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An entire function sharing fixed points with its
linear differential polynomial

IMRUL KAISH AND INDRAJIT LAHIRI

ABSTRACT. We study the uniqueness of entire functions, when they
share a linear polynomial, in particular, fixed points, with their linear
differential polynomials.

1. Definitions and results

Let f be a nonconstant meromorphic function defined in the open complex
plane C, and let a = a(z) be a polynomial. Let us denote by E(a; f) and
E(a; f) the set of zeros of f — a, counted with multiplicities, and the set
of all distinct zeros of f — a, respectively. If A C C, then we denote by
na(r,a; f) the number of zeros of f — a, counted with multiplicities, that
lie in {z : 2] < r} N A. The corresponding integrated counting function is
defined by

" nA(t7a; f) — TZA(O,CL; f)

Na(r,a; f) =/ ; dt +n.4(0,a; f) logr.
0

We also denote by N 4(r,a; f) the reduced counting functions of those zeros
of f —a that liein {z: |z| <r} N A.

Clearly, if A = C, then Na(r,a; f)=N(r,a; f) and N o(r,a; f)=N(r,a; f).
The standard definitions and notation of the value distribution theory are
available in [1].

The uniqueness of an entire function sharing a nonzero finite value with its
first two derivatives was considered by Jank et al. [2] in 1986. The following
is their result.

Theorem A (see [2]). Let f be a nonconstant entire function and let a be
a nonzero finite value. If E(a; f) = E(a; fV) € E(a; f®), then f = fO).
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Considering f = ¥ + w — 1 and a = w, where w is a (k — 1)th imagi-
nary root of unity and k(> 3) is an integer, Zhong [10] pointed out that in
Theorem A one can not replace the second derivative by any higher order
derivative. Under this context, Zhong [10] proved the following theorem.

Theorem B (see [10]). Let f be a nonconstant entire function and let a be
a nonzero finite number. If E(a; f) = E(a; fV) and E(a; f) € E(a; f™)N
E(a; f)) forn > 1, then f = f0,

Considering a shared linear polynomial, Lahiri and Ghosh [3] extended
Theorem A in the following manner.

Theorem C (see [3]). Let f be a nonconstant entire function and let
a(z) = az + B, where a(# 0), 8 are constants. If E(a; f) C E(a; fV) C
E(a; f®), then either f = \e? or f = az+ B+ (az+ 3 —2a) exp(azﬂ#),
where A(#£ 0) is a constant.

In 1999, Li [7] considered linear differential polynomials and proved the
following result.

Theorem D (see [7]). Let f be a nonconstant entire function and L =
arfD +asf@ + o+ a, f), where ay,as, . . ., an(# 0) are constants and
a(# 0) is a finite number. If E(a; f) = E(a; fV) ¢ E(a; L) N E(a; LWY),
then f=fM =1L.

In this paper, we consider the uniqueness of an entire function that shares
a linear polynomial with linear differential polynomials generated by it. For
two subsets A and B of C, we denote by AAB the set (A — B) U (B — A),
which is called the symmetric difference of the sets A and B.

We now state the main result of the paper.

Theorem 1.1. Let f be a nonconstant entire function and L = asf® +
asf® 4+ 4 anf, where ag, as, . .., an(# 0) are constants and n(> 2) is a
positive integer. Also, let a(z) = az+3, where a(# 0), B are constants. Sup-
pose that A = E(a; f)AE(a; fV) and B = E(a; fY)\{E(a; L)NE(a; LW)}.
If the conditions

(1) NA(T’,G; f) + NA(T‘, a; f(l)) = O{lOgT(T, f)};

(i) Np(r,a; fV) = S(r, ),
(iii) each common zero of f —a and f) —a has the same multiplicity,
are satisfied, then f = L = \e®, where A( 0) is a constant.

Putting A = B = (), we obtain the following corollary which improves
Theorem B for n > 2.

Corollary 1.1. Let f be a nonconstant entire function and L = asf® +
asf® + -+ an f™, where ag, as, . . . ,an(# 0) are constants and n(> 2) is
an integer. Also let a(z) = az + (3, where a(# 0), 8 are constants. Suppose
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that E(a; f) = E(a; fY) and E(a; fY) ¢ {E(a;L) N E(a; LY)}.  Then
f =L = Xe*, where A\(# 0) is a constant.

