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An entire function sharing fixed points with its
linear differential polynomial

Imrul Kaish and Indrajit Lahiri

Abstract. We study the uniqueness of entire functions, when they
share a linear polynomial, in particular, fixed points, with their linear
differential polynomials.

1. Definitions and results

Let f be a nonconstant meromorphic function defined in the open complex
plane C, and let a = a(z) be a polynomial. Let us denote by E(a; f) and
E(a; f) the set of zeros of f − a, counted with multiplicities, and the set
of all distinct zeros of f − a, respectively. If A ⊂ C, then we denote by
nA(r, a; f) the number of zeros of f − a, counted with multiplicities, that
lie in {z : |z| ≤ r} ∩ A. The corresponding integrated counting function is
defined by

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r.

We also denote by NA(r, a; f) the reduced counting functions of those zeros
of f − a that lie in {z : |z| ≤ r} ∩A.

Clearly, if A = C, thenNA(r, a; f)=N(r, a; f) andNA(r, a; f)=N(r, a; f).
The standard definitions and notation of the value distribution theory are
available in [1].

The uniqueness of an entire function sharing a nonzero finite value with its
first two derivatives was considered by Jank et al. [2] in 1986. The following
is their result.

Theorem A (see [2]). Let f be a nonconstant entire function and let a be

a nonzero finite value. If E(a; f) = E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).
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Considering f = eωz + ω − 1 and a = ω, where ω is a (k − 1)th imagi-
nary root of unity and k(≥ 3) is an integer, Zhong [10] pointed out that in
Theorem A one can not replace the second derivative by any higher order
derivative. Under this context, Zhong [10] proved the following theorem.

Theorem B (see [10]). Let f be a nonconstant entire function and let a be

a nonzero finite number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n ≥ 1, then f ≡ f (n).

Considering a shared linear polynomial, Lahiri and Ghosh [3] extended
Theorem A in the following manner.

Theorem C (see [3]). Let f be a nonconstant entire function and let

a(z) = αz + β, where α( 6= 0), β are constants. If E(a; f) ⊂ E(a; f (1)) ⊂
E(a; f (2)), then either f = λez or f = αz+β+ (αz+β− 2α) exp(αz+β−2α

α ),
where λ(6= 0) is a constant.

In 1999, Li [7] considered linear differential polynomials and proved the
following result.

Theorem D (see [7]). Let f be a nonconstant entire function and L =

a1f
(1) + a2f

(2) + · · · + anf
(n), where a1, a2, . . . , an(6= 0) are constants and

a(6= 0) is a finite number. If E(a; f) = E(a; f (1)) ⊂ E(a;L) ∩ E(a;L(1)),

then f ≡ f (1) ≡ L.

In this paper, we consider the uniqueness of an entire function that shares
a linear polynomial with linear differential polynomials generated by it. For
two subsets A and B of C, we denote by A∆B the set (A − B) ∪ (B − A),
which is called the symmetric difference of the sets A and B.

We now state the main result of the paper.

Theorem 1.1. Let f be a nonconstant entire function and L = a2f
(2) +

a3f
(3) + · · ·+anf

(n), where a2, a3, . . . , an(6= 0) are constants and n(≥ 2) is a
positive integer. Also, let a(z) = αz+β, where α( 6= 0), β are constants. Sup-

pose that A = E(a; f)∆E(a; f (1)) and B = E(a; f (1))\{E(a;L)∩E(a;L(1))}.
If the conditions

(i) NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)},
(ii) NB(r, a; f (1)) = S(r, f),

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

are satisfied, then f = L = λez, where λ(6= 0) is a constant.

Putting A = B = ∅, we obtain the following corollary which improves
Theorem B for n ≥ 2.

Corollary 1.1. Let f be a nonconstant entire function and L = a2f
(2) +

a3f
(3) + · · ·+ anf

(n), where a2, a3, . . . , an(6= 0) are constants and n(≥ 2) is
an integer. Also let a(z) = αz + β, where α(6= 0), β are constants. Suppose
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that E(a; f) = E(a; f (1)) and E(a; f (1)) ⊂ {E(a;L) ∩ E(a;L(1))}. Then
f = L = λez, where λ( 6= 0) is a constant.

