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Stability in higher-order nonlinear fractional
differential equations

Abdelouaheb Ardjouni, Hamid Boulares, and Yamina Laskri

Abstract. We give sufficient conditions to guarantee the asymptotic
stability of the zero solution to a kind of higher-order nonlinear fractional
differential equations. By using Krasnoselskii’s fixed point theorem in
a weighted Banach space, we establish new results on the asymptotic
stability of the zero solution provided that f (t, 0) = 0. The results
obtained here generalize the work of Ge and Kou [6].

1. Introduction

Fractional differential equations with and without delay arise from a vari-
ety of applications including in various fields of science and engineering such
as applied sciences, practical problems concerning mechanics, the engineer-
ing technique fields, economy, control systems, physics, chemistry, biology,
medicine, atomic energy, information theory, harmonic oscillator, nonlin-
ear oscillations, conservative systems, stability and instability of geodesic on
Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional
differential equations with and without delay have received the attention of
many authors, see [1]–[16], [18], and the references therein.

In this paper, we are interested in the analysis of the qualitative theory
of problems of the asymptotic stability of the zero solution to higher-order
fractional differential equations. Inspired and motivated by the works men-
tioned above, we concentrate on the asymptotic stability of the zero solution
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for the higher-order nonlinear fractional differential equation{
CDα

0+x(t) = f (t, x(t)) , t ≥ 0,

x(i)(0) = xi, i = 0, . . . , n,
(1.1)

where n < α < n + 1, n ≥ 1, R+ = [0,+∞), xi ∈ R, f : R+ × R → R is
a continuous function such that the fractional integral Iα−1

0+ f (t, x(t)) exists

and f(t, 0) = 0, and CDα
0+ is the standard Caputo fractional derivative. We

denote the solution of (1.1) by x (t, x0, . . . , xn). To show the asymptotic
stability of the zero solution, we transform (1.1) into an integral equation
and then use Krasnoselskii’s fixed point theorem. The obtained integral
equation is the sum of two mappings, one is a contraction and the other is
compact. In the case n = 1, Ge and Kou [6] show the asymptotic stability of
the zero solution of (1.1) by employing Krasnoselskii’s fixed point theorem
in a weighted Banach space.

This paper is organized as follows. In Section 2, we introduce some no-
tations and lemmas, and state some preliminaries results needed in later
sections. Also, we present the inversion of (1.1) and Krasnoselskii’s fixed
point theorem. For details on Krasnoselskii’s theorem we refer the reader
to [17]. In Section 3, we give and prove our main results on stability. The
results obtained here generalize the work of Ge and Kou [6].

2. Preliminaries

We introduce some necessary definitions, lemmas, and theorems which
will be used in this paper. For more details, see [7, 9, 16, 17].

Definition 2.1 (see [7, 16]). The fractional integral of order α > 0 of a
function x : R+ → R is given by

Iα0+x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds,

provided the right side is pointwise defined on R+.

Definition 2.2 (see [7, 16]). The Caputo fractional derivative of order
α > 0 of a function x : R+ → R is given by

CDα
0+x(t) = In−α0+ x(n)(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1x(n)(s)ds,

where n = [α] + 1, provided the right side is pointwise defined on R+.

Lemma 2.3 (see [7, 16]). Let <(α) > 0. Suppose that x ∈ Cn−1 [0,+∞)

and x(n) exists almost everywhere on any bounded interval of R+. Then(
Iα C

0+ Dα
0+x

)
(t) = x(t)−

n−1∑
k=0

x(k)(0)

k!
tk.
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In particular, when 0 < <(α) < 1, we get(
Iα C

0+ Dα
0+x

)
(t) = x(t)− x(0).

Remark 2.4. From Definitions 2.1, 2.2, and Lemma 2.3, it is easy to see
that

(1) Let <(α) > 0. If x is continuous on R+, then Dα
0+I

α
0+x(t) = x(t) holds

for all t ∈ R+;
(2) The Caputo derivative of a constant is equal to zero.

The following Banach space plays a fundamental role in our discussion.
Let h : [0,+∞)→ [1,+∞) be a strictly increasing continuous function with
h(0) = 1, h(t)→∞ as t→∞, and h(s)h(t−s) ≤ h(t) for all 0 ≤ s ≤ t ≤ ∞.
Let

E =

{
x ∈ C ([0,+∞)) : sup

t≥0
|x(t)| /h(t) <∞

}
.

