Remarks on locally closed set

Shyamapada Modak and Takashi Noiri

ABSTRACT. In this paper, we study properties of pre-*I*-open sets and C_I -continuity. We also establish a relation between *LC*-continuity and C_I -continuity. Moreover, we investigate properties of pre_I^* -open sets and pre_I^* -continuity defined in [3] and [6], respectively.

1. Introduction and preliminaries

The concept of ideals [13] is well known in topological spaces. Let (X, τ) be a topological space and let $\wp(X)$ be the family of all subsets of X. A subfamily I of $\wp(X)$ is called an *ideal* if it satisfies the following properties: (1) $A \in I$ and $B \in I$ implies $A \cup B \in I$;

(1) $A \in I$ and $D \in I$ implies $A \cup D \in I$

(2) $A \in I$ and $B \subseteq A$ implies $B \in I$.

A topological space (X, τ) with an ideal I is called an *ideal topological space* and is denoted by (X, τ, I) . A new topology τ^* for X, called the *-topology [12], has been constructed from (X, τ, I) . It is known that τ^* is finer than τ ; and the family $\{V \setminus J : V \in \tau, J \in I\}$ is a base of τ^* . The closure (respectively, interior) of a subset A of X in the topological space (X, τ^*) is denoted by $Cl^*(A)$ (respectively, $Int^*(A)$). Many mathematicians have been interested in (X, τ^*) , and different types of generalized open and closed sets have been defined with the help of the closure and the interior operators with respect to τ and τ^* . Using these sets, different kinds of continuity have been defined and investigated.

In this paper, we investigate relations between pre-*I*-closed sets [2], C_I -sets [5], locally closed sets [1], and A_I^* -sets [5]. We also study several properties of pre_I^* -open sets [3] and pre_I^* -continuity [6].

The following lemma plays an important role in the study of this paper.

Received February 1, 2017.

²⁰¹⁰ Mathematics Subject Classification. 54A05; 54A10; 54B10.

Key words and phrases. Pre^* -I-open; pre-I-closed; locally closed set; C_I -continuous. http://dx.doi.org/10.12697/ACUTM.2018.22.06

Lemma 1.1 (see [12, 11, 16]). Let (X, τ, I) be an ideal topological space. The following statements are equivalent:

- (1) $X = X^*$.
- (2) $\tau \cap I = \{\emptyset\}.$
- (3) If $J \in I$, then $Int(J) = \emptyset$.
- (4) For every $U \in \tau$, $U \subseteq U^*$.
- (5) For every $U \in \tau$, $U^* = Cl(U)$.
- (6) For every semiopen set G in (X, τ) , $G \subseteq G^*$.

2. Pre-*I*-open sets

Definition 2.1 (see [2]). A subset P of an ideal topological space (X, τ, I) is called pre-*I*-open if $P \subseteq Int(Cl^*(P))$.

The collection of all pre-*I*-open sets in (X, τ, I) is denoted by PIO(X).

Definition 2.2 (see [14]). A subset P of a topological space (X, τ) is called preopen if $P \subseteq Int(Cl(P))$.

The collection of all preopen sets in (X, τ) is denoted by PO(X).

If a set is pre-I-open, then it is obviously preopen. For the converse, we have following proposition.

Proposition 2.3 (see [15]). Let (X, τ, I) be an ideal topological space, where I is codense. Then $PIO(X) = PO(X, \tau^*(I))$, where $PO(X, \tau^*(I))$ denotes the collection of all preopen sets in (X, τ^*) .

If $I = \{\emptyset\}$ for an ideal topological space (X, τ, I) , then $\tau \cap I = \{\emptyset\}$ and hence $PIO(X) = PO(X, \tau^*(I))$.

Let I_n denote the collection of all nowhere dense subsets of the topological space (X, τ) . Then I_n is an ideal on (X, τ) and for the ideal topological space (X, τ, I_n) , $PIO(X) = PO(X, \tau^*(I))$ as $\tau \cap I_n = \{\emptyset\}$.