The following examples show that the hypotheses (i) and (ii) of Theorem
1.1 are essential.

Example 1.1. Let f(z) = ez, L = f (2) + f (3) and a(z) = z. Then clearly

NA(r, a; f) + NA(r, a; f (1)) = O{log T (r, f)} and NB(r, a; f (1)) = T (r, f) +
O(1) 6= S(r, f). Also we note that the hypothesis (iii) of Theorem 1.1 holds,
but f 6≡ L.

Example 1.2. Let f(z) = ez + z2, L = f (3) + f (4) and a(z) = 2z. Then

clearly NA(r, a; f) + NA(r, a; f (1)) = T (r, ez) + O(1) 6= O{log T (r, f)} and

NB(r, a; f (1)) = S(r, f). Since E(a; f (1)) = ∅, we note that the hypothesis
(iii) of Theorem 1.1 holds, but f 6≡ L.

We denote by N(2(r, a; f) the counting function, counted with multiplici-
ties, of the multiple zeros of f − a.

A related result concerning the derivatives of an entire function can be
found in [4].

2. Lemmas

In this section, we present some lemmas.

Lemma 2.1 (see [9]). Let g be a transcendental entire function and let
φ(6≡ 0) be a meromorphic function satisfying T (r, φ) = S(r, g). Then

T (r, g) ≤ Cn{N(r, 0; g) +N(r, 0; g(n) − φ)}+ S(r, g),

where Cn is a constant depending only on n(≥ 1).

Lemma 2.2. Let f be a transcendental entire function and let a = a(z)

be a meromorphic function satisfying a − a(n) 6≡ 0 and T (r, a) = S(r, f).
Then

T (r, f) ≤ Cn{N(r, a; f) +N(r, a; f (n))}+ S(r, f),

where Cn is a constant depending only on n(≥ 1).

Proof. Putting g = f − a and φ = a − a(n) in Lemma 2.1, we obtain the
result. �

Lemma 2.3 (see [5]). Let f be transcendental entire function of finite
order and let a = a(z) = αz + β, where α(6= 0), β are constants. Suppose

that A = E(a; f)∆E(a; f (1)). If NA(r, a; f) +NA(r, a; f (1)) = O{log T (r, f)}
and each common zero of f −a and f (1)−a have the same multiplicity, then
m(r, a; f) = m(r, 1

f−a) = S(r, f).

To prove the following lemma, we adapt some techniques from [5].
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Lemma 2.4. Let f be a transcendental entire function and a(z) = αz +
β(6≡ 0). Suppose that

L = a2f
(2) + a3f

(3) + · · ·+ anf
(n) and h =

(a− a(1))L− a(f (1) − a(1))
f − a

,

where a2, a3, . . . , an(6= 0) are constants. Further, suppose that

A = E(a; f)\E(a; f (1)) and B = E(a; f (1))\{E(a;L) ∩ E(a;L(1))}.
If the conditions

(i) NA(r, a; f) +NB(r, a; f (1)) = S(r, f),

(ii) each common zero of f − a and f (1) − a has the same multiplicity,
(iii) h is transcendental entire or meromorphic,

hold, then m(r, a; f (1)) = m
(
r, 1
f (1)−a

)
= S(r, f).

Proof. Since a − a(1) = (f (1) − a(1)) − (f (1) − a), we have that if z0 is a

common zero of f −a and f (1)−a with multiplicity q(≥ 2), then z0 is a zero

of a− a(1) with multiplicity q − 1. So

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f).

Hence, by the hypothesis, we see that

N(r, h) ≤ NA(r, a; f) +NB

(
r, a; f (1)

)
+N(2(r, a; f) + S(r, f)

= S(r, f).

Since m(r, h) = S(r, f), we have T (r, h) = S(r, f).
Now, by a simple calculation we get

f = a+
1

h

{(
a− a(1)

)
(L− a)− a

(
f (1) − a

)}
.

