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Equivalence results for implicit Jungck–Kirk type
iterations

H. Akewe and A. A. Mogbademu

Abstract. We show that the implicit Jungck–Kirk-multistep, implicit
Jungck–Kirk–Noor, implicit Jungck–Kirk–Ishikawa,and implicit Jungck–
Kirk–Mann iteration schemes are equivalently used to approximate the
common fixed points of a pair of weakly compatible generalized cont-
ractive-like operators defined on normed linear spaces. Our results con-
tribute to the existing results on the equivalence of fixed point iteration
schemes by extending them to pairs of maps. An example to show the
applicability of the main results is included.

1. Introduction

The concept of employing various iterative schemes in approximating fixed
points of contractive-like operators are very useful in fixed point theory
and applications, and other relevant fields like numerical analysis, opera-
tion research etc. This is due to the close relationship that exists between
the problem of solving nonlinear equations and that of approximating fixed
points of the corresponding contractive-like operators. An example can be
found in Glowinski and Le-Tallec [7], where a three-step iteration process
is used to solve elastoviscoplasticity, liquid crystal, and eigenvalue prob-
lems. Haubruge et al. [8] studied convergence analysis of three-step iterative
processes in [7], and applied the scheme to obtain some new splitting type
algorithms for solving variational inequalities, separable convex program-
ming, and minimization of sums of convex functions. The authors [8] also
proved that three-step iteration leads to highly parallelized algorithms under
certain conditions. Thus, we can say that multistep iterative schemes play
important role in solving various problems in pure and applied sciences.
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In the year 1965, Kirk [9] initiated an iterative scheme in the form of
series and proved a fixed point theorem for mappings which do not increase
distances. The scheme is defined as follows.

Definition 1.1 (see [9]). Let (E, ‖.‖) be a normed linear space, let D be
a non-empty convex closed subset of E, let T : D → D be a selfmap of D,
and let x0 ∈ E. The sequence of iterations {xn}∞n=1 is defined by

xn+1 =

k∑
i=0

αiT
ixn, n ≥ 0,

k∑
i=0

αi = 1. (1)

The following iteration scheme was introduced by Mann [10] to establish
mean value methods in iteration.

Definition 1.2 (see [10]). Let E and D be the same as in Definition 1.1.
For any given x0 ∈ E, the sequence {xn}∞n=0 of Mann iterations is defined
by

xn+1 = (1− αn)xn + αnTxn, n = 1, 2, . . . , (2)

where {αn}∞n=0 is a real sequence in [0, 1) such that
∑∞

n=0 αn =∞.

Several authors have written papers on Kirk type iterative schemes, wor-
thy of mention are the following: the explicit Kirk–Mann [15], explicit Kirk–
Ishikawa [15], explicit Kirk–Noor [4], and explicit Kirk-multistep [1] iterative
schemes. For example, Olatinwo [13] gave the following Kirk–Mann iterative
scheme and prove a stability result.

Definition 1.3 (see [13]). Let E and D be the same as in Definition 1.1,
and let x0 ∈ E. The sequence {xn}∞n=0 of iterations is defined by

xn+1 = αn,0xn +

q1∑
i=1

αn,iT
ixn,

q1∑
i=1

αn,i = 1, n = 1, 2, . . . , (3)

where αn,i ≥ 0, αn,0 6= 0, αn,i ∈ [0, 1), such that
∑∞

n=0 αn,i =∞, and q1 is a
fixed integer.

In 2014, Akewe et al. [1] introduced an explicit Kirk-multistep iterative
scheme, proved strong convergence and stability results for contractive-like
operators in normed linear spaces, and gave useful numerical examples to
back up their schemes.

Implicit iterations have advantage over explicit iterations for nonlinear
problems as they provide better approximation of fixed points, and are
widely used in many applications, when explicit iterations are inefficient.
Approximation of fixed points in computer oriented programs using implicit
iterations can reduce the computational cost of the fixed point problems (see
[5]). Many researchers have proved useful results on the equivalence of the
various iterative schemes, that is, the convergence of any of the iterative
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method to the unique fixed point of the contractive operator for a single
map T is equivalent to the convergence of the other iterative schemes (see
[4], [5], [7], [12], and [15]). However, it is observed that little is known about
the equivalence of implicit schemes for pair of maps. This work will address
these areas.

In [3], the authors introduced an implicit Jungck–Kirk type iterative
scheme and used it to approximate the unique common fixed point of a
pair of weakly compatible generalized contractive-like operators defined on
a Banach space, and gave an example to demonstrate the application of the
convergence results.