Theorem 2.4 (see [7]). For a subset A of an ideal topological space (X, τ, I) , A is pre-I-open if and if and only if $A = G \cap B$, where G is open and B is *-dense.

If a set A is pre-*I*-closed (see [2]), then $X \setminus A$ is pre-*I*-open, i.e., $(X \setminus A) \subseteq Int(Cl^*(X \setminus A))$. Thus $(X \setminus A) \subseteq (X \setminus Cl(Int^*(A)))$ and hence $Cl(Int^*(A)) \subseteq A$.

It is obvious that every closed set is a pre-*I*-closed set. We denote by PIC(X) the collection of all pre-*I*-closed sets in (X, τ, I) . The family of all closed sets in (X, τ) is denoted by $C(\tau)$.

Theorem 2.5. Finite intersection of pre-I-closed sets is a pre-I-closed set.

Proof. Let (X, τ, I) be an ideal topological space. Let $P_1, P_2, \ldots, P_n \in PIC(X)$. We shall prove that $\bigcap_{i=1}^n A_i \in PIC(X)$. For each i,

$$Cl(Int^*(\bigcap_{i=1}^n A_i)) = Cl(Int^*(A_1) \cap (Int^*A_2) \cap \dots \cap (Int^*(A_n)) \subseteq Cl(Int^*(A_i)).$$

Thus

$$Cl(Int^*(A_1) \cap (Int^*A_2) \cap \dots \cap (Int^*(A_n)))$$

$$\subseteq Cl(Int^*(A_1)) \cap Cl(Int^*A_2)) \cap \dots \cap Cl(Int^*(A_n)))$$

$$\subseteq A_1 \cap A_2 \cap \dots \cap A_n.$$

So $\bigcap_{i=1}^{n} A_i \in PIC(X)$.

Theorem 2.6. Let (X, τ, I) be an ideal topological space and let $A \in PIC(X)$. If $A \in \tau^*$, then $A \in C(\tau)$.

Theorem 2.7. Let (X, τ, I) be an ideal topological space. If $PIC(X) = \tau^*(I)$, then each open set in (X, τ^*) is closed in (X, τ) .

Proof. Let $A \in \tau^*$. Then $Int^*(A) = A$. Now $Cl(Int^*(A)) = Cl(A) \subseteq A$ as $A \in PIC(X)$. Thus A is closed in (X, τ^*) .

For the converse of the above theorem we get the following result.

Theorem 2.8. Let (X, τ, I) be an ideal topological space. If each open set in (X, τ^*) is closed in (X, τ) , then $\tau^* \subseteq PIC(X)$.

Proof. Let $A \in \tau^*$. Since A is closed in (X, τ) , $Cl(A) \subseteq A$ and hence $Cl(Int^*(A)) \subseteq A$. Thus $\tau^* \subseteq PIC(X)$.

3. C_I -continuity

Definition 3.1 (see [5]). A subset K of an ideal topological space (X, τ, I) is called a C_I -set if $K = L \cap M$, where L is an open set and M is a pre-I-closed set in X.

Let $C_I(X)$ denote the collection of all C_I -sets in (X, τ, I) .

Remark 3.2. (i) A subset S of (X, τ, I) is a \mathcal{C}_I -set if and only if $X \setminus S$ is the union of a closed set and a pre-*I*-open set.

(ii) Every open (respectively, pre-*I*-closed) subset of (X, τ, I) is a \mathcal{C}_I -set.

(iii) For any space (X, τ, I) , $C_I(X)$ is closed under finite intersections.

(iv) The complement of a C_I -set need not be a C_I -set. Hence the finite union of C_I -sets need not be a C_I -set.

Proof. (i) If
$$S = O \cap P$$
, where $O \in \tau$, $P \in PIC(X)$, then
 $X \setminus S = X \setminus (O \cap P) = (X \setminus O) \cup (X \setminus P).$

Thus $(X \setminus O) \in C(\tau)$ and $(X \setminus P) \in PIO(X)$.