Differentiating, we obtain

f (1) = a(1) +

(
1

h

)(1) {(
a− a(1)

)
(L− a)− a

(
f (1) − a

)}
+

(
1

h

){
a(1)(L− a) +

(
a− a(1)

)(
L(1) − a(1)

)
− a(1)

(
f (1) − a

)
−a
(
f (2) − a(1)

)}
.

This implies

1

f (1) − a
=
ξ

ζ
− 1

ζ

(
a− a(1)

h

)(1)
L− a2a(1)

f (1) − a
− a− a(1)

hζ

L(1)

f (1) − a

+
a

hζ

f (2) − a(1)

f (1) − a
,

(2.1)
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where

ξ = 1 +
(a
h

)(1)
and ζ = a(1)−a−

(
a(a− a(1))

h

)(1)

+

(
a− a(1)

h

)(1)

a2a
(1).

We now verify that ξ 6≡ 0 and ζ 6≡ 0. If ξ ≡ 0, then 1 + (a/h)(1) ≡ 0.
Integrating, we get h = a/(c − z), where c is a constant. This implies a
contradiction as h is transcendental.

If ζ ≡ 0, then

a(1) − a−

(
a(a− a(1))

h

)(1)

+

(
a− a(1)

h

)(1)

a2a
(1) ≡ 0,

and so

(α− β)z − αz2

2
+ α2 =

a(a− α)

h
− a2α(a− α)

h
,

where α2 is a constant. Therefore,

h =
(αz + β − α)(αz + β − a2α)

−αz2

2 + (α− β)z + α2

,

which is a contradiction as h is transcendental.
Since clearly T (r, ξ) + T (r, ζ) = S(r, f), from (2.1) we get

m(r, a; f (1)) = m

(
r,

1

f (1) − a

)
= S(r, f).

This proves the lemma. �

Lemma 2.5 (see [6], p. 58). Each solution of the differential equation

anf
(n) + an−1f

(n−1) + · · ·+ a0f = 0,

where a0( 6≡ 0), a1, · · · , an( 6≡ 0) are polynomials, is an entire function of finite
order.

Lemma 2.6 (see [1], p. 47). Let f be a nonconstant meromorphic func-
tion and let a1, a2, a3 be three distinct meromorphic functions satisfying
T (r, aν) = S(r, f) for ν = 1, 2, 3. Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 2.7 (see [8], p. 92). Let f1, f2, . . . , fn be meromorphic functions
which are nonconstant except possibly for fn, where n ≥ 3. If fn 6≡ 0,∑n

j=1 fj ≡ 1, and

n∑
j=1

N(r, 0; fj) + (n− 1)

n∑
j=1

N(r,∞; fj) < {µ+ o(1)}T (r, fk)

for k = 1, 2, . . . , n− 1 and for some µ(0 < µ < 1), then fn ≡ 1.
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3. Proof of Theorem 1.1

Proof. First, we see that f can not be a polynomial. We suppose that f
is a polynomial. Then T (r, f) = O(log r) and NA(r, a; f) + NA(r, a; f (1)) =

O(log T (r, f)) = S(r, f) imply A = ∅. Also NB(r, a; f (1)) = S(r, f) implies
B = ∅. Therefore,

E(a; f) = E
(
a; f (1)

)
and E

(
a; f (1)

)
⊂ E(a, L) ∩ E

(
a;L(1)

)
.

Let the degree of f be greater than 1. Then deg(f − a) > deg(f (1) − a).

Since each common zero of f −a and f (1)−a has the same multiplicity, this
contradicts the fact that E(a; f) = E

(
a; f (1)

)
.

Next, let f = A1z+B1, where A1( 6= 0), B1 are constants. Then f (1) = A1

and L ≡ L(1) ≡ 0. Now, (A1 − β)/α is the only zero of f (1) − a, and

−β/α is the only zero of L− a. Consequently, E
(
a; f (1)

)
⊂ E(a, L) implies

that (A1 − β)/α = −β/α and so A1 = 0, a contradiction. Therefore f is a
transcendental entire function.