Let E be a Banach space and let S, T : E → E be non-selfcommuting
maps of E with T (E) ⊆ S(E). We shall present some of these implicit
Jungck–Kirk type iterative schemes to establish equivalence results.

Definition 1.4 (see [2]). Let u0 ∈ E. The implicit Jungck–Kirk–Mann
iteration is the sequence {Sun}∞n=0 defined by

Sun+1 = αn,0Sx
1
n +

q1∑
i=1

αn,iT
ixn+1,

q1∑
i=0

αn,i = 1, n = 0, 1, . . . , (4)

where αn,i ≥ 0, αn,0 6= 0, αn,i ∈ [0, 1], and q1 is a fixed integer.

Definition 1.5 (see [2]). Let z0 ∈ E. The implicit Jungck–Kirk–Ishikawa
iteration is the sequence {Szn}∞n=0 defined by

Szn+1 = αn,0Sz
1
n +

q1∑
i=1

αn,iT
izn+1,

q1∑
i=0

αn,i = 1,

Sz1n = β1n,0Szn +

q2∑
i=1

β1n,iT
iz1n,

q2∑
i=0

β1n,i = 1, n = 0, 1, dots,

(5)

where q1 ≥ q2, αn,i ≥ 0, αn,0 6= 0, β1n,i ≥ 0, β1n,0 6= 0, αn,i, β
1
n,i ∈ [0, 1), such

that
∑∞

n=0 αn,i =∞, and q1, q2 are fixed integers.

Definition 1.6 (see [2]). Let y0 ∈ E. The implicit Jungck–Kirk–Noor
iteration is the sequence {Syn}∞n=0 defined by

Syn+1 = αn,0Sy
1
n +

q1∑
i=1

αn,iT
iyn+1,

q1∑
i=0

αn,i = 1,

Sy1n = β1n,0Sy
2
n +

q2∑
i=1

β1n,iT
iy1n,

q2∑
i=0

β1n,i = 1,

Sy2n = β2n,0Syn +

q3∑
i=1

β2n,iT
iy2n,

q3∑
i=0

β2n,i = 1, n = 0, 1, . . . ,

(6)
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where q1 ≥ q2 ≥ q3, αn,i ≥ 0, αn,0 6= 0, β1n,i ≥ 0, β1n,0 6= 0, β2n,i ≥ 0, β2n,0 6= 0,

αn,i, β
1
n,i, β

2
n,i ∈ [0, 1), such that

∑∞
n=0 αn,i =∞, and q1, q2 and q3 are fixed

integers.

Definition 1.7 (see [2]). Let x0 ∈ E. The implicit Jungck–Kirk-multistep
iteration is the sequence {Sxn}∞n=0 defined by

Sxn+1 = αn,0Sx
1
n +

q1∑
i=1

αn,iT
ixn+1,

q1∑
i=0

αn,i = 1,

Sxln = βln,0Sx
l+1
n +

ql+1∑
i=1

βln,iT
ixln,

ql+1∑
i=0

βln,i = 1, l=1, 2, . . . , k−2,

Sxk−1n = βk−1n,0 Sxn+

qk∑
i=1

βk−1n,i T
ixk−1n ,

qk∑
i=0

βk−1n,i =1, k ≥ 2,

(7)

where n = 0, 1, . . . , q1 ≥ q2 ≥ q3 ≥ · · · ≥ qk for each j, αn,i ≥ 0, αn,0 6= 0,

βln,i ≥ 0, βln,0 6= 0 for each l, αn,i, β
l
n,i ∈ [0, 1) for each l such that

∑∞
n=0 αn,i =

∞, and q1, ql are fixed integers (for each l).

Remark 1.8. (i) The elements un, zn, yn and xn in (4), (5), (6), and (7),
respectively, are usually evaluated using Mann iterations (2).

(ii) The implicit Jungck–Kirk-multistep iteration (7) is an important
generalization of the implicit Jungck–Kirk–Noor (6), implicit Jungck–Kirk–
Ishikawa (5), and implicit Jungck–Kirk–Mann (4) iterations, because one
can recover (6), (5), and (4) from (7). In fact, if k=3 in (7), then we get
the implicit Jungck–Kirk–Noor iteration (6). If k=2 in (7), then we get the
implicit Jungck–Kirk–Ishikawa iteration (5), and if k=2 and q2 = 0 in (7),
then we get the implicit Jungck–Kirk–Mann iteration (4).

The concepts of coincidence points, commuting maps, and weakly com-
patible maps are useful in showing the link beween two and multivalue maps
in relation to fixed point iteration procedures. Thus we need the following
definition, example, and lemmas in proving our results.