Conversely, suppose that $(X \setminus S) = F \cup P$, where $F \in C(\tau)$ and $P \in PIC(X)$. Now $S = (X \setminus F) \cap (X \setminus P)$. Since $(X \setminus F) \in \tau$ and $(X \setminus P) \in PIC(X)$, S is a C_I -set.

(ii) Proof is obvious.

(iii) Proof is obvious from Theorem 2.5.

(iv) Consider the subset $S = \{1/n : n \in N\}$ of $(\mathbb{R}, \tau_{\mathbb{R}}, \{\emptyset\})$, where $\tau_{\mathbb{R}}$ is the usual topology on \mathbb{R} . Then S is a \mathcal{C}_I -set whereas $\mathbb{R} \setminus S$ is not. \Box

Definition 3.3 (see [1]). A subset S of a topological space (X, τ) is called locally closed if $S = U \cap F$, where $U \in \tau$ and $F \in C(\tau)$.

Remark 3.4. Since every closed set is a pre-*I*-closed set, every locally closed set is a C_I -set. The converse of this implication is not true in general which will be shown in Example 3.10.

Definition 3.5 (see [5]). A subset K of an ideal topological space (X, τ, I) is an \mathcal{A}_{I}^{*} -set if $K = L \cap M$, where L is an open set and $M = Cl(Int^{*}(M))$.

Remark 3.6 (see [4]). Let (X, τ, I) be an ideal topological space. Any \mathcal{A}_{I}^{*} -set is locally closed in X. The reverse implication is not true in general.

Remark 3.7. Let (X, τ, I) be an ideal topological space. Any \mathcal{A}_{I}^{*} -set is a \mathcal{C}_{I} -set.

Proof. The proof follows from Remark 3.6.

Definition 3.8 (see [5, 10]). A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be

(1) \mathcal{C}_I -continuous if $f^{-1}(A)$ is a \mathcal{C}_I -set in X for every open set A in Y,

(2) *LC*-irresolute if $f^{-1}(M)$ is a locally closed set in X for each locally closed set M in Y,

(3) *LC*-continuous if $f^{-1}(V)$ is a locally closed set in X for each open set V in Y,

(4) sub-*LC*-continuous if there is a subbase (or, equivalently, a base) \mathbb{B} for (Y, σ) such that $f^{-1}(V)$ is a locally closed set in X for each $V \in \mathbb{B}$.

From Remark 3.4, we have the following corollary.

Corollary 3.9. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a function. If f is LC-continuous, then it is C_I -continuous.

From the previous definition and corollary it follows immediately that we have the following implications:

 $continuous \Longrightarrow LC\text{-}irresolute \Longrightarrow LC\text{-}continuous$ $\Longrightarrow sub\text{-}LC\text{-}continuous \Longrightarrow \mathcal{C}_{I}\text{-}continuous.$

However, none of these implications can be reversed.

We shall give an example for the last implication only, other examples have been given by Ganster and Reilly [10].

Example 3.10. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$, and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. The function $f : (X, \tau, I) \to (X, \tau)$, defined by f(a) = a, f(b) = a, f(c) = b, f(d) = a, is \mathcal{C}_I -continuous but it is not sub-*LC*-continuous as $g^{-1}(a) = \{a, b, d\}$ is not a locally closed set in X.

From Proposition 10 of [10], we have that the composition of a sub-LC-continuous function and a continuous function need not be sub-LC-continuous. However, we have the following remark.

Remark 3.11. The composition of two C_I -continuous functions need be a C_I -continuous function in general.

Remark 3.12. It is also easy to verify that the composition of a continuous function and a C_I -continuous function is C_I -continuous.

Remark 3.13. The composition of a *LC*-continuous function and a C_{I} -continuous function is C_{I} -continuous.

A converse part of Corollary 3.9 follows from Theorem 2.6.

Theorem 3.14. If each pre-*I*-closed in (X, τ, I) is open in *-topology, then avery C_I -continuous function $f : (X, \tau, I) \to (Y, \sigma)$ is LC-continuous.

To every function $f: X \to Y$ one can assign the graph function $g_f: X \to X \times Y$ defined by $g_f(x) = (x, f(x))$.