Now

N(2

(
r, a; f (1)

)
≤ NA

(
r, a; f (1)

)
+NB

(
r, a; f (1)

)
+N(2

(
r, a; f (1)|f = a

)
+ S(r, f)

= N(2

(
r, a; f (1)|f = a

)
+ S(r, f),

(3.1)

where N(2

(
r, a; f (1)|f = a

)
denotes the counting function (counted with mul-

tiplicities) of those multiple zeros of f (1) − a, which are also zeros of f − a.

We note that a common zero of f − a and f (1) − a of multiplicity q(≥ 2)

is a zero of a− a(1) =
(
f (1) − a(1)

)
−
(
f (1) − a

)
with multiplicity q− 1(≥ 1).

Therefore,

N(2

(
r, a; f (1)|f = a

)
≤ 2N

(
r, 0; a− a(1)

)
= S(r, f).

So, from (3.1) we get

N(2

(
r, a; f (1)

)
= S(r, f). (3.2)

First, we suppose that L(1) 6≡ f (1). Then, using (3.2), we get by the
hypothesis that

N
(
r, a; f (1)

)
≤ NB

(
r, a; f (1)

)
+N

(
r,

a

a− α
;

L(1)

f (1) − α

)
+ S(r, f)

≤ T

(
r,

L(1)

f (1) − α

)
+ S(r, f) = N

(
r,

L(1)

f (1) − α

)
+ S(r, f)

≤ N
(
r, α; f (1)

)
+ S(r, f).

(3.3)



AN ENTIRE FUNCTION SHARING FIXED POINTS 131

Again,

m(r, a; f) ≤ m

(
r,
f (1) − α
f − a

1

f (1) − α

)
≤ m

(
r, α; f (1)

)
+ S(r, f)

= T
(
r, f (1)

)
−N

(
r, α; f (1)

)
+ S(r, f)

= m
(
r, f (1)

)
−N

(
r, α; f (1)

)
+ S(r, f)

≤ m(r, f)−N
(
r, α; f (1)

)
+ S(r, f)

= T (r, f)−N
(
r, α; f (1)

)
+ S(r, f),

and so

N
(
r, α; f (1)

)
≤ N(r, a; f) + S(r, f).

Thus from (3.3) we get

N
(
r, a; f (1)

)
≤ N(r, a; f) + S(r, f). (3.4)

Again,

N(r, a; f) ≤ NA(r, a; f) +N
(
r, a; f (1) | f = a

)
≤ N

(
r, a; f (1)

)
+ S(r, f).

(3.5)

Therefore, from (3.4) and (3.5), we deduce that

N
(
r, a; f (1)

)
= N(r, a; f) + S(r, f). (3.6)

Let h, defined as in Lemma 2.4, be transcendental. Then

T (r, f) = m(r, f) ≤ m
(
r,

1

h

{(
a− a(1)

)
L− af (1)

})
+ S(r, f)

≤ m
(
r, f (1)

)
+m

(
r,
(
a− a(1)

) L

f (1)
− a
)

+ S(r, f)

≤ m
(
r, f (1)

)
+ S(r, f) = T

(
r, f (1)

)
+ S(r, f)

= m
(
r, f (1)

)
+ S(r, f) ≤ m(r, f) + S(r, f) = T (r, f) + S(r, f).

Therefore,

T
(
r, f (1)

)
= T (r, f) + S(r, f). (3.7)

Again, by Lemma 2.4 we get m
(
r, a; f (1)

)
= S(r, f). Then, from (3.6)

and (3.7), we have that

m(r, a; f) +m
(
r, a; f (1)

)
= S(r, f). (3.8)
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Next we suppose that h is rational. Then by Lemma 2.5 we see that f is
of finite order. So, by the hypothesis and Lemma 2.3, we get the equality
m(r, a; f) = S(r, f).

Since

T
(
r, f (1)

)
= m

(
r, f (1)

)
≤ m(r, f) + S(r, f) = T (r, f) + S(r, f),

from (3.6) we get

m
(
r, a; f (1)

)
≤ m(r, a; f) +N(r, a; f)−N

(
r, a; f (1)

)
+ S(r, f) = S(r, f).

Hence in this case also we obtain (3.8).
We now put

φ =
f (1) − a
f − a

and ψ =
L− a
f (1) − a

.