Then E is a Banach space equipped with the norm

‖x‖ = sup
t≥0

|x(t)|
h(t)

.

For more properties of this Banach space, see [9]. Moreover, let

‖ϕ‖t = max {|ϕ(s)| : 0 ≤ s ≤ t},

for any t ≥ 0, any given ϕ ∈ C ([0,+∞)), and let =(ε) = {x ∈ E : ‖x‖ ≤ ε}
for any ε > 0.

Lemma 2.5 (see [6]). Let r ∈ C ([0,+∞)). Then x ∈ C ([0,+∞)) is a
solution of the Cauchy type problem{

CDα
0+x(t) = r(t), t ∈ R+, n < α < n+ 1,

x(i)(0) = xi, i = 0, . . . , n,

if and only if x is a solution of the Cauchy type problem x′(t) = Iα−1
0+ r(t) +

n∑
i=1

xi
(i−1)! t

i−1, t ∈ R+,

x(0) = x0.

Lemma 2.6. Let k ∈ R. Then x ∈ C ([0,+∞)) is a solution of (1.1) if
and only if

x(t) = e−ktx0 +

n∑
i=1

xigi (t) + k

∫ t

0
e−k(t−u)x(u)du

+
1

Γ(α− 1)

∫ t

0

∫ t

u
e−k(t−s)(s− u)α−2dsf(u, x(u))du,

(2.1)
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where

gi (t) =

i∑
j=1

(−1)j−1 ti−j

(i− j)!kj
+

(−1)i

ki
e−kt, i = 1, . . . , n.

Proof. Let x ∈ C ([0,+∞)) be a solution of (1.1). From Lemma 2.5, we
have  x′(t) = Iα−1

0+ (f (t, x (t))) +
n∑
i=1

xi
(i−1)! t

i−1, t ∈ R+,

x(0) = x0.

Then x′(t) = 1
Γ(α−1)

∫ t
0 (t− s)α−2f(s, x(s))ds+

n∑
i=1

xi
(i−1)! t

i−1, t ∈ R+,

x(0) = x0.

Rewriting this as
x′(t) + kx (t)

= kx (t) + 1
Γ(α−1)

∫ t
0 (t− s)α−2f(s, x(s))ds+

n∑
i=1

xi
(i−1)! t

i−1, t ∈ R+,

x(0) = x0,

by the variation of constants formula we obtain (2.1). Since each step is
reversible, the converse follows easily. This completes the proof. �

Definition 2.7. The trivial solution x = 0 of (1.1) is said to be stable
in the Banach space E, if for every ε > 0, there exists a δ = δ (ε) > 0 such
that

∑n
i=0 |xi| ≤ δ implies that the solution x(t) = x(t, x0, . . . , xn) exists

for all t ≥ 0 and satisfies ‖x‖ ≤ ε, and asymptotically stable, if it is stable
in E and there exists a number σ > 0 such that

∑n
i=0 |xi| ≤ σ implies

limt→∞ ‖x(t)‖ = 0.

We end this section by stating Krasnoselskii’s fixed point theorem which
enables us to prove the asymptotic stability of the zero solution to (1.1). For
its proof we refer the reader to [17].

Theorem 2.8 (Krasnoselskii, see [17]). Let Ω be a non-empty closed con-
vex subset of a Banach space (S, ‖.‖). Suppose that A and B map Ω into S
so that

(i) Ax+By ∈ Ω for all x, y ∈ Ω,
(ii) A is continuous and AΩ is contained in a compact set of S,
(iii) B is a contraction with constant l < 1.

Then there is an x ∈ Ω with Ax+Bx = x.

In order to prove (ii), the following modified compactness criterion is
needed.
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Theorem 2.9 (see [9]). Let M be a subset of the Banach space E. Then
M is relatively compact in E if the following conditions are satisfied:

(i) {x(t)/h(t) : x ∈M} is uniformly bounded,
(ii) {x(t)/h(t) : x ∈M} is equicontinuous on any compact interval of

R+,
(iii) {x(t)/h(t) : x ∈M} is equiconvergent at infinity, i.e., for any given

ε > 0, there exists a T0 > 0 such that for all x ∈M and t1, t2 > T0,

|x(t2)/h(t2)− x(t1)/h(t1)| < ε.

3. Main results

Before stating and proving the main results, we introduce the following
three hypotheses.