Definition 1.9. Let E be a Banach space and let Y be an arbitrary set.
Let S, T : Y → E be two non-self mappings such that T (Y ) ⊆ S(Y ). A
point p ∈ Y is called a coincident point of a pair of self maps S, T if there
exists a point q (called a point of coincidence) in E such that q = Sp = Tp.
Self maps S and T are said to be weakly compatible if they commute at their
coincidence points, that is, if Sp = Tp for some p ∈ Y , then STp = TSp.

The next example, given by Djoudi and Alouche [6], shows that weakly
compatible maps are more general than those with other compatibility type
maps. For instance, if two maps S and T are compatible, compatible of type
(A), compatible of type (B), compatible of type (P), compatible of type (C),
then they are weakly compatible, but the converse is not true in general.
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Example 1.10 (see [6], Example 1.3). Let (X, d) = ([0, 10], | · |). Define
S and T by

Sx =

{
3, if x ∈ (0, 2],

0, if x ∈ {0} ∪ (2, 10]
and Tx =


0, if x = 0,

x+ 8, if x ∈ (0, 2],

x− 2, if x ∈ (2, 10].

Then S, T are weakly compatible, but are not compatible of type (A), type
(B), type (P), type (C), and are also not compatible. For details of the proof
see [3].

Different generalized contractive-like operators can be found in literature
(see [5]), some of them that are relevant to this study are defined as follows.

Definition 1.11 (see [11]). Let E be a Banach space and let Y be an
arbitrary set. The maps S, T : Y → E with T (Y ) ⊆ S(Y ) are called the
generalized Zamfirescu operators if

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ 2δ‖Sx− Tx‖, x, y ∈ Y, (8)

where δ ∈ [0, 1).

Olatinwo [12] considered the contractive condition

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖), x, y ∈ Y, (9)

where δ ∈ [0, 1) and ϕ : R+ → R+ is a monotone increasing function such
that ϕ(0) = 0.

Clearly, if ϕ(x) = 2δx in (9), then we get (8). Thus the contractive
condition (9) generalizes (8).

We shall now employ a similar contractive condition in one of the following
lemmas for proving our results.

Lemma 1.12 (see [14]). Let {an}∞n=0 be a nonnegative real sequence satis-
fying the inequality an+1 ≤ (1−λn)an+ en, where λn ∈ (0, 1) for all n ≥ n0,∑∞

n=0 λn =∞, and en = o(λn). Then limn→∞ an = 0.

Lemma 1.13. Let (E, ‖·‖) be a normed linear space and let S, T : Y → E
be nonself commuting maps satisfying (9) such that T (Y ) ⊆ S(Y ) and

‖S2x− T (Sx)‖ ≤ ‖Sx− Tx‖, ‖S2x− Sy‖ ≤ ‖Sx− Sy‖ for all x, y ∈ Y.

Let ϕ : R+ → R+ be a sublinear monotone increasing function such that
ϕ(0) = 0. Let w be the coincident point of S, T, Si, T i (i.e., Sw = Tw = p
and Siw = T iw = p). Then, for all x, y ∈ Y ,

‖T ix− T iy‖ ≤ δi‖Sx− Sy‖+

i∑
j=0

(
i

j

)
δi−jϕj(‖Sx− Tx‖). (10)
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Proof. It is not difficult to see that if ϕ is subadditive, then each power
ϕj is also subadditive.

We prove the inequality (10) by induction on i as follows. For i = 1, the
inequality (10) reduces to our assumption (9). Now, we suppose that (10) is
true for i = n, i.e.,

‖Tnx− Tny‖ ≤ δn‖Sx− Sy‖+

n∑
j=1

(
n

j

)
δn−jϕj(‖Sx− Tx‖), (11)

and then we show that (10) holds for i = n+ 1. Using (11) and the assump-
tions of the lemma, we have

‖Tn+1x− Tn+1y‖ ≤ δn‖S(Tx)− S(Ty)‖+

n∑
j=1

(
n

j

)
δn−jϕj(‖S(Tx)− T 2x‖)

≤ δn
(
ϕ
(
‖S2x− T (Sx)‖

)
+ δ‖S2x− S2y‖

)
+

n∑
j=1

(
n

j

)
δn−jϕj

(
ϕ
(
‖S2x− T (Sx)‖

)
+ δ‖S2x− S(Tx)‖

)
≤ δn (ϕ (‖Sx− Tx‖) + δ‖Sx− Sy‖)

+
n∑
j=1

(
n

j

)
δn−jϕj (ϕ(‖Sx− Tx‖) + δ‖Sx− Tx‖)

≤ δn+1‖Sx− Sy‖+ δnϕ(‖Sx− Tx‖)

+
n∑
j=1

(
n

j

)
δn+1−jϕj(‖Sx− Tx‖) +

n∑
j=1

(
n

j

)
δn−jϕj+1(‖Sx− Tx‖)

= δn+1‖Sx− Sy‖+
n+1∑
j=1

(
n+ 1

j

)
δn+1−jϕj(‖Sx− Tx‖).

