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On commutativity of semiprime Banach algebras

Mohd Arif Raza and Nadeem ur Rehman

Abstract. In the present paper, we discuss the commutativity of semi-
prime rings. Further, using this result, we establish that if A is a
semiprime Banach algebra, and H1 and H2 are nonvoid open subsets
of A which admit a continuous derivation d : A → A such that d(xm) ◦
d(yn) ± xm ◦ yn = 0 for all x ∈ H1 and y ∈ H2, where m,n are no
longer fixed but they depend on the pair of elements x and y, then A is
commutative.

1. Introduction

Throughout this paper, A is a Banach algebra with identity, Z(A) is the
center of A and ℵ is a closed linear subspace of A. As usual, [x, y] = xy− yx
and x ◦ y = xy + yx. A linear mapping d : A→ A is said to be a derivation
on A if d(xy) = d(x)y + xd(y) holds for all x, y ∈ A. A Banach algebra is a
complex normed algebra A whose underlying vector space is a Banach space.
In fact, any Banach algebra A without a unity can be embedded into a unital
Banach algebra AI = A ⊕ C as an ideal of codimension one. In particular,
we may identify A with the ideal

{
(x, 0) : x ∈ A

}
in AI via the isometric

isomorphism x→ (x, 0). Recall that an algebra A is said to be prime if, for
any a, b ∈ A, aAb = (0) implies a = 0 or b = 0, and A is semiprime if for any
a ∈ A, aAa = (0) implies a = 0.

In mid 1940s, after the development of the general structure theory for
rings, a great deal of work has been done to show that under certain types
of hypotheses, rings are commutative or almost commutative. A classical
result of ring theory established by Jacobson which generalized the theorem
of Wedderburn states that every finite division ring is commutative, and any
Boolean ring is a commutative ring. This theorem is stated as follows: Any
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ring in which xn(x) = x, n(x) > 1 is a positive integer, is necessarily com-
mutative. Inspired by this result, several techniques have been developed
to investigate conditions under which a ring becomes commutative, for in-
stance, generalizing Herstein’s conditions, using restrictions on polynomials,
introducing derivations and generalized derivations on rings, looking special
properties for rings, etc. For more details and references, see the review
article [18]. One can also achieve this goal for semisimple Banach algebras
involving derivations.

Singer and Wermer [23] proved that any bounded linear derivation on
a commutative Banach algebra maps the algebra into its radical. On the
other hand, Johnson and Sinclair [13] proved that any linear derivation on a
semisimple Banach algebra is continuous. Combining these two results, one
can obtain that there are no nonzero linear derivations on a commutative
semisimple Banach algebra. Firstly, a non-commutative extension of Singer–
Wermer theorem has been proved by Yood [24], by showing that if for all
pairs x, y ∈ A, where A is a non-commutative Banach algebra, and the
element [d(x), y] ∈ rad(A), then d maps A into rad(A). Later on, Bres̆ar and
Vukman [5], generalized Yood’s theorem by considering [d(x), x] ∈ rad(A)
(see [8, 9, 19, 20, 21, 22] and the references therein), rad(A) is the Jacobson
radical of A.

A mapping f : R→ R is said to be strong commutativity preserving (scp)
on R if [f(x), f(y)] = [x, y] for all x, y ∈ R. Over the past decades a lot of
work related to commutativity preserving mappings has been done by various
authors (see [3, 10] and the references therein). Inspired by these works, Bell
and Daif [4] obtained commutativity of prime and semiprime rings admitting
derivations and endomorphisms which are scp on R or on certain subsets on
R. In fact, it was shown that if a semiprime ring R admits a derivation
d which is scp on a nonzero ideal I of R, i.e., [d(x), d(y)] = [x, y] for all
x, y ∈ I, then I is central. In 2002, Ashraf and Rehman [1] obtained the
same conclusion if the commutator is replaced by an anticommutator which
stated that if a prime ring R admits a derivation d such that d(x)◦d(y) = x◦y
for all x, y ∈ R, then R is commutative. In [12], Herstein proved that a ring
R is commutative if it has no nonzero nilpotent ideal and there is a fixed
integer n > 1 such that (xy)n = xnyn for all x, y ∈ R. As an application,
Yood [25] proved these results in the case of a Banach algebra. Motivated
by the above results, in the present paper we prove that if A is a semiprime
Banach algebra, H1, H2 are nonvoid open subset of A, and A admits a
continuous derivation d : A→ A such that d(xm) ◦ d(ym)± (xm ◦ yn) = 0 for
all x ∈ H1 and y ∈ H2, where m,n are no longer fixed but they depend on
the pair of elements x and y, then A is commutative.
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2. The results on semiprime rings

