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On Lucas-balancing zeta function

Debismita Behera, Utkal Keshari Dutta,
and Prasanta Kumar Ray

Abstract. In the present study a new modification of Riemann zeta
function known as Lucas-balancing zeta function is introduced. The
Lucas-balancing zeta function admits its analytic continuation over the
whole complex plane except its poles. This series converges to a fixed
rational number − 1

2
at negative odd integers. Further, in accordance

to Dirichlet L-function, the analytic continuation of Lucas-balancing
L-function is also discussed.

1. Introduction

It is well known that all the functions defined by a series
∑∞

n=1 ann
−s,

where an is a complex sequence with s = σ + it ∈ C, are called the Dirich-
let series. Such series are mostly related to each other in their algebraic
properties in terms of analyticity when an is a multiplicative function. As
usual, for an = 1 and <(s) > 1, the series ζ(s) =

∑∞
n=1 n

−s is known as the
Riemann zeta function (see [2, 4]). It is a prototypical Dirichlet series which
converges absolutely to an analytic function for all real values of s greater
than 1 and diverges for all the other values of s. Riemann [2] proved that
the zeta function defined by the series on the half plane is analytically con-
tinued to all the complex values except s = 1, for which it gives a harmonic
series converging to +∞. So Riemann zeta function is holomorphic on the
whole complex plane except for the simple pole at s = 1, and the residue is
given by 1. The functional equation of Riemann zeta function shows that
it has zeros at −2,−4,−6, . . . , which are the trivial zeros, and has rational
values at negative odd integers, which are known as the Bernoulli numbers
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(see [12]). Any non-trivial zeros lies on the open strip s ∈ C, 0 < <(s) < 1,
which is known as the critical strip.

Fibonacci zeta function is defined by

ζF (s) =
∑
n∈N

F−sn ,

where Fn denotes the n-th Fibonacci number (see [10]). Since the n-th
Fibonacci number shows exponential growth, it can be easily shown that
such series converges for <(s) > 0, however it has been proved by André-
Jeannin [1] that such series is an irrational number. Its analytic continuation
can derived easily by using the similar methods used for Riemann zeta func-
tion and Hurwitz zeta function. It was proved by Navas [8] (based on its
Binet formula) and Egami [5] that such function is analytically continued
in the whole complex plane except for the simple poles. Elsner et al. [6]
obtained that the values of ζF at positive even integers like 2, 4, 6, . . . are
algebraically independent and also the function is transcendental at those
points however its values at positive odd integers are still unknown. Kamano
[7] considered the Lucas zeta function and L-function, which are generaliza-
tions of Fibonacci zeta function and L-function, respectively, and studied
their analytic continuation.

In [11] Rout and Panda have considered another generalization of Dirichlet
series given by

ζB(s) =

∞∑
n=1

B−sn , <(s) > 1, s ∈ C,

known as balancing Dirichlet series. They showed that ζB(s) is meromorphi-
cally continued all over the complex plane C. This inspired us to consider
about the analytic continuation of a new series

ζC(s) =
∞∑
n=1

C−sn ,

where Cn is the n-th Lucas-balancing number (see [9]). We call the series
the Lucas-balancing zeta function. It is worthy to define balancing and
Lucas-balancing numbers. Balancing numbers are obtained from a simple
Diophantine equation and satisfy the recurrence relationBn+1 = 6Bn−Bn−1,
n ≥ 1, with initial values B0 = 0 and B1 = 1. Lucas-balancing numbers
satisfy the same recurrence relation with different initials C0 = 1 and C1 = 3
(see [3, 9]). The Binet formulas for both these numbers are given by

Bn =
λn1 − λn2
λ1 − λ2

, Cn =
λn1 + λn2

2
,

where λ1 = 3 + 2
√

2 and λ2 = 3− 2
√

2.
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In this paper, we will discuss about the analytic continuation of Lucas-
balancing zeta function and its values at integral arguments which are de-
scribed below. Also it will be verified that such function has simple poles at
negative even integers however it has no trivial zeros.