Therefore, (10) holds for i = n+ 1. The proof is complete. �

Next, we prove that the convergences of the various implicit Jungck–Kirk
type iterative schemes (4), (5), (6), and (7) are equivalent for a pair of weakly
compatible maps S, T .

2. Main results

Theorem 2.1. Let (E, ‖ · ‖) be a normed linear space and let S, T :
E → E, T (E) ⊆ S(E), be two weakly compatible mappings satisfying the
generalized contractive-like condition (10), where ϕ is a sublinear monotone
increasing function such that ϕ(0) = 0. Let p be the unique common fixed
point of S, T, Si, T i (i.e., Sp = Tp = p and Sip = T ip = p). If u0 = x0 ∈ E,
then the following statements are equivalent:
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(i) Implicit Jungck–Kirk–Mann iteration (4) converges strongly to p;
(ii) Implicit Jungck–Kirk-multistep iteration (7) converges strongly to p.

Proof. (i) ⇒ (ii). Assume that limn→∞ Sun = p. Then, using (4), (7),
and the contractive condition (10)), we get

‖Sun+1 − Sxn+1‖ ≤ αn,0‖Sun − Sx1n‖+

q1∑
i=1

αn,i‖T iun+1 − T ixn+1‖

≤ αn,0‖Sun − Sx1n‖+

q1∑
i=1

αn,iδ
i‖Sun+1 − Sxn+1‖

+

q1∑
i=1

αn,i

i∑
j=0

(
i

j

)
δi−jϕj(‖Sun+1 − T iun+1‖).

(12)

From (12), we have

‖Sun+1 − T iun+1‖ = ‖Sun+1 − Sp+ Tp− T iun+1‖
≤ ‖Sun+1 − p‖+ ‖Tp− T iun+1‖ ≤ ‖Sun+1 − p‖+ δi‖p− Sun+1‖

+

q1∑
i=1

αn,i

i∑
j=0

(
i

j

)
δi−jϕj‖Sp− Tp‖

=
(
1 + δi

)
‖Sun+1 − p‖.

(13)

Substituting (13) in (12), we get

‖Sun+1 − Sxn+1‖ ≤
αn,0

1−
∑q1

i=1 αn,iδ
i

∥∥Sun − Sx1n∥∥
+

∑q1
i=1 αn,i

∑i
j=0

(
i
j

)
δi−jϕj

(
1 + δi

)
‖Sun+1 − p‖

1−
∑q1

i=1 αn,iδ
i

.

(14)

Using (4), (7), and (10), we have∥∥Sun−Sx1n∥∥≤β1n,0 ∥∥Sun−Sx2n∥∥+

q2∑
i=1

β1n,i
∥∥Sun−T iun+T iun−T ix1n

∥∥
≤β1n,0

∥∥Sun−Sx2n∥∥+

q2∑
i=1

β1n,i
∥∥Sun−T iun∥∥+

q2∑
i=1

β1n,i
∥∥T iun−T ix1n∥∥

≤β1n,0
∥∥Sun−Sx2n∥∥+

q2∑
i=1

β1n,i
∥∥Sun−T iun∥∥

+

q2∑
i=1

β1n,iδ
i
∥∥Sun−Sx1n∥∥+

q2∑
i=1

β1n,i

i∑
j=0

(
i

j

)
δi−jϕj

∥∥Sun−T iun∥∥ .
(15)
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Following the method of proof in (13), we can write

‖Sun − T iun‖ ≤ (1 + δi)‖Sun − p‖. (16)

Substituting (16) in (15) and simplifying, we obtain∥∥Sun − Sx1n∥∥ ≤ β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

∥∥Sun − Sx2n∥∥
+

∑q2
i=1 β

1
n,i

(
1 + δi

)
1−

∑q2
i=1 β

1
n,iδ

i
‖Sun − p‖

+

∑q2
i=1 β

1
n,i

∑i
j=0

(
i
j

)
)δi−jϕj

(
1 + δi

)
‖Sun − p‖

1−
∑q2

i=1 β
1
n,iδ

i
.