The following examples show that the hypotheses (i) and (ii) of Theorem
1.1 are essential.

Example 1.1. Let f(z) =¢*, L = f® + f® and a(z) = z. Then clearly
Na(r,a; f) + Na(r,a; fV) = O{log T'(r, )} and Np(r,a; f) = T(r, f) +
O(1) # S(r, f). Also we note that the hypothesis (iii) of Theorem 1.1 holds,
but f # L.

Example 1.2. Let f(z) = e* +22 L=f® + f® and a(z) = 2z. Then
clearly Na(r,a; f) + Na(r,a; f1) = T(r #) + O(1) # O{logT(r, f)} and
Np(r,a; fN) = S(r, f). Since E(a; f(V) = @, we note that the hypothesis
(iii) of Theorem 1.1 holds, but f # L.

We denote by N(r,a; f) the counting function, counted with multiplici-
ties, of the multiple zeros of f — a.

A related result concerning the derivatives of an entire function can be
found in [4].

2. Lemmas

In this section, we present some lemmas.

Lemma 2.1 (see [9]). Let g be a transcendental entire function and let
d(# 0) be a meromorphic function satisfying T (r,$) = S(r,g). Then

T(r,g) < Cu{N(r,0:9) + N(r,0: 9" — §)} + S(r, ),
where C,, is a constant depending only on n(> 1).

Lemma 2.2. Let f be a transcendental entire function and let a = a(z)
be a meromorphic function satisfying a — a™ # 0 and T(r,a) = S(r, f).
Then

T(r, f) < Co{N(r,a; f) + N(r,a; f™)} + S(r, f),

where C,, is a constant depending only on n(> 1).

Proof. Putting ¢ = f —a and ¢ = a — a(™ in Lemma 2.1, we obtain the
result. g

Lemma 2.3 (see [5]). Let f be transcendental entire function of finite
order and let a = a(z) = az + [, where a(# 0), 3 are constants. Suppose
that A = B(a; f)AE(a; fO). If Na(r,a; f) + Na(r, a; fV) = O{log T'(r, f)}
and each common zero of f —a and V) —a have the same multiplicity, then

m(r,a; f) =m(r, 725) = S(r, f).

To prove the following lemma, we adapt some techniques from [5].
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Lemma 2.4. Let f be a transcendental entire function and a(z) = az +
B(#£0). Suppose that

(a —aML — a(fD) — o)
f—a ’
where ag, as, . ..,an(# 0) are constants. Further, suppose that
A =E(a; )\E(a; fV) and B =E(a; fY)\{E(a; L) N E(a; L)},
If the conditions
(i) Na(r,a; f) + Np(r,a; fV) = S(r, f),

(ii) each common zero of f —a and M) — a has the same multiplicity,
(iii) h is transcendental entire or meromorphic,

hold, then m(r,a; fV) = m (7’7 ,m%) = S(r, ).

L=asf® +a3f® +- +a,f® and h =

Proof. Since a —a®) = (f) — aM) — (1) — @), we have that if z is a
common zero of f —a and f) — ¢ with multiplicity q(> 2), then 2 is a zero
of a —aM) with multiplicity ¢ — 1. So

N(Z(Tv a; f) < 2N(7’,0;CL - a(l)) + NA(Ta a; f) = S(Tv f)
Hence, by the hypothesis, we see that
N(ﬂ h) < NA(Tv a; f) + Np (T,Cb;f(l)> + N(?(Tv a; f) + S<T7 f)
= 5(r, f).
Since m(r, h) = S(r, f), we have T'(r, h) = S(r, f).

Now, by a simple calculation we get

f:a—i—%{(a—a(l)) (L—a)—a(f(l)—a)}-

Differentiating, we obtain

PO Z g <}1L> W {(a=a®) (L-a)=a (/P —a))
N (2) {0 =a)+ (a=a®) (L0 = a®) = a® (50 —a)
—a (f@) _ au))}.

This implies

1 §
fM—a ¢
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where

(1) (1)
1 —a® —a®
521_'_(%)() and Cza(l)—a—<a(aha)) +<a ha ) aza®).

We now verify that £ £ 0 and ¢ Z 0. If £ = 0, then 1 + (a/h)(l) = 0.
Integrating, we get h = a/(c — z), where ¢ is a constant. This implies a
contradiction as h is transcendental.

