − (j − 1)!

j−1∑
i=0

Cij(−1)i22j(j − i)2j

(2j)!

=
1

2j−1j!

j∑
i=1

(2i−1)jaj+1
i − 2j(j − 1)!

(2j)!

j−1∑
i=0

(−1)iCij(j−i)2j ,

where aji are defined by the correlation (15).
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In the case k > r we get

αrk = 0, (28)

βrk =
(−1)k−1

k!
σk−r. (29)

From the formulas (18), (22)–(25), (28), and (29) we get the complete
asymptotic expansion of the function ϕr(δ), r = 2l − 1, l ∈ N,

ϕr (δ) ∼=
1

r!

1

δr
ln δ +

∞∑
k=1

βrk
1

δk
, (30)

where βrk are defined by the formula (14).
From the formulas (17) and (30) we obtain the equality (13). Theorem 1

is proven. �

Remark 1. By virtue of Theorem 1, we can write the following complete
asymptotic expansion in the case r = 1:

E
(
W 1
∞;Pδ

)
C
∼=

2

π

(
1

δ
ln δ +

∞∑
k=1

β1k
1

δk

)
. (31)

It is necessary to notice that the results, written down by formulas (12) and
(31), are different by the form. However it is possible to show the equivalence
of coefficients with respect to the terms 1/δ in the mentioned formulas:

β11 =
2 lnπ

π
+

2

π

∞∫
π

(t)2π
t2

dt = 1 + ln 2, β12 = 0,

β13 = − 2

π

 ∞∫
π

(t)2π
t4

dt− 1

2π2

 =
1

(3!)2
, β14 = 0,

β15 =
2

π

 ∞∫
π

(t)2π
t6

dt− 1

2π4

 = − 14

(5!)2
, β16 = 0,

β17 =
2

π

 ∞∫
π

(t)2π
t8

dt− 1

2π6

 =
1240

(7!)2
, β18 = 0,

etc.

Theorem 2. If r = 2l, l ∈ N, then the complete asymptotic expansion

E (W r
∞;Pδ)C = E (W r

1 ;Pδ)1
∼=

4

π

∞∑
k=1

γrk
1

δk
, δ →∞, (32)
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holds, where

γrk =


(−1)k−1

k! ψr−k, k < r,
− π

4r! , k = r,
1
k!τk−r, k > r,

k, r ∈ N, (33)

τj =


0, j = 2l,

1
2j

j∑
i=1

(−1)i−1aj+1
i , j = 2l − 1,

l ∈ N,

the coefficients aji are defined by the formula (15), and

ψj =

{
π
4 K̃j , j = 2m− 1,
π
4Kj , j = 2m,

m ∈ N.

Proof. According to the equality (16), it is sufficient to prove Theorem 2
only for the case of the uniform metric. In Timan’s article [12] it was shown
that

E (W r
∞;Pδ)C =

4

π

∞∑
k=0

(−1)k
1− e−

2k+1
δ

(2k + 1)r+1 =
4

π
ψr (δ) , r = 2l, l ∈ N, (34)

where

ψr (δ) =

1
δ∫

0

∞∫
tn

. . .

∞∫
t2

arctan e−t1dt1 . . . dtn

and

ψn(0) = ψn :=

{
π
4 K̃n, n = 2l − 1,
π
4Kn, n = 2l,

l ∈ N.

Let us find complete asymptotic expansion of the function ψr (δ) on de-
grees of 1/δ as δ →∞.

In the asymptotic expansion of the function ψr (δ) of the form

ψr (δ) ∼=
∞∑
k=1

γrk
1

δk
(35)

the coefficients γrk are connected with the function ψr (δ) by the correlations

γrk = lim
δ→∞

1
1
δk

{
ψr (δ)−

k−1∑
i=1

γri
1

δi

}
.

Applying k times the L’Hospital rule in the case k ≤ r − 1, and taking
into consideration the equality

dkψr (δ)

d
(
1
δ

)k = (−1)k−1
∞∫
1
δ

∞∫
tr−k

. . .

∞∫
t2

arctan e−t1 dt1 dt2 . . . dtr−k,
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we get

γrk = lim
δ→∞

1
1
δk

{
ψr (δ)−

k−1∑
i=1

γri
1

δi

}

=
(−1)k−1

k!
lim
1
δ
→0

∞∫
1
δ

∞∫
tr−k

. . .

∞∫
t2

arctan e−t1 dt1 dt2 . . . dtr−k

=
(−1)k−1

k!
ψr−k.

(36)

If k = r, then, using the fact that

drψr (δ)

d
(
1
δ

)r = − arctan e−
1
δ ,

we obtain the equalities

γrr = lim
δ→∞

1
1
δr

{
ψr (δ)−

r−1∑
i=1

γri
1

δi

}
= − 1

r!
lim
1
δ
→0

arctan e−
1
δ = − π

4r!
. (37)

At last, we consider the case k > r. In this case

dkψr (δ)

d
(
1
δ

)k =

k−r∑
i=1

(−1)i−1ak−r+1
i e(2i−1)

1
δ

(e
2
δ + 1)k−r

.

Taking into account the fact that aj+1
i = aj+1

j+1−i, 1 ≤ i ≤ j, we have

τj = lim
1
δ
→0

j∑
i=1

(−1)i−1aj+1
i e(2i−1)

1
δ

(e
2
δ + 1)j

=


0, j = 2l,

1
2j

j∑
i=1

(−1)i−1aj+1
i , j = 2l − 1.

So, we obtain

γrk = lim
δ→∞

1
1
δk

{
ψr (δ)−

k−1∑
i=1

γri
1

δi

}
=

1

k!
lim
1
δ
→0

dkψr (δ)

d
(
1
δ

)k
=

1

k!
lim
1
δ
→0

k−r∑
i=1

(−1)i−1ak−r+1
i e(2i−1)

1
δ

(e
2
δ + 1)k−r

=
1

k!
τk−r.

(38)

From the correlations (35)–(38) for the function ψr (δ) we make the conclu-
sion, that the following complete asymptotic expansion holds:

ψr (δ) ∼=
∞∑
k=1

γrk
1

δk
. (39)
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From the formulas (34) and (39), we get the equality (32). Theorem 2 is
proven. �

Let us notice, that in an explicit form the asymptotic expansion of the
quantity E (W r

∞;Pδ)C in the terms 1/δ were written down only for the cases
r = 1, 2, 3 by Baskakov (the case r = 1 was represented by the formula (12)).

In contrast to the results of Baskakov, Theorems 1 and 2 contain the com-
plete asymptotic expansions of the quantities E (W r

∞;Pδ)C and E (W r
1 ;Pδ)1

in an explicit form for all powers of smoothness r ∈ N.
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