(17)

Also, using (4), (7), and (10), we get∥∥Sun − Sx2n∥∥ ≤ β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

∥∥Sun − Sx3n∥∥
+

∑q3
i=1 β

2
n,i

(
1 + δi

)
1−

∑q3
i=1 β

2
n,iδ

i
‖Sun − p‖

+

∑q3
i=1 β

2
n,i

∑i
j=0

(
i
j

)
δi−jϕj

(
1 + δi

)
‖Sun − p‖

1−
∑q3

i=1 β
2
n,iδ

i
.

(18)

Substituting (17) and (18) in (14), we get

‖Sun+1 − Sxn+1‖ ≤
αn,0

1−
∑q1

i=1 αn,iδ
i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

×
β2n,0

1−
∑q3

i=1 β
2
n,iδ

i

∥∥Sun − Sx3n∥∥
+

αn,0
1−

∑q1
i=1 αn,iδ

i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

∑q3
i=1 β

2
n,i(1 + δi)

1−
∑q3

i=1 β
2
n,iδ

i
‖Sun − p‖

+
αn,0

1−
∑q1

i=1 αn,iδ
i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

×
∑q3

i=1 β
2
n,i

∑i
j=0

(
i
j

)
δi−jϕj

(
(1 + δi)‖Sun − p‖

)
1−

∑q3
i=1 β

2
n,iδ

i
(19)

+
αn,0

1−
∑q1

i=1 αn,iδ
i

∑q2
i=1 β

1
n,i(1 + δi)

1−
∑q2

i=1 β
1
n,iδ

i
‖Sun − p‖

+
αn,0

1−
∑q1

i=1 αn,iδ
i

∑q2
i=1 β

1
n,i

∑i
j=0

(
i
j

)
δi−jϕj

(
(1 + δi)‖Sun − p‖

)
1−

∑q2
i=1 β

(1)
n,i δ

i



IMPLICIT JUNGCK–KIRK TYPE ITERATIONS 83

+

∑q1
i=1 αn,i

∑i
j=0

(
i
j

)
δi−jϕj

(
(1 + δi)‖Sun+1 − p‖

)
1−

∑q1
i=1 αn,iδ

i
.

Continuing this process to k − 1 and simplifying, we have

‖Sun+1 − Sxn+1‖ ≤
αn,0

1−
∑q1

i=1 αn,iδ
i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sun − Sxn‖

+

[
β1n,0

1−
∑q2

i=1 β
(1)
n,i δ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

∑qk
i=1 β

k−1
n,i (1 + δi)

1−
∑qk

i=1 β
k−1
n,i δ

i

+
β
(1)
n,0

1−
∑q2

i=1 β
1
n,iδ

i
. . .

βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

∑qk−1

i=1 βk−2n,i (1 + δi)

1−
∑qk−1

i=1 βk−2n,i δ
i

(20)

+

∑q2
i=1 β

1
n,i(1 + δi)

1−
∑q2

i=1 β
1
n,iδ

i

]
αn,0

1−
∑q1

i=1 αn,iδ
i
‖Sun − p‖

+
αn,0

1−
∑q1

i=1 αn,iδ
i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

∑qk
i=1 β

k−1
n,i

∑i
j=0

(
i
j

)
δi−jϕj(1 + δi)‖Sun − p‖

1−
∑qk

i=1 β
k−1
n,i δ

i

+

∑q1
i=1 αn,i

∑i
j=0

(
i
j

)
δi−jϕj(1 + δi)‖Sun+1 − p‖

1−
∑q1

i=1 αn,iδ
i

.

Recall that
αn,0

1−
∑q1

i=1 αn,iδ
i
≤

q1∑
i=1

αn,iδ
i + αn,0.

Let δi ≤ δ < 1, then
q1∑
i=1

αn,iδ
i + αn,0 ≤ [(1− αn,0)δ + αn,0]. (21)

Putting (21) in (20), we get

‖Sun+1 − Sxn+1‖ ≤ [1− λn]‖Sun − Sxn‖+ en, (22)

where λn = (1− αn,0)(1− δ) and

en =
{[

(1− β1n,0)δ + β1n,0
] [

(1− β2n,0)δ + β2n,0
]
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. . .
[
(1− βk−2n,0 )δ + βk−2n,0

] ∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i

[
(1− β1n,0)δ + β1n,0

]
. . .