In all that follows, R is a semiprime ring and U is the maximal right ring
of quotients. The center of U , denoted by C, is called the extended centroid
of R. For an explanation of the maximal right ring of quotients, we refer the
reader to [2]. We shall use the fact that any derivation of a semiprime ring
R can be uniquely extended to a derivation of its Utumi quotient ring U
(maximal right ring of quotients), and so any derivation of R can be defined
on the whole U [2, Proposition 2.5.1]. Moreover, if R is semiprime, then so
is its Utumi quotient ring. The extended centroid C of a semiprime ring R
coincides with the center of its Utumi quotient ring [7, p. 38]. Also, if B
is the set of all idempotents in C, one may assume that R is a B-algebra
which is orthogonally complete. For any maximal ideal P of B, PR forms a
minimal prime ideal of R, which is invariant under any nonzero derivation
of R [7, p. 42]. We use the theory of differential identities, and the fact that
any semiprime ring R and its maximal right ring of quotients satisfy the
same differential identities (for the explanation of differential identities we
refer the reader to [2, 7, 14, 16]).

We begin with the following lemma.

Lemma 2.1. Let R be a prime ring with characteristic different from 2,
let U be the maximal right ring of quotients, and let I be a nonzero ideal
of R. Assume that d is an inner derivation of U , in the sense that there
exists a noncentral element b ∈ U such that d(x) = [b, x] for all x ∈ R. If I
satisfies

[b, xm][b, yn] + [b, yn][b, xm]± (xmyn + ynxm) = 0, (2.1)

where m,n are fixed positive integers, then R is commutative.

Proof. Assume that R is not commutative, otherwise we have nothing to
prove. By given hypothese and Theorem 2 [6], U satisfies (2.1). Moreover,
since U remains prime by the primeness of R, replace U by R and suppose
that b ∈ R. By [11], since R is a centrally closed prime C-algebra, RC = R.
Using Martindale’s theorem [17], we see that RC (and so R) is a primitive
ring. As R is a primitive, there exists a vector space V and a division ring
D such that R is a dense ring of D-linear transformations over V. Suppose
that dimDV ≥ 2, otherwise we are done.

Our aim is to show that for any v ∈ V, v and bv are linearly D-dependent.
If v = 0, then {v, bv} is D-dependent. So we may assume that bv 6= 0.
Suppose that v and bv are linearly D-independent for some v ∈ V. For this
we consider the following two cases.
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If b2v /∈ SpanD{v, bv}, then the set {v, bv, b2v} is linearly D-independent.
By the density of R, there exist x, y ∈ R such that

xv = v, xbv = 0, xb2v = v,
yv = 0, ybv = bv, yb2v = b2v.

We can easily see that

0 = ([b, xm][b, yn] + [b, yn][b, xm]± (xmyn + ynxm))v = v 6= 0,

a contradiction.

If b2v ∈ SpanD{v, bv}, then b2v = vα+ bvβ for some α, β ∈ D. In view of
the density of R, there exist x, y ∈ R such that

xv = v, xbv = 0,
yv = 0, ybv = bv.

Hence we get

0 = ([b, xm][b, yn] + [b, yn][b, xm]± (xmyn + ynxm) = 2vα 6= 0,

a contradiction. So v and bv are linearly D-dependent for all v ∈ V, and
a standard argument shows that b ∈ C, a contradiction. This finishes the
proof. �

Proposition 2.1. Let R be a prime ring with characteristic different from
2, let I be a nonzero ideal of R, and let m,n be two fixed positive integers.
If R admits a derivation d such that

d(xm)d(yn) + d(yn)d(xm)± (xmyn + ynxm) = 0 (2.2)

for all x, y ∈ I, then R is commutative.

Proof. If d = 0, then xmyn + ynxm = 0 for all x, y ∈ I. By Chuang [6,
Theorem 1], this generalized polynomial identity is also satisfied by U and
hence R as well. Note that this is a polynomial identity and thus there exists
a field F such that R ⊆ Mk(F), the ring of k × k matrices over a field F,
where k > 1. Moreover, R and Mk(F) satisfy the same polynomial identity
[15, Lemma 1], i.e., xmyn + ynxm = 0 for all x, y ∈Mk(F). But by choosing
x = e11, y = e11 + e22, we get 0 = xmyn + ynxm = 2e11 6= 0, a contradiction.