If { =0, then

(1 1)
1 1
a —a— (a(a—ha())> + (a —ha( )> aza) =0,

az? ala —a) asala — «)
i T
where as is a constant. Therefore,
(az + B — a)(az + B — axa)
az?
—+(a—B)z+
which is a contradiction as h is transcendental.
Since clearly T'(r, &) + T'(r,¢) = S(r, f), from (2.1) we get

m(r, a; f(l)) =m (r, f(l)l—a> =S(r, f).

This proves the lemma. O

and so

h:

9

Lemma 2.5 (see [6], p. 58). Each solution of the differential equation
anf(n) + an_lf(nil) 4+ .4 aOf =0,

where ag(# 0),a1,- - ,a,(Z 0) are polynomials, is an entire function of finite
order.

Lemma 2.6 (see [1], p. 47). Let f be a nonconstant meromorphic func-
tion and let a1, ao, ag be three distinct meromorphic functions satisfying
T(r,ay) = S(r, f) forv=1,2,3. Then

T(?",f) gN(T,O;f—al)—I—N(T,O;f—ag)—I—W(T,O;f—ag)—l-S(r,f).

Lemma 2.7 (see [8], p. 92). Let fi, fo,..., fn be meromorphic functions
which are nonconstant except possibly for f,, where n > 3. If f, # 0,

Z?:l fi=1, and

D N0 f5) + (n—=1) Y N(r,00; f;) < {u+ o(1)}T(r, fr)
j=1

j=1
fork=1,2,....,n—1 and for some (0 < p < 1), then f, =1.
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3. Proof of Theorem 1.1

Proof. First, we see that f can not be a polynomial. We suppose that f
is a polynomial. Then T'(r, f) = O(logr) and Na(r,a; f) + Na(r,a; fV) =
O(log T(r, f)) = S(r, f) imply A = 0. Also Ng(r,a; f1) = S(r, f) implies
B = (). Therefore,

E(a;f)=FE (a;f(1)> and F (a; f(1)> CE(a,L)NE <a;L(1)> )

Let the degree of f be greater than 1. Then deg(f — a) > deg(f") — a).
Since each common zero of f —a and f(!) — has the same multiplicity, this
contradicts the fact that E(a; f) = F (a; f(l)).

Next, let f = Ajz+ By, where A;(# 0), By are constants. Then f(l) = A
and L = LY = 0. Now, (4; — fB)/a is the only zero of f1) — a, and
—f/a is the only zero of L — a. Consequently, E (a; f(l)) C E(a, L) implies
that (A; — f)/a = —f/a and so A; = 0, a contradiction. Therefore f is a
transcendental entire function.

Now

Nz (r, a; f(1)> < Ny (r,a;f(l)) + Np (7’, a;f(l))
+ Nz (r, a; fO|f = a) + S(r, f) (3.1)
= N (roas fO1f = a) + S, ),

where Ny (7’, a; fO If = a) denotes the counting function (counted with mul-

tiplicities) of those multiple zeros of f (1) — @, which are also zeros of f — a.

We note that a common zero of f —a and f) — @ of multiplicity q(>2)
is a zero of a —aV) = (f(l) — a(l)) — (f(l) — a) with multiplicity ¢ — 1(> 1).
Therefore,

Ne (ra: fO1f = a) < 2N (r,0;0 = aV) = S0, ).
So, from (3.1) we get
N (ra: f) = S(r, f): (3:2)

First, we suppose that L) # f(U. Then, using (3.2), we get by the
hypothesis that

a LM
N (7", a; f(l)) < Np (r,a;f(1)> +N (r, o D a a) +5(r, f)

1) (1)
T <’I", f(f;—04> +S(Taf) =N (7", f(llg_a> +S(7“,f) (33)

<N (r, Q; f(l)) + S(r, f).