(H1) f is a continuous function and f(t, 0) = 0.
(H2) There exists a constant β1 ∈ (0, 1) such that

e−kt/h(t) ∈ BC ([0,+∞)) ∩ L1 ([0,+∞)) ,

|k|
∫ ∞

0
e−ku/h(u)du ≤ β1 < 1.

(3.1)

(H3) There exist constants η > 0, β2 ∈ (0, 1− β1), and a continuous

function f̃ : [0,∞)× (0, η]→ R+ such that

|f(t, υh(t))|
h(t)

≤ f̃(t, |υ|) (3.2)

holds for all t ≥ 0, 0 < |υ| ≤ η, and

sup
t≥0

∫ t

0

K(t− u)

h(t− u)

f̃(u, r)

r
du ≤ β2 < 1− β1 (3.3)

holds for every 0 < r ≤ η, where f̃(t, r) is nondecreasing in r for fixed t,

f̃(t, r) ∈ L1 ([0,+∞)) in t for fixed r, and

K(t− u) =

{
1

Γ(α−1)

∫ t
u e
−k(t−s)(s− u)α−2ds, t− u ≥ 0,

0, t− u < 0.

Theorem 3.1. Suppose that (H1)−(H3) hold. Then the trivial solution
x = 0 of (1.1) is stable in the Banach space E.

Proof. For any given ε > 0, we first prove the existence of a δ > 0 such
that ∑n

i=0 |xi| < δ implies ‖x‖ ≤ ε.
In fact, according to (3.1), there exist constants M1 and M > 0 such that

e−kt

h(t)
≤M1 and

|gi (t)|
h(t)

≤M, i = 1, . . . , n.
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Let

0 < δ ≤ 1− β1 − β2

M1 +M
ε.

Consider the non-empty closed convex subset = (ε) ⊆ E. For t ≥ 0, we
define two mapping A and B on = (ε) as follows:

Ax(t) =
1

Γ(α− 1)

∫ t

0

∫ t

u
e−k(t−s)(s− u)α−2dsf(u, x(u))du

=

∫ t

0
K(t− u)f(u, x(u))du

and

Bx(t) = e−ktx0 +
n∑
i=1

xigi (t) + k

∫ t

0
e−k(t−u)x(u)du.

Obviously, for x ∈ = (ε), both Ax and Bx are continuous functions on
[0,+∞). Furthermore, for x ∈ = (ε), by (3.1)–(3.3), for any t ≥ 0, we
have

|Ax(t)|
h(t)

≤
∫ t

0

K(t− u)

h(t− u)

|f(u, x(u)|
h(u)

du

≤
∫ t

0

K(t− u)

h(t− u)
f̃

(
u,
|x(u)|
h(u)

)
du

≤ β2 ‖x‖ ≤ β2ε <∞

(3.4)

and

|Bx(t)|
h(t)

=

∣∣∣∣∣e−kth(t)
x0 +

n∑
i=1

xi
gi (t)

h(t)
+ k

∫ t

0

e−k(t−u)

h(t)
x(u)du

∣∣∣∣∣
≤M1 |x0|+M

n∑
i=1

|xi|+ |k|
∫ ∞

0

e−ku

h(u)
du ‖x‖

≤M1 |x0|+M

n∑
i=1

|xi|+ β1ε <∞.

(3.5)

Then A= (ε) ⊆ E and B= (ε) ⊆ E. Next, we shall use Theorem 2.8 to prove
that there exists at least one fixed point of the operator A + B in = (ε).
Here, we divide the proof into three steps.

Step 1. We prove that Ax + By ∈ = (ε) for all x, y ∈ = (ε). Indeed, for
any x, y ∈ = (ε), from (3.4) and (3.5) we obtain that

sup
t≥0

|Ax (t) +By (t)|
h(t)

= sup
t≥0

∣∣∣∣∣e−kth(t)
x0 +

n∑
i=1

xi
gi (t)

h(t)
+ k

∫ t

0

e−k(t−u)

h(t)
y(u)du
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+

∫ t

0

K(t− u)

h(t)
f(u, x(u))du

∣∣∣∣
≤M1 |x0|+M

n∑
i=1

|xi|+ |k|
∫ ∞

0

e−ku

h(u)
du ‖y‖+ β2 ‖x‖

≤ (M1 +M) δ + β1ε+ β2ε ≤ ε,

which implies that Ax+By ∈ = (ε) for all x, y ∈ = (ε).