2. Analytic continuation of ζC(s) over C
It is well known that analytic continuation is the technique of extending

the domain of given analytic function and often helps in defining the values of
a function in the region. In this section, we shall discuss about the extension
of Lucas-balancing zeta function on C.

Theorem 2.1. The function ζC(s) can be meromorphically continued to
the whole complex plane and can be expressed as

ζC(s) = 2s
∞∑
k=o

(−1)k
(
−s
k

)
(λs+2k

1 − 1)−1.

It is holomorphic except at the simple poles

s∗ = −2k +
2πin

log λ1
, k ≥ 0, (2.1)

and the residue at s = s∗ is given by

Res [ζC(s) : s∗] =
2s

∗
(−1)k

(−s∗
k

)
log λ1

.

Proof. The recurrence relation for Lucas-balancing number is

Cn+1 = 6Cn − Cn−1, C0 = 1, C1 = 3,

and its Binet formula is given by

Cn =
λn1 + λn2

2
.

For any complex number z,

Czn =

(
λn1 + λn2

2

)z
= 2−z (λn1 + λn2 )z

= 2−zλnz1

(
1 +

(
λ2
λ1

)n)z
= 2−zλnz1

(
1 +

(
1

λ1

)2n
)z

= 2−zλnz1

∞∑
k=0

(−1)k
(
z

k

)
λ−2nk1 .
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This series expansion is only valid for all z ∈ C and λ1 > 0. Now, substitut-
ing in the above expression with z = −s , we have

C−sn = 2sλ−ns1

∞∑
k=0

(−1)k
(
−s
k

)
λ−2nk1 .

Thus
∞∑
n=1

C−sn = 2s
∞∑
n=1

∞∑
k=0

(−1)k
(
−s
k

)
λ
−n(s+2k)
1 .

Hence
∞∑
n=1

|C−sn | = 2s
∞∑
n=1

∞∑
k=0

∣∣∣∣(−1)k
(
−s
k

)
λ
−n(s+2k)
1

∣∣∣∣
= 2s

∞∑
n=1

∞∑
k=0

∣∣∣∣(−|s|k
)
λ
−n(s+2k)
1

∣∣∣∣ ≤ 2s
∞∑
n=1

∞∑
k=0

(−1)k
(
−|s|
k

)
λ
−n(σ+2k)
1

= 2s
∞∑
n=1

λ−nσ1

∞∑
k=0

(−1)k
(
−|s|
k

)
λ−2nk1 = 2s

∞∑
n=1

λ−nσ1 (1− λ−2n1 )−|s|

≤ 2s(1− λ−21 )−|s|
∞∑
n=1

λ−nσ1 <∞.

Thus the power series representation of ζC(s) converges absolutely and hence
it also converges, and can be analytic in C. Now

ζC(s) =
∞∑
n=1

C−sn = 2s
∞∑
n=1

∞∑
k=0

(−1)k
(
−s
k

)
λ
−n(s+2k)
1

= 2s
∞∑
k=0

(−1)k
(
−s
k

) ∞∑
n=1

(
λ
−(s+2k)
1

)n
= 2s

∞∑
k=0

(−1)k
(
−s
k

)(
1

1− λ−s−2k1

− 1

)

= 2s
∞∑
k=0

(−1)k
(
−s
k

)(
λ−s−2k1

1− λ−s−2k1

)
= 2s

∞∑
k=0

(−1)k
(
−s
k

)(
1

λs+2k
1 − 1

)

= 2s
∞∑
k=0

fk(s),

where

fk(s) = (−1)k
(
−s
k

)(
1

λs+2k
1 − 1

)
.
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Here fk(s) is an analytic function on C except at the poles which are derived

by equating λs+2k
1 −1 = 0. This gives the values (2.1) of s. Now, the residue

of ζC(s) at s∗ is given by

Res [ζC(s) : s∗] = lim
s→s∗

(s− s∗)ζC(s) = 2s
∗
(−1)k

(
−s∗

k

)
1

log λ1
.