∑qk−1

i=1 βk−2n,i

1−
∑qk−1

i=1 βk−2n,i δ
i

+

∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,iδ

1

}
[(1− αn,0)δ + αn,0](1 + δi)||Sun − p||

+ [(1− αn,0)δ + αn,0][(1− β1n,0)δ + β1n,0] . . . [(1− βk−2n,0 )δ + βk−2n,0 ]

×
∑qk

i=1 β
k−1
n,i

∑i
j=0

(
i
j

)
δi−j

1−
∑qk

i=1 β
k−1
n,i δ

i
ϕj(1 + δi)‖Sun − p‖.

Applying Lemma 1.12 in (22), it follows that limn→∞ ‖Sun − Sxn‖ = 0.
Since by assumption limn→∞ Sun = p, we have that limn→∞ Sxn = p.

(ii)→(i). If limn→∞ Sxn = p, then using (4), (7), and (10), we have

‖Sxn+1 − Sun+1‖ ≤ αn,0
∥∥Sx1n − Sun∥∥+

q1∑
i=1

αn,i
∥∥T ixn+1 − T iun+1

∥∥
≤ αn,0

∥∥Sx1n − Sun∥∥+

q1∑
i=1

αn,iδ
i‖Sxn+1 − Sun+1‖

+

q1∑
i=1

αn,i

i∑
j=0

(
i

j

)
δi−jϕj

∥∥Sxn+1 − T ixn+1

∥∥ .
(23)

From (23), it follows that∥∥Sxn+1 − T ixn+1

∥∥ =
∥∥Sxn+1 − Sp+ Tp− T ixn+1

∥∥
≤ ‖Sxn+1 − p‖+

∥∥Tp− T ixn+1

∥∥
≤ ‖Sxn+1 − p‖+ δi‖p− Sxn+1‖

+ (

q1∑
i=1

αn,i)(

i∑
j=0

(
i

j

)
δi−jϕj(‖Sp− Tp‖))

= (1 + δi)‖Sxn+1 − p‖.

(24)

Substituting (24) in (23) and simplifying, we obtain

‖Sxn+1 − Sun+1‖ ≤
αn,0

1−
∑q1

i=1 αn,iδ
i

∥∥Sx1n − Sun∥∥
+

∑q1
i=1 αn,i

∑i
j=0

(
i
j

)
δi−jϕj(1 + δi)‖Sxn+1 − p‖

1−
∑q1

i=1 αn,iδ
i

.

(25)
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Using (4), (7), and (11), we have∥∥Sx1n − Sun∥∥ ≤ β1n,0 ∥∥Sx2n − Sun∥∥+

q2∑
i=1

β1n,i
∥∥T ix1n − Sx1n∥∥

+

q2∑
i=1

β1n,i
∥∥Sx1n − Sun∥∥

≤
β1n,0

1−
∑q2

i=1 β
1
n,i

∥∥Sx2n − Sun∥∥
+

∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,i

∥∥T ix1n − Sx1n∥∥ .

(26)

From (26), we get∥∥Sx1n − T ix1n∥∥ =
∥∥Sx1n − Sp+ Tp− T ix1n

∥∥
≤
∥∥Sx1n − p∥∥+

∥∥Tp− T ix1n∥∥
≤
∥∥Sx1n − p∥∥+ δi

∥∥Sx1n − p∥∥+
i∑

j=0

(
i

j

)
δi−jϕj‖Sp− Tp‖

=
(
1 + δi

) ∥∥Sx1n − p∥∥ ,
(27)

∥∥Sx1n − p∥∥ ≤ β1n,0 ∥∥Sx2n − p∥∥+

q2∑
i=1

β1n,i
∥∥T ix1n − p∥∥

≤
β1n,0

1−
∑q2

i=1 β
1
n,iδ

i

∥∥Sx2n − p∥∥ ,
(28)

∥∥Sx2n − p∥∥ ≤ β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

β3n,0
1−

∑q4
i=1 β

3
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sxn − p‖ ,

(29)

and ∥∥∥Sxk−1n − p
∥∥∥ ≤ βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sxn − p‖. (30)

Substituting (28), (29) and (30) in (27) yields∥∥Sx1n − T ix1n∥∥ ≤ (1 + δi
) β1n,0

1−
∑q2

i=1 β
1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sxn − p‖ .

(31)
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Substituting (31) in (26), we obtain

∥∥Sx1n − Sun∥∥ ≤ β1n,0
1−

∑q2
i=1 β

1
n,i

∥∥Sx2n − Sun∥∥
+
(
1 + δi

) β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i

∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,i

‖Sxn − p‖ .