Step 2. It is easy to see that A is continuous. Now we only prove
that A= (ε) is relatively compact in E. In fact, from (3.4), we get that
{x(t)/h(t) : x ∈ = (ε)} is uniformly bounded in E. Moreover, a classical
theorem states the fact that the convolution of an L1-function with a function
tending to zero, does also tend to zero. Then we conclude that, for t−u ≥ 0,
we have

0 ≤ lim
t→∞

K(t− u)

h(t− u)
≤ lim

t→∞

1

Γ(α− 1)

∫ t

u

e−k(t−s)

h(t− u)

(s− u)α−2

h(s− u)
ds

= lim
t→∞

1

Γ(α− 1)

∫ t

0

e−k(t−u−s)

h(t− u− s)
sα−2

h(s)
ds = 0,

due to the fact limt→∞ t
α−2/h(t) = 0. Together with the continuity of K

and h, we get that there exists a constant M2 > 0 such that∣∣∣∣K(t− u)

h(t− u)

∣∣∣∣ ≤M2, (3.6)

and for any T0 ∈ R+, the function K(t−u)h(u)/h(t) is uniformly continuous
on {(t, u) : 0 ≤ u ≤ t ≤ T0}. Now, for any t1, t2 ∈ [0, T0], t1 < t2, we have∣∣∣∣Ax(t2)

h(t2)
− Ax(t1)

h(t1)

∣∣∣∣
=

∣∣∣∣∫ t2

0

K(t2 − u)

h(t2)
f(u, x(u))du−

∫ t1

0

K(t1 − u)

h(t1)
f(u, x(u))du

∣∣∣∣
≤
∫ t1

0

∣∣∣∣K(t2 − u)

h(t2)
− K(t1 − u)

h(t1)

∣∣∣∣ |f(u, x(u))| du

+

∫ t2

t1

K(t2 − u)

h(t2 − u)
f̃ (u, ε) du

≤
∫ t1

0

∣∣∣∣K(t2 − u)h(u)

h(t2)
− K(t1 − u)h(u)

h(t1)

∣∣∣∣ f̃ (u, ε) du

+M2

∫ t2

t1

f̃ (u, ε) du → 0,

as t2 → t1, which means that {x(t)/h(t) : x ∈ = (ε)} is equicontinuous on any
compact interval of R+. By Theorem 2.9, in order to show that A= (ε) is a
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relatively compact set of E, we only need to prove that {x(t)/h(t) : x ∈ = (ε)}
is equiconvergent at infinity. In fact, for any ε1 > 0, there exists a L > 0
such that

M2

∫ ∞
L

f̃ (u, ε) du ≤ ε1

3
.

According to (3.6), we get that

lim
t→∞

sup
u∈[0,L]

K(t− u)

h(t− u)
≤ max

{
lim
t→∞

K(t− L)

h(t− L)
, lim
t→∞

K(t)

h(t)

}
= 0.

Thus, there exists T > L such that for t1, t2 ≥ T we have

sup
u∈[0,L]

∣∣∣∣K(t2 − u)h(u)

h(t2)
− K(t1 − u)h(u)

h(t1)

∣∣∣∣
≤ sup

u∈[0,L]

∣∣∣∣K(t2 − u)

h(t2 − u)

∣∣∣∣+ sup
u∈[0,L]

∣∣∣∣K(t1 − u)

h(t1− u)

∣∣∣∣
≤ ε1

3

(∫ ∞
0

f̃ (u, ε) du

)−1

Therefore, if t1, t2 ≥ T , then∣∣∣∣Ax(t2)

h(t2)
− Ax(t1)

h(t1)

∣∣∣∣
=

∣∣∣∣∫ t2

0

K(t2 − u)

h(t2)
f(u, x(u))du−

∫ t1

0

K(t1 − u)

h(t1)
f(u, x(u))du

∣∣∣∣
≤
∫ L

0

∣∣∣∣K(t2 − u)h(u)

h(t2)
− K(t1 − u)h(u)

h(t1)

∣∣∣∣ f̃ (u, ε) du

+

∫ t2

L

K(t2 − u)

h(t2 − u)
f̃ (u, ε) du+

∫ t1

L

K(t1 − u)

h(t1 − u)
f̃ (u, ε) du

≤ ε1

3
+ 2M2

∫ ∞
L

f̃ (u, ε) du ≤ ε1.

Hence the required conclusion is true.