Thus the proof is completed. �

3. Values of ζC(s) at integral arguments

3.1. Values at negative integers. Since the poles of the function ζC(s)
are determined by (2.1), the poles s∗ lie on the line <(s) = −2k and
are equally spaced in the interval of 2πi

log λ1
. So the even negative integers

−2,−4,−6, ... are its poles. Now we shall find out the values of ζC(s) at the
negative odd integers. If m is an odd natural number, then

ζC(−m) = 2−m
∞∑
k=0

(−1)k
(
m

k

)
1

λ−m+2k
1 − 1

,

(
m

k

)
= 0, k > m.

Let σk = (−1)k
(
m
k

)
1

(λ−m+2k
1 −1)

and αk = σk − σm−k. One has

αk = (−1)k
(
m

k

)
1

λ−m+2k
1 − 1

− (−1)m−k
(

m

m− k

)
1

λm−2k1 − 1

= (−1)k
(
m

k

)[
1

λ−m+2k
1 − 1

+
1

λm−2k1 − 1

]

= (−1)k
(
m

k

)[
1

λ−m+2k
1 − 1

+
1

λ−m+2k
2 − 1

]

= (−1)k
(
m

k

)[
λ−m+2k
1 − 1 + λ−m+2k

2 − 1

(λ−m+2k
1 − 1)(λ−m+2k

2 − 1)

]
= (−1)k+1

(
m

k

)
.

So αm−k = (−1)m− k+1
(
m

m−k
)

= −αk. That means αk + αm−k = 0. Now,

ζC(−m) = 2−m
∞∑
k=0

σk = 2−m
1

2

∞∑
k=0

(−1)kαk

= 2−m−1
∞∑
k=0

(−1)k(−1)k+1

(
m

k

)
= −2−m−1

∞∑
k=0

( m

k

)
= −2−m−1+m = −1

2
,

which is a rational number.
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3.2. Values at positive integers.

Theorem 3.1. The values of Lucas-balancing zeta function at positive
integers m are given by

ζC(m) = 2m
∞∑
l=1

alλ
−l
1 , al =

∑
d|l, d∈Sm

(d+m−2
2

m− 1

)
.

Proof. We know that

Csn = 2−s
∞∑
k=0

(−1)k
(
s

k

)
λ
n(s−2k)
1 and (−1)k

(
−s
k

)
=

(
s+ k − 1

k

)
.

So, for all m ∈ N,

C−mn = 2m
∞∑
k=0

(−1)k
(
−m
k

)
λ
−n(m+2k)
1 = 2m

∞∑
k=0

(
m+ k − 1

k

)
λ
−n(m+2k)
1

= 2m
∞∑
k=0

(
m+ k − 1

m− 1

)
λ
−n(m+2k)
1 .

Taking d = m+ 2k and Sm = {d ≥ m : d ≡ m (mod 2)}, we have

C−mn = 2m
∑
d∈Sm

(d+m−2
2

m− 1

)
λ−nd1 .

To find out the sum of the above expression over n , collecting the like powers
l = nd and restricting d as d|l whenever l runs over natural numbers, we can
have the previous expression as

∞∑
n=1

C−mn = 2m
∞∑
l=1

∑
d|l, d∈Sm

(d+m−2
2

m− 1

)
λ−l1 = 2m

∞∑
l=1

alλ
−l
1 .

This completes the proof. �

In particular, when m = 1, we have S1 = {d ≥ 1 : d ≡ 1 (mod 2 )}. Then

∞∑
n=1

C−1n = 2

∞∑
l=1

∑
d|l

(d−1
2

0

)
λ−l1 = 2

∞∑
l=1

∑
d|l, d∈S1

1λ−l1 = 2

∞∑
l=1

d1(l)λ
−l
1 ,

where

d1(l) =
∑

d|l, d≡1(mod 2)

1.