IA
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Again,
fO —a 1
f—a fO—q

=T (r, ) = N (r,05 f V) + 5, 1)
=m (r.f0) = N (r,a: f V) + 50, )
<m(r, f) = N (r,0: V) + 5(r, f)
=T(r,f) = N (.05 /) + S(r. £),

mWwﬁém(n )SmOﬂJm)+ﬂnﬁ

and so

N (r,05 /) < N(rai /) + S(r /).
Thus from (3.3) we get
N (r,a: /) < N(r,a; f) + S0, ). (3.4)

Again,

(3.5)
<N (rasfV) + 80, ).
Therefore, from (3.4) and (3.5), we deduce that
N (ra; f0) = N(ra; f) + S0, ), (3.6)

Let h, defined as in Lemma 2.4, be transcendental. Then

T(r,f)=m(r,f) <m (r, % {(a — a(l)) L— af(l)}> + S(r, f)

r,f(1)> +m <r, (a— a(1)> fﬁ) —a) +S(r, f)

W) 450 1) =T (r, V) + 50, )
r ) + S0 0) < mlr, )+ S f) = TG, ) + S, ).

IA
3
=

Z

Therefore,
T (r.f) =T f) + 50 ), (3.7)

Again, by Lemma 2.4 we get m (r,a;f(l)) = S(r, f). Then, from (3.6)
and (3.7), we have that

m(r,a; f) +m (r, a;f(l)) =S(r, f). (3.8)
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Next we suppose that h is rational. Then by Lemma 2.5 we see that f is
of finite order. So, by the hypothesis and Lemma 2.3, we get the equality

m(r,a; f) = S(r, f).

Since
T (r V) =m (1. fV) S mlr, )+ S, ) = T(r. f) + S(r. f),
from (3.6) we get

m (r.a: f V) <m0 )+ N0 ) = N (ras fO) + S(r, f) = S, ).

Hence in this case also we obtain (3.8).
We now put

fO—qa L—a
QS: f— and¢:m.

Then by (3.8) we get m(r, ¢) +m(r,1p) = S(r, f). Also, from the hypothesis
we have

N(r,¢) < Na(r.a; f)+ Np (r.a: fO) + Noo(r.a: ) + S(r. f) = S(r. ),
because

No(r,a: ) < Na(r.a; f) + 2N (1,0:0 = a®) + S(r. ) = S(r. f).

Again, by (3.2) and the hypothesis, we get
N(T, ¢) < NA (Ta a; f(1)>+NB (Ta a; f(1)>+N(2 <T7 a; f(1)>+S(T', f) - S(T’, f)

Therefore,
T(r,¢) +T(r,9) = S(r, f). (3.9)
Let z; be a simple zero of f —a such that z; ¢ AUB and a(z1) —aM(z1) #

0. Then f(z1) = fM(z1) = L(z1) = LW (z1) = a(z1). Now, by Taylor’s
expansion in some neighbourhood of z;, we get

f(2)=a(z) = (f —a)(z21) + (f —a)D(21)(z — 21) + O(z — 21)°
:(a (z1) —aV zl)(z—zl)+0(z—zl)2,
F0() ~a(z) = (S0 - ) )+ (70 - a) Y ) = 1) + 0 - 20y
= {5 - D)} (2 - ) + O = 21)?

and
L(z)—a(z) =(L—a)(z)+ (L — a)(l)(zl)(z —21) +0(z — 21)?
= <a(21) - a(l)(zl)) (z—21) +O(z — 21)*.
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Therefore, in a neighbourhood of z;, we obtain

{f(z)(zl) — a(l)(zl)} (z—21) +O(z — 21)?

Y = ) a0 (o) (o) 4 O — 21)? (3.10)
_fPG)—at0GE-2)  [Ok)-a .
a(z)—a+0(z—z1)  a(z) -« T

and
ooy = L) = V@) (@ = 2) + 06 = 21)7
(f@ (2 ) aM(21)) (2 = 21) + O(z — 21)? (3.11)
a(z1) —a+0(z—2)  a(z)—«a

_ f(2)(zl) . O(z — zl) = f(Q)(Zl) . + O(Z — 21).

We put M =1 —1/¢. Then from (3.9) we get T'(r, M) = S(r, f). Also,
in some neighbourhood of z;, we have, by (3.10) and (3.11), that M(z) =
O(z — z1).