Step 3. We claim that B : = (ε)→ E is a contraction mapping.
In fact, for any x, y ∈ = (ε), from (3.1) we obtain that

sup
t≥0

∣∣∣∣Bx(t)

h(t)
− By(t)

h(t)

∣∣∣∣
= sup

t≥0

∣∣∣∣∣k
∫ t

0

e−k(t−u)

h(t)
x(u)du− k

∫ t

0

e−k(t−u)

h(t)
y(u)du

∣∣∣∣∣
≤ sup

t≥0

{
|k|
∫ t

0

e−k(t−u)

h(t− u)

|x(u)− y(u)|
h(u)

du

}
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≤ |k|
∫ t

0

e−k(t−u)

h(t− u)
du ‖x− y‖

≤ β1 ‖x− y‖ .
By Theorem 2.8, we know that there exists at least one fixed point of the
operator A+B in = (ε). Finally, for any ε2 > 0, if

0 < δ1 ≤
1− β1 − β2

M1 +M
ε2,

then
∑n

i=0 |xi| ≤ δ1 implies that

‖x‖ = sup
t≥0

∣∣∣∣∣e−kth(t)
x0 +

n∑
i=1

xi
gi (t)

h(t)
+ k

∫ t

0

e−k(t−u)

h(t)
x(u)du

+

∫ t

0

K(t− u)

h(t)
f(u, x(u))du

∣∣∣∣
≤ sup

t≥0

{
e−kt

h(t)
|x0|+

n∑
i=1

|xi|
|gi (t)|
h(t)

+ |k|
∫ ∞

0

e−k(t−u)

h(t− u)h(u)
|x(u)| du

+

∫ t

0

K(t− u)

h(t− u)

|f(u, x(u))|
h(u)

du

}
≤ (M1 +M) δ1 + β1 ‖x‖+ β2 ‖x‖

≤ M1 +M

1− β1 − β2
δ1 ≤ ε2.

Thus, we know that the trivial solution of (1.1) is stable in the Banach space
E. �

Theorem 3.2. Suppose that all conditions of Theorem 3.1 are satisfied,

lim
t→∞

e−kt/h(t) = 0, (3.7)

and for any r > 0, there exists a function ϕr(t) ∈ L1 ([0,+∞)), ϕr(t) > 0,
such that |u| ≤ r implies

|f(t, u)| /h(t) ≤ ϕr(t) for a.e. t ∈ [0,+∞) .

Then the trivial solution of (1.1) is asymptotically stable.

Proof. First, it follows from Theorem 3.1 that the trivial solution of (1.1)
is stable in the Banach space E. Next, we shall show that the trivial solution
x = 0 of (1.1) is attractive. For any r > 0, define

=∗ (r) =
{
x ∈ = (r) , lim

t→∞
x(t)/h(t) = 0

}
.

We only need to prove that Ax+By ∈ =∗ (r) for any x, y ∈ =∗ (r), i.e.,

Ax(t) +By(t)

h(t)
→ 0 as t→∞,
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where

Ax(t) +By(t) = e−ktx0 +
n∑
i=1

xigi (t) + k

∫ t

0
e−k(t−u)y(u)du

+

∫ t

0
K(t− u)f(u, x(u))du.

In fact, for x, y ∈ =∗ (r), based on the fact that was used in the proof of
Theorem 3.1 (Step 2), it follows from (3.1) and (3.7) that∫ t

0

e−k(t−u)

h(t− u)

y(u)

h(u)
du→ 0,

and

K(t− u)

h(t− u)
=

∫ t
u
e−k(t−s)

h(t−u) (s− u)α−2ds

Γ(α− 1)
→ 0,

as t → ∞. Together with the hypothesis ϕr(t) ∈ L1 ([0,+∞)), we obtain
that ∫ t

0

K(t− u)

h(t− u)

|f(u, x(u))|
h(u)

du ≤
∫ t

0

K(t− u)

h(t− u)
ϕr(u)du→ 0,

as t→∞. Thus we get the conclusion. �

By a similar argument as in Theorem 3.2, we obtain the following corollary.
We omit the details.

Corollary 3.3. Suppose that all conditions of Theorem 3.1 are satisfied
and (3.7) holds for any r > 0. If there exist two functions a, b : R+ −→ R+

satisfying
a(t) ∈ L1(0,+∞), lim

r→0
b(r)/r = 0

such that
|f(t, u)| /h(t) ≤ a(t)b(|u|),

then the trivial solution of (1.1) is asymptotically stable.
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