(32)

The estimates for ‖Sx2n − Sun‖, . . . , ‖Sxk−2n − Sun‖ and ‖Sxk−1n − Sun‖ are
similarly obtained and substituted in (32) to get

‖Sx1n − Sun‖ ≤
β1n,0

1−
∑q2

i=1 β
1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sxn − Sun‖

+

[ ∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,i

+

∑q3
i=1 β

2
n,i

1−
∑q3

i=1 β
2
n,iδ

i
+ . . .

+

∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i

]

×
β1n,0

1−
∑q2

i=1 β
1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i

(
1 + δi

)
‖Sxn − p‖ .

(33)

Substituting (33) in (25), we have

‖Sxn+1 − Sun+1‖ ≤
αn,0

1−
∑q1

i=1 αn,iδ
i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i

. . .
βk−2n,0

1−
∑qk−1

i=1 βk−2n,i δ
i

∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i
‖Sxn − Sun‖

+

[ ∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,i

+

∑q3
i=1 β

2
n,i

1−
∑q3

i=1 β
2
n,iδ

i
+ · · ·+

∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i

]
(34)

× αn,0
1−

∑q1
i=1 αn,iδ

i

β1n,0
1−

∑q2
i=1 β

1
n,iδ

i

β2n,0
1−

∑q3
i=1 β

2
n,iδ

i
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. . .
βk−1n,0

1−
∑qk

i=1 β
k−1
n,i δ

i

(
1 + δi

)
‖Sxn − p‖

+

∑q1
i=1 αn,iδ

i
∑i

j=0

(
i
j

)
δi−jϕj(1 + δi) ‖Sxn+1 − p‖

1−
∑q1

i=1 αn,iδ
i

.

We know that
αn,0

1−
∑q1

i=1 αn,iδ
i
≤

q1∑
i=1

αn,iδ
i + αn,0.

Let δi ≤ δ < 1, then
q1∑
i=1

αn,iδ
i + αn,0 ≤ [(1− αn,0)δ + αn,0] . (35)

Using (35) in (34), we have

‖Sxn+1 − Sun+1‖ ≤ [1− λn]‖Sun − Sxn‖+ en, (36)

where λn = (1− αn,0)(1− δ) and

en = (1 + δi) [(1− αn,0)δ + αn,0]
[
(1− β1n,0)δ + β1n,0

] [
(1− β2n,0)δ + β2n,0

]
. . .
[
(1− βk−2n,0 )δ + βk−2n,0

] [ ∑q2
i=1 β

1
n,i

1−
∑q2

i=1 β
1
n,i

+

∑q3
i=1 β

2
n,i

1−
∑q3

i=1 β
2
n,iδ

i
+ . . .

+

∑qk
i=1 β

k−1
n,i

1−
∑qk

i=1 β
k−1
n,i δ

i

]
‖Sxn − p‖

+

∑q1
i=1 αn,iδ

i
∑i

j=0

(
i
j

)
δi−jϕj

(
1 + δi

)
‖Sxn+1 − p‖

1−
∑q1

i=1 αn,iδ
i

.

Using Lemma 1.12 in (36), it follows that limn→∞ ‖Sxn − Sun‖ = 0. Since,
by assumption, limn→∞ Sxn = p, this implies that limn→∞ Sun = p. �

Since the implicit Jungck–Kirk-multistep iterative scheme (7) generalizes
other implicit Jungck–Kirk-type schemes (4), (5), and (6), Theorem 2.1 leads
to the following corollary.

Corollary 2.2. Let E, S, T , and p be the same as in Theorem 2.1. If
u0 = z0 = y0 = x0 ∈ E, then the following statements are equivalent:

(i) Implicit Jungck–Kirk–Mann iteration (4) converges strongly to p;
(ii) Implicit Jungck–Kirk–Ishikawa iteration (5) converges strongly to p;
(iii) Implicit Jungck–Kirk–Noor iteration (6) converges strongly to p;
(iv) Implicit Jungck–Kirk-multistep iteration (7) converges strongly to p.

Example 2.3. Consider the equation f(x) = 0, where f is the real func-

tion defined on interval [0, π/2] by f(x) = x2 − (π/2)2 cosx. The function
f can be decomposed as f = π/2(S − T ), where the maps S and T are the
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self mappings in [0, π2 ] defined by S(x) = (2/π)x2 and T (x) = (π/2) cosx.
Clearly, S and T satisfy the contractive condition (11). They coincide at
ω ≈ 1.0792 and we have p = Sω = Tω ≈ 0.7415. Thus, ω is a so-
lution to f(x) = 0. However, if S and T are weakly compatible, then
p = Sp = Tp ≈ 0.7415.