If M #£ 0, then

N(r,a: f) < Na(r,a; f) + Np (v, fO) + N0 )
+ N(r,0;a —aV) + N(r,0; M)
=5 f),

and so, by (3.6) and Lemma 2.2, we have T'(r, f) = S(r, f), a contradiction.
Thus M = 0 and so

h
Il

I (3.12)
Differentlatmg (3.12) we get L) = f( which contradicts our hypothesis
that L) 2 £, Therefore, indeed we have L(M) = f(1),

Next we suppose that L) % L. Then, by the hypothesis and (3.2), w
get

N(r,a;f(1)> < Np (r,a;f(l)) +N (7“,1;[/1(—/1)> +S(r, f)

(1) 1) 3.13
ST(T,LL>+S(T, )—N(r,LL>+S(r,f) (3:13)

m(r,a; f) =m (r, ffai> <m(r,0; L)+ S(r, f)
=T(r,L)— N(r,0; L)+ S(r, f) =m(r,L) — N(r,0; L) + S(r, f)
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<m <r, ?) +m(r, f) — N(r,0; L) + S(r, f)
:m(r,f) —N(T,O;L)+S(T,f) :T(va) —N(T,O;L) +S(T7f)
and so
N(r,0;L) < N(r,a; f)+ S(r, f).
Now, by (3.13) we get
N (roas /) < Nras f) + S(. ). (3.14)
Also,
N(r,a; f) < Na(r,a: /) + N (r.a: f0 | f = a)

<N (r,a;f(1)> + S(r, f).

From (3.14) and (3.15) we get (3.6).

Now, using Lemmas 2.3-2.5 and (3.6), we similarly obtain (3.8). Further,
using ¢ and 1) and proceeding likewise, we get (3.12).

Solving L — f = 0, we find that

f=c1e% 4+ cpe®?* 4 - - - 4 e, (3.16)

(3.15)

where a1, ao,...,a; are the roots of 2?12 ajzj =1 and c¢1,c9,...,c, are
constants or polynomials, not all identically zero, and k(< n) is an integer.
Differentiating (3.16), we get

fO = (Cgl) + 010é1> e + (Cgl) + 02042> e 4. 4 (c,(:) + CkOék) ekZ,

(3.17)
From (3.16), (3.17), and ¢ = (f(l) —a)/(f —a), we get
(¢c1 — cgl) — C1a1> e + (gzﬁcg — cél) — 62042) e 4+ ...
+ (gbck — c,(cl) — ckak) e =a(p—1).
We suppose that ¢ Z 1. Then, from the above, we have
k (1)
dcj —c;’ — oy

e¥* =1. 3.18
2" (34%)

We note that T'(r, f) = O(T(r,e%?)) for j =1,2,..., k.
If the left hand side of (3.18) contains more than two terms, then by
Lemma 2.7 we get

pcj — c§-” “GY 4.
a(¢—1)
for one value of j € {1,2,...,k}. From (3.19) we see that T'(r,e%*?*) =
S(r, f) = S(r,e%?), a contradiction.

1 (3.19)
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We now suppose that the left hand side of (3.18) contains only two terms,
say,

(1)

1
pcj — ¢’ —cjay it 4 oc; — cl( ) _ coy o
a(¢ —1) a(¢p—1)
By Lemma 2.6 we get

=1.

T (r,e%%) < N (r,0;e%%) + N (r, c0; %)
— -1
+N (T‘, a(¢ —1) ;eajz> + S (r,e%*%)

)

ocj — ¢; ' —cjay

= N (r,0;e%%) + S (r,e%*) = S (r,e%%),

a contradiction.
Finally, we suppose that the left hand side of (3.18) contains only one
term, say,

oc; —c(l) — 0
J j ]

a(¢ —1)
Then T'(r,e%?) = S(r, f) = S(r,e%*), a contradiction.
Therefore, ¢ = 1 and so f(!) = f. Hence, by (3.12) we get L = L), a
contradiction to the supposition. Thus, indeed, we have L = L(1).
Now L = LM = M) implies L = LM = () = X\e?, where A#0) is a
constant. Therefore f = Ae* + K, where K is a constant. By Lemma 2.6 we
get

e“i® = 1.

T (r,Xe?) < N (r,0; \e®) + N (r,00; Ae®) + N (r,a — K; \e®) + S (1, \e?)
= N(r,a; f) + S (r,Ae”),
which implies N(r,a; f) # S(r, f). Again, since

Na(ras f) + Np (r,a: f0) = S(r, f),
we get
E(a;f)NE (a; f(1)> # 0.
But this implies K = 0 and so f = L = Ae®. The proof is complete. O
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