Thus we have
∞∑
n=1

C−12n = 2
∑

l≡0(mod 2)

d1(l)λ
−l
1 and

∞∑
n=1

C−12n−1 = 2
∑

l≡1(mod 2)

d1(l)λ
−l
1 .
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4. The Lucas-balancing L-function

The Dirichlet L-function is the function of the form

L(s, χ) =
∞∑
n=1

χ( n) n−s.

This function was first introduced by Dirichlet in [2] in order to prove the
prime number theorem in arithmetic progressions and hence it was named
after him. He proved that L(s, χ) is non-zero at s = 1. Moreover, the
Dirichlet L-function attains its simple pole at s = 1 if the corresponding χ
is principal.

The zeros of L(s, χ) mainly depend upon χ. If χ is a primitive character
such that χ(−1) = 1, then the negative even integers are its only zeros and if
χ(−1) = −1, then the negative odd integers are the only zeros with <(s) < 0.
In [11], there is a function known as balancing L-function which is a new
modification of Dirichlet L-function. It has been defined as

LB(s, χ) =

∞∑
n=1

χ(n)B−sn , <(s) > 1.

Now keeping an eye on balancing L-function, its definition helped us to define
another function

LC(s, χ) =

∞∑
n=1

χ(n)

Csn
, <(s) > 1.

This function seems to be very similar to Dirichlet L-function and balancing
L-function. Rout and Panda [11] have discussed about the meromorphic
continuation of LB(s, χ). In this section, we will discuss about the analytic
continuation of Lucas-balancing L-function.

We know that the Hurwitz zeta function ζ(s, a) =
∑∞

n=0
1

(n+a)s is a gen-

eralisation of ζ(s) and L(s, χ) (see [2]). Similarly we can write the Lucas-
balancing L-function in terms of ζC(s) and we can define it as

ζC(s, (r, p)) =
∑

n≥1, n≡r(mod p)

1

Csn
.

If we take r = p = 1, then ζC(s(1, 1)) = ζC(s). Further,

ζC(s, (r, p)) =
∞∑
n=0

1

Cspn+r
= 2s

∞∑
n=0

(
λpn+r1 + λpn+r2

)−s
= 2s

∞∑
n=0

λ
−(pn+r)s
1

(
1 +

(
λ2
λ1

)pn+r)−s

= 2s
∞∑
n=0

λ
−(pn+r)s
1

∞∑
k=0

(−1)k
(
−s
k

)(
λ2
λ1

)pn+r
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= 2s
∞∑
n=0

∞∑
k=0

(−1)k
(
−s
k

)
λ
−(pn+r)(s+2k)
1

= 2s
∞∑
k=0

(−1)k
(
−s
k

)
λ
−(s+2k)r
1

1− λ−(s+2k)p
1

.

This concludes that ζC(s, (r, p)) is meromorphically continued over whole
complex plane except at the poles

sk,n = −2k +
2πin

p log λ1
. (4.1)

For the analytic continuation of Lucas-balancing L-function, we need to
use another function, i.e., “Gauss sum” associated with k, which is defined
as

G(n, χ) =

k∑
m=1

χ(m) exp

(
2πimn

k

)
,

where χ is a Dirichlet character modulo k.

Theorem 4.1. The function LC(s, χ) is analytic over the whole complex
plane except the poles (4.1), and the residue at s = sk,n is given by

Res [LC(s, χ) : sk,n] = 2sk,n(−1)k
(
−sk,n
k

)
1

p log λ1
χ(−1)G(n, χ).

Proof. We know that

LC(s, χ) =
∞∑
n=1

χ(n)

Csn
=

p∑
r=1

χ(r)ζC(s, (r, p)).