Now we assume d is a nonzero derivation satisfying (2.2). This condition
is a differential identity satisfied by I. In the light of Kharchenko’s theory
[14], either d(x) = [b, x] is the inner derivation induced by an element b ∈ U
or I satisfies the generalized polynomial identity

m−1∑
i=0

xizxm−1−i
n−1∑
j=0

yjwyn−1−j +
n−1∑
j=0

yjwyn−1−j
m−1∑
i=0

xizxm−1−i

± (xmyn + ynxm) = 0
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for all x, y ∈ I. In the latter case, set w = 0 to obtain the identity xmyn +
ynxm = 0 for all x, y ∈ I. Then, as above, we get a contradiction.

Next if d(x) = [b, x], then (2.1) holds for any x, y ∈ I. In view of Lemma
2.1, we get the required result. �

We immediately get the following corollary from the above proposition.

Corollary 2.1. Let R be a prime ring with characteristic different from
2, and let m,n be two fixed positive integers. If R admits a derivation d such
that (2.2) holds for all x, y ∈ R, then R is commutative.

Now we prove our result for semiprime rings.

Theorem 2.1. Let R be a semiprime ring with characteristic different
from 2, and let m,n be two fixed positive integers. If R admits a nonzero
derivation d such that

d(xm) ◦ d(yn)± (xm ◦ yn) = 0 (2.3)

for all x, y ∈ R, then R is commutative.

Proof. By [7, p. 38], Z(U) = C, the extended centroid of R, and by [2,
Proposition 2.5.1], d can be uniquely extended on U , the maximal right ring
of quotients of R. In view of Lee [16], R and U satisfy the same differential
identities, therefore (2.3) is satisfied for all x, y ∈ U . Let B be the complete
Boolean algebra of idempotents in C, and let M be any maximal ideal of
B. Then U is a B-algebra which is orthogonally complete (see Chuang [7,
p. 42]), and by [2, Proposition 2.5.1]), MU is a prime ideal of U , which
is d-invariant. Define U = U/MU and denote by d the derivation induced

by d on U , i.e., d(u) = d(u) for all u ∈ U . Then d in U has the same
property as d on U . It is obvious that U is prime. Therefore, by Corollary
2.1, U is commutative. This implies that, for any maximal ideal M of B,
[U,U ] ⊆ MU and hence [U,U ] ⊆

⋂
M MU = 0, where MU runs over all

prime ideals of U . In particular, [R,R] = 0 and so R is commutative. This
completes the proof. �

3. Application on semiprime Banach algebras

Now we apply our purely ring-theoretic result on semiprime Banach al-
gebras to obtain the commutativity of Banach algebras. Let us introduce
some well known and elementary definitions for the sake of completeness.
Here A will denote a real or complex Banach algebra with center Z(A) and
ℵ a closed linear subspace of A. The Jacobson radical of an algebra is the
intersection of all primitive ideals of A, and is denoted by rad(A). If the
Jacobson radical reduces to the zero element, then A is called semisimple.
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We shall use the following readily established fact. Let p(t) =
∑n

r=0 brt
r

be a polynomial in the real variable t with coefficients in A. If p(t) ∈ ℵ for
all t is an infinite subset of the reals, then every br lies in ℵ.

Theorem 3.1. Let A be a semiprime Banach algebra, and let H1 and H2

be nonvoid open subsets of A. If A admits a continuous derivation d : A→ A
such that (2.3) holds for all x ∈ H1 and y ∈ H2, where m,n are no longer
fixed but they depend on the pair of elements x and y, then A is commutative.

Proof. Fix x ∈ H1 and define

Um,n = {y ∈ A|d(xm)◦d(yn)+(xm◦yn) 6= 0, d(xm)◦d(yn)+(xm◦yn) 6= 0}.

We claim that each Um,n is open in A, that is, we have to show that Uc
m,n, the

complement of Um,n is closed. For this, we consider a sequence (wk) ∈ Uc
m,n

such that wk → w as k → ∞, and we need to show that w ∈ Um,n. Since
wk ∈ Uc

m,n, we have

d(xm) ◦ d(wn) + (xm ◦ wn) = 0.

Taking the limit in k and using the continuity of d, we obtain

d(xm) ◦ d( lim
k→∞

wn
k ) + xm ◦ lim

k→∞
wn
k = 0.

Since wk → w as k →∞, we conclude that

d(xm) ◦ d(wn) + (xm ◦ wn) = 0.

Similarly, one can see that

d(xm) ◦ d(wn)− (xm ◦ wn) = 0.