Theorem 3.15. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a function. If f is C_I -continuous, then g_f is C_I -continuous.

Proof. Let S be a subbase for (Y, σ) such that $f^{-1}(V) \in \mathcal{C}_I(X)$ whenever $V \in S$. Then $\{U \times V : U \in \tau, V \in S\}$ is a subbase for the product topology on $X \times Y$. Since $g_f^{-1}(U \times V) = U \cap f^{-1}(V), g_f^{-1}$ is \mathcal{C}_I -continuous. \Box

4. Pre_{I}^{*} -continuity

Definition 4.1 (see [3]). A subset P of an ideal topological space (X, τ, I) is pre_I^* -open if $P \subseteq Int^*(Cl(P))$.

The collection of all pre_I^* -open sets is denoted by $P_I^*O(X)$.

Theorem 4.2. Let (X, τ, I) be an ideal topological space, where I is codense. Then $PO(X, \tau) = P_I^*O(X)$.

Proof. Let $P \in P_I^*O(X)$. Then $P \subset Int^*(Cl(P)) \subset Cl(P) \cap \psi(Cl(P)).$ Thus (see [11])

$$P \subseteq \psi(Cl(P)) = X \setminus (X \setminus Cl(P))^* = X \setminus Cl(X \setminus Cl(P)).$$

Now, since by Lemma 1.1

$$X \setminus Cl(X \setminus Cl(P)) = X \setminus (X \setminus (Int(Cl(P))),$$

we have that $P \in PO(X, \tau)$.

Reciprocally, suppose that $A \in PO(X, \tau)$. Then $A \subseteq Int(Cl(A)) \subseteq Int^*(Cl(A))$. Thus $A \in P_I^*O(X)$. \Box

If $I = \{\emptyset\}$ for an ideal topological space (X, τ, I) , then $\tau \cap I = \{\emptyset\}$ and hence $P_I^*O(X) = PO(X, \tau)$.

For the ideal topological space (X, τ, I_n) , $P_I^*O(X) = PO(X, \tau)$ as $\tau \cap I_n = \{\emptyset\}$.

Corollary 4.3. Let (X, τ, I) be an ideal topological space with $\tau \cap I = \{\emptyset\}$. Then $A \in P_I^*O(X)$ if and only if it is of the form $D \cap O$, where D is dense and O is open in X.

The complement of a pre_I^* -open set is called a pre_I^* -closed set (see [8, 3]). That is, if A is pre_I^* -closed in an ideal topological space (X, τ, I) , then $X \setminus A \subseteq Int^*(Cl(X \setminus A))$. Thus $Cl^*(Int(A)) \subseteq A$ (see [8, 3]). The collection of all pre_I^* -closed sets is denoted by $P_I^*C(X)$.

Again, if A is closed in X, then it is obvious that A is a pre_I^* -closed set, since

$$Cl^*(Int(A)) \subseteq Cl(Int(A)) \subseteq Cl(A) = A.$$

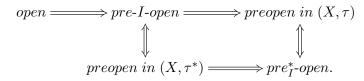
Lemma 4.4. Let (X, τ, I) be an ideal topological space. For any subset A of X, the following diagram holds:

Corollary 4.5. Let (X, τ, I) be an ideal topological space. For any subset A of X, the following diagram holds:

Interesting results have been drawn from Proposition 2.3 and Theorem 4.2.

62

Remark 4.6. If *I* is codense then the following diagram holds:



Therefore, preopenness in (X, τ^*) implies preopenness in (X, τ) but the converse is not true even if I is codense: see the next example.

Example 4.7. Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$, and $I = \{\emptyset, \{b\}\}$. Then I is codense. Here $\{b\}$ is preopen in (X, τ) but it is not preopen in (X, τ^*) .

Next example shows that the condition "I is codense" is an essential condition for the statement: preopenness in (X, τ^*) implies preopenness in (X, τ) .