This clears that the poles of LC(s, χ) are the same as the poles of ζC(s, (r, p)).
Thus likewise ζC(s, (r, p)), LC(s, χ) is also analytically continued all over
complex plane except the poles. Again, in order to find the residue of
ζC(s, (r, p)) at the poles, we have

Res [ζC(s, (r, p)) : sk,n] = 2sk,n(−1)k
(
−sk,n
k

)
lim

s→sk,n
(s− sk,n)

λ
−(s+2k)r
1

1− λ−(s+2k)p
1

= 2sk,n(−1)k
(
−sk,n
k

)
exp

(
−2πinr

p

)
lim

s→sk,n
(s− sk,n)

1

1− λ−(s+2k)p
1

= 2sk,n(−1)k
(
−sk,n
k

)
exp

(
−2πinr

p

)
1

p log λ1
.

Hence the residue of LC(s, χ) at poles is given by

Res [LC(s, χ) : sk,n] =

p∑
r=1

χ( r)Res [ζC(s, (r, p)) : sk,n]
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= 2sk,n(−1)k
(
−sk,n
k

)
1

p log λ1

p∑
r=1

χ(r) exp

(
−2πinr

p

)
.

Using the definition of G(n, χ), we get

Res [LC(s, χ) : sk,n] = 2sk,n(−1)k
(
−sk,n
k

)
(p log λ1)

−1G(−n, χ)

= 2sk,n(−1)k
(
−sk,n
k

)
(p log λ1)

−1 χ(−1)G(n, χ).

Hence this ends the proof of the theorem. �

Theorem 4.2. Let us consider χ as a non-principal character modulo p.
Then LC(−n, χ) = 0 for all n ∈ N.

Proof. Combining the definitions of LC(s, χ) and ζC(s, (r, p)), we get

LC(s, χ) =

p∑
r=1

χ(r)2s
∞∑
k=0

(−1)k
(
−s
k

)
λ
−(s+2k)r
1

1− λ−(s+2k)p
1

.

When s = −n , we have the above expression as

LC(−n, χ) =

p∑
r=1

χ(r)2−n
∞∑
k=0

(−1)k
(
n

k

)
λ
(n−2k)r
1

1− λ(n−2k)p1

.

When n is even, the points −2,−4,−6, . . . are the poles of LC(−n, χ), and
give its values as zero. Again, when n is odd, let

σk = (−1)k
(
n

k

)
λ
(n−2k)r
1

1− λ(n−2k)p1

and αk = σk − σn−k.

Then

αk = (−1)k
(
n

k

)
λ
(n−2k)r
1

1− λ(n−2k)p1

− (−1)n−k
(

n

n− k

)
λ
(−n+2k)r
1

1− λ(−n+2k)p
1

= (−1)k
(
n

k

)[
λ
(n−2k)r
1

1− λ(n−2k)p1

+
λ
(−n+2k)r
1

1− λ(−n+2k)p
1

]

= (−1)k
(
n

k

)[
λ
(n−2k)r
1

1− λ(n−2k)p1

+
λ
(n−2k)r
2

1− λ(n−2k)p2

]

= (−1)k
(
n

k

)
(−1) = (−1)k+1

( n

k

)
.

Now, αn−k = (−1)n−k+1
(
n
k

)
= −αk, and hence

∞∑
k=0

(−1)k
(
n

k

)
λ
(n−2k)r
1

1− λ(n−2k)p1

=

n∑
k=0

σk =
1

2

n∑
k=0

(−1)kαk
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=
1

2

n∑
k=0

(−1)k(−1)k+1

(
n

k

)
= −1

2

n∑
k=0

(
n

k

)
= −2n−1.

Therefore,

LC(−n, χ) = −1

2

p∑
r=1

χ(r) = 0 as

p∑
r=1

χ(r) = 0.

This completes the proof. �
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