Hence w ∈ Uc
m,n, i.e., each Um,n is open. By the Baire category theorem, if

every Um,n is dense, then their intersection is also dense, which contradicts
the existence of H1 and H2. Thus there are positive integers r, s such that
Ur,s is not dense in A. Therefore, there exists a nonvoid open subset H3 ∈
Uc
r,s such that, for every y ∈ H3, either

d(xr) ◦ d(ys) + xr ◦ ys = 0,

or

d(xr) ◦ d(ys)− xr ◦ ys = 0.

Let z0 ∈ H3 and w ∈ A, then z0 + tw ∈ H3 for all sufficiently small real t.
Therefore, for each t, either d(xr) ◦ d((z0 + tw)s) + xr ◦ (z0 + tw)s = 0 or
d(xr) ◦ d((z0 + tw)s) − xr ◦ (z0 + tw)s = 0. Then at least one of the above
must hold for infinitely many t. Suppose that

d(xr) ◦ d((z0 + tw)s)− xr ◦ (z0 + tw)s = 0 (3.1)
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holds for these t. We have

(z0 + tw)s = Gs,0(z0, w) + Gs−1,1(z0, w)t+ Gs−2,2(z0, w)t2 + · · ·
+ G1,s−1(z0, w)ts−1 + G0,s(z0, w)ts,

where Gi,j(z0, w) denotes the sum of all terms in which z0 appears exactly i
times and w appears exactly j times such that i+ j = s (i and j are positive
integers). Now

d(xr) ◦ d((z0 + tw)s)− xr ◦ (z0 + tw)s

can be written as

d(xr) ◦ d(Gs,0(z0, w))−xr ◦ Gs,0(z0, w)

+(d(xr) ◦ d(Gs−1,1(z0, w))− xr ◦ Gs−1,1(z0, w))t

+(d(xr) ◦ d(Gs−2,2(z0, w))− xr ◦ Gs−2,2(z0, w))t2

...

+(d(xr) ◦ d(G1,s−1(z0, w))− xr ◦ G1,s−1(z0, w))ts−1

+(d(xr) ◦ d(G0,s(z0, w))− xr ◦ G0,s(z0, w))ts.

The above expression is a polynomial in t and the coefficient of ts in this
polynomial is d(xr) ◦ d(ws)− xr ◦ ws. Therefore, we obtain

d(xr) ◦ d(ws)− xr ◦ ws = 0.

Similarly, if (3.1) holds for these t, then in the similar fashion we conclude
that

d(xr) ◦ d(ws) + xr ◦ ws = 0.

Thus, for given x ∈ H1, there are positive integers r, s such that for each
w ∈ A either d(xr) ◦ d(ws)− xr ◦ws = 0 or d(xr) ◦ d(ws) + xr ◦ws = 0. Let

F1 = {w ∈ A|d(xr) ◦ d(ws)− xr ◦ ws = 0}
and

F2 = {w ∈ A|d(xr) ◦ d(ws) + xr ◦ ws = 0}.
Then A is the union of F1 and F2, and each Fk, k = 1, 2, is closed (as we
have shown earlier). Thus, by the Baire category theorem, at least one of
F1 and F2 must contain a nonvoid open subset of A.

Suppose F1 contains a nonvoid open subset H4 of A. Let u0 ∈ H4 and
v ∈ A. Then u0 + tv ∈ H4 for sufficiently small t. For these t, we have

d(xr) ◦ d((u0 + tv)s)− xr ◦ (u0 + tv)s = 0.

This can be written as a polynomial in t (as earlier) in which the coefficient
of ts is d(xr) ◦ d(vs) − xr ◦ vs = 0. Therefore, we have d(xr) ◦ d(vs) − xr ◦
vs = 0 for all v ∈ A. Likewise, if F2 contains a nonvoid open subset then
d(xr) ◦ d(vs) + xr ◦ vs = 0 for all v ∈ A.
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Consequently, given x ∈ H1, there are positive integers r and s so that
either d(xr) ◦ d(vs) − xr ◦ vs = 0 or d(xr) ◦ d(vs) + xr ◦ vs = 0 for all
v ∈ A. Now, we reverse the roles of H1 and H2 in the above setting.
Proceeding in the same way, we find that either d(xr) ◦ d(vs) − xr ◦ vs = 0
or d(xr) ◦ d(vs) − xr ◦ vs = 0 for all x, v ∈ A. Then by Theorem 2.1, A is
commutative. This completes the proof. �
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