From Theorem 2.1 and Corollary 2.2, the implicit Jungck–Kirk multi-
step, implicit Jungck–Kirk–Noor, implicit Jungck–Kirk–Ishikawa, and im-
plicit Jungck–Kirk–Mann hybrid iterations given, respectively, in (7), (6),
(5), and (4) converge to p. Using MATLAB, we have the following result.

n xn yn zn un Sxn Syn Szn Sun
0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
1 1.0472 1.0468 1.0462 1.0459 0.6982 0.6926 0.6912 0.6908
2 1.0739 1.0711 1.0692 1.0673 0.7343 0.7337 0.7332 0.7328
...

...
...

...
...

...
...

...
...

5 1.0791 1.0784 1.0741 1.0712 0.7412 0.7408 0.7405 0.7402
...

...
...

...
...

...
...

...
...

7 1.0792 1.0791 1.0767 1.0762 0.7415 0.7412 0.7410 0.7407
8 1.0792 1.0792 1.0791 1.0786 0.7415 0.7415 0.7412 0.7410
9 1.0792 1.0792 1.0792 1.0791 0.7415 0.7415 0.7415 0.7412
10 1.0792 1.0792 1.0792 1.0792 0.7415 0.7415 0.7415 0.7415

3. Conclusion

In the present work, we have investigated the equivalence of various im-
plicit Jungck-Kirk-type iterative schemes via weakly compatible generalized
contractive-like operators in normed linear spaces. We also gave an example
to justify the equivalence results.

Competing interest. The authors declare that there is no competing
interest.

Acknowledgments. The authors wish to sincerely thank the referee
for the useful comments leading to the improvement of this paper, and are
grateful to Prof. J. O. Olaleru and Prof. J. A. Adepoju for supervising their
Ph.D. Theses.

References

[1] H. Akewe, G. A. Okeke, and A. Olayiwola, Strong convergence and stability of Kirk-
multistep-type iterative schemes for contractive-type operators, Fixed Point Theory
Appl. 45 (2014), 24 pages.

[2] H. Akewe and A. A. Mogbademu, Common fixed point of Jungck-Kirk-type iterations
for non-self operators in normed linear spaces, Fasc. Math. 56 (2016), 29–41.



IMPLICIT JUNGCK–KIRK TYPE ITERATIONS 89

[3] H. Akewe and A. A. Mogbademu, Approximation of implicit Jungck-Kirk multistep
iterations for weakly compatible nonlinear contractive-type operators, Arab J. Math.
(2017), submitted.

[4] R. Chugh and V. Kumar, Stability of hybrid fixed point iterative algorithms of Kirk-
Noor type in normed linear space for self and nonself operators, Int. J. Contemp.
Math. Sci. 7(24) (2012), 1165–1184.

[5] R. Chugh, P. Malik, and V. Kumar, On a new faster implicit fixed point iterative
scheme in convex metric space, J. Funct. Spaces 2015 (2015), Article ID 905834, 11
pages.

[6] A. Djoudi and A. Aliouche, Common fixed point theorems of Gregus type for weakly
compatible mappings satisfying contractive conditions of integral type, J. Math. Anal.
Appl. 329 (2007), 31–45.

[7] R. Glowinski and P. Le-Tallec, Augmented Lagrangian and Operator-Splitting Methods
in Nonlinear Mechanics. SIAM, Philadelphia, 1989.

[8] S. Haubruge, V. H. Nguyen, and J. J. Strodiot, Convergence analysis and applica-
tions of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two
maximal monotone operators. J. Optim. Theory Appl. 97 (1998), 645–673.

[9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances,
Amer. Math. Monthly 72 (1965), 1004–1006.

[10] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),
506–510.

[11] J. O. Olaleru and H. Akewe, On the convergence of Jungck-type iterative schemes for
generalized contractive-like operators, Fasc. Math. 45 (2010), 87–98.

[12] M. O. Olatinwo, Some stability and strong convergence results for the Jungck-Ishikawa
iteration process, Creat. Math. Inform. 17 (2008), 33–42.

[13] M. O. Olatinwo, Some stability results for two hybrid fixed point iterative algorithms
of Kirk-Ishikawa and Kirk-Mann type, J. Adv. Math. Stud. 1(1-2) (2008), 87–96.

[14] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc.
Amer. Math. Soc. 113(3) (1991), 727–731.

[15] Z. Xue, Remarks of equivalence among Picard, Mann and Ishikawa iterations in
normed spaces, Fixed Point Theory Appl. 2007, Art. ID61434, 5 pages.

Department of Mathematics, University of Lagos, Lagos, Nigeria
E-mail address: hudsonmolas@yahoo.com

E-mail address: amogbademu@unilag.edu.ng