Example 4.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \text{ and } I = \{\emptyset, \{a\}\}.$ Then I is not a codense ideal and $\tau^* = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $A = \{b, c\}$, then $Int(Cl(\{b, c\})) = \emptyset$ but $Int^*(Cl^*(\{b, c\})) = \{b, c\}$. Thus $\{b, c\}$ is preopen in (X, τ^*) but not preopen in (X, τ) .

Definition 4.9 (see [6, 2, 14]). A function $f : (X, \tau, I) \to (Y, \sigma)$ is called pre_I^* -continuous (respectively, pre-*I*-continuous, pre-continuous) if $f^{-1}(T)$ is a pre_I^* -closed (respectively, pre-*I*-open, preopen) subset of X for each closed (respectively, open, open) subset T of Y.

Theorem 4.10. If a function $f : (X, \tau, I) \to (Y, \sigma)$ is continuous, then it is a pre^{*}_I-continuous function.

Proof. Proof is obvious from Lemma 4.4.

The composition of two pre_I^* -continuous functions is not a pre_I^* -continuous function in general.

Remark 4.11. The composition of a continuous function and a pre_{I}^{*} -continuous function is pre_{I}^{*} -continuous.

Theorem 4.12. A function $f : (X, \tau, I) \to (Y, \sigma)$ is pre-*I*-continuous if and only if $f^{-1}(F)$ is pre-*I*-closed for each closed set F in Y.

Proof. Proof is obvious from Corollary 4.5.

 \Box

Corollary 4.13. Every pre-*I*-continuous function $f : (X, \tau, I) \to (Y, \sigma)$ is a pre^{*}_I-continuous function.

Acknowledgement. The authors are thankful to the referees for valuable comments.

References

- N. Bourbaki, *Elements of Mathematics.General Topology. Part I*, Hermann, Paris; Addlson-Wesley, Reading, Mass. – London – Don Mills, 1966.
- [2] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arxiv: math. GN/9901017v1 (1999).
- [3] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform. **20** (2011), 47–54.
- [4] E. Ekici, On R-I-open sets and A_I^{*}-sets in ideal topological spaces, An. Univ. Craiova Ser. Mat. Inform. 38 (2) (2011), 26–31.
- [5] E. Ekici, On A_I^{*}-sets, C_I-sets, C_I^{*}-sets and decompositions of continuity in ideal topological spaces, An. Stiint. Univ. Al. I. Cuza Iaşi Mat. (N. S.) 59 (2013), 173–184.
- [6] E. Ekici and O. Elmali, On decompositions via generalized closedness in ideal spaces, Filomat 29(4) (2015), 879–886.
- [7] E. Ekici and T. Noiri, Certain subsets in ideal topological spaces, An. Univ. Oradea Fasc. Mat. 17 (2011), 125–132.
- [8] E. Ekici and S. Özen, A generalized class of τ^* in ideal spaces, Filomat **27**(4) (2013), 527–535.
- [9] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27(2) (1987), 135–143.
- [10] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Int. J. Math. Math. Sci. 12(3) (1989), 417–424.
- [11] T. R. Hamlett and D. Janković, *Ideals in topological spaces and the set operator* ψ , Boll. Un. Mat. Ital. B(7) **4** (1990), 863–874.
- [12] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [13] K. Kuratowski, Topology. Vol. I. Academic Press, New York, 1966.
- [14] A. S. Mashhour, M. E. Abd. El-Monsef, and S. N. El-Deeb, On precontinous and week precontinous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [15] S. Modak, A study on structure and functions in topological spaces with ideals, Thesis, Burd. Univ. India, 2008.
- [16] S. Modak and C. Bandyopadhyay, *-topology and generalized open sets, Soochow J. Math. 32 (2006), 201–210.
- [17] W. J. Thron, *Topological Structures*, Holt, Rinehart and Winston, New York, 1966.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GOUR BANGA, P.O. MOKDUMPUR, MALDA - 732103, INDIA

E-mail address: spmodak2000@yahoo.co.in

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMOMOTO-KEN, 869-5142 JAPAN *E-mail address:* t.noiri@nifty.com