Then by (3.8) we get m(r, φ) +m(r, ψ) = S(r, f). Also, from the hypothesis
we have

N(r, φ) ≤ NA(r, a; f) +NB

(
r, a; f (1)

)
+N(2(r, a; f) + S(r, f) = S(r, f),

because

N(2(r, a; f) ≤ NA(r, a; f) + 2N
(
r, 0; a− a(1)

)
+ S(r, f) = S(r, f).

Again, by (3.2) and the hypothesis, we get

N(r, ψ) ≤ NA

(
r, a; f (1)

)
+NB

(
r, a; f (1)

)
+N(2

(
r, a; f (1)

)
+S(r, f) = S(r, f).

Therefore,

T (r, φ) + T (r, ψ) = S(r, f). (3.9)

Let z1 be a simple zero of f−a such that z1 /∈ A∪B and a(z1)−a(1)(z1) 6=
0. Then f(z1) = f (1)(z1) = L(z1) = L(1)(z1) = a(z1). Now, by Taylor’s
expansion in some neighbourhood of z1, we get

f(z)− a(z) = (f − a)(z1) + (f − a)(1)(z1)(z − z1) +O(z − z1)2

=
(
a(z1)− a(1)(z1)

)
(z − z1) +O(z − z1)2,

f (1)(z)− a(z) =
(
f (1) − a

)
(z1) +

(
f (1) − a

)(1)
(z1)(z − z1) +O(z − z1)2

=
{
f (2)(z1)− a(1)(z1)

}
(z − z1) +O(z − z1)2

and

L(z)− a(z) = (L− a)(z1) + (L− a)(1)(z1)(z − z1) +O(z − z1)2

=
(
a(z1)− a(1)(z1)

)
(z − z1) +O(z − z1)2.
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Therefore, in a neighbourhood of z1, we obtain

φ(z) =

{
f (2)(z1)− a(1)(z1)

}
(z − z1) +O(z − z1)2(

a(z1)− a(1)(z1)
)

(z − z1) +O(z − z1)2

=
f (2)(z1)− α+O(z − z1)
a(z1)− α+O(z − z1)

=
f (2)(z1)− α
a(z1)− α

+O(z − z1)
(3.10)

and

ψ(z) =

(
a(z1)− a(1)(z1)

)
(z − z1) +O(z − z1)2(

f (2)(z1)− a(1)(z1)
)

(z − z1) +O(z − z1)2

=
a(z1)− α+O(z − z1)
f (2)(z1)− α+O(z − z1)

=
a(z1)− α
f (2)(z1)− α

+O(z − z1).
(3.11)

We put M = ψ − 1/φ. Then from (3.9) we get T (r,M) = S(r, f). Also,
in some neighbourhood of z1, we have, by (3.10) and (3.11), that M(z) =
O(z − z1).

If M 6≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +NB

(
r, a; f (1)

)
+N(2(r, a; f)

+N(r, 0; a− a(1)) +N(r, 0;M)

= S(r, f),

and so, by (3.6) and Lemma 2.2, we have T (r, f) = S(r, f), a contradiction.
Thus M ≡ 0 and so

L ≡ f. (3.12)

Differentiating (3.12) we get L(1) ≡ f (1), which contradicts our hypothesis

that L(1) 6≡ f (1). Therefore, indeed we have L(1) ≡ f (1).
Next we suppose that L(1) 6≡ L. Then, by the hypothesis and (3.2), we

get

N
(
r, a; f (1)

)
≤ NB

(
r, a; f (1)

)
+N

(
r, 1;

L(1)

L

)
+ S(r, f)

≤ T

(
r,
L(1)

L

)
+ S(r, f) = N

(
r,
L(1)

L

)
+ S(r, f)

= N(r, 0;L) + S(r, f).

(3.13)

Again,

m(r, a; f) = m

(
r,

L

f − a
1

L

)
≤ m(r, 0;L) + S(r, f)

= T (r, L)−N(r, 0;L) + S(r, f) = m(r, L)−N(r, 0;L) + S(r, f)
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≤ m
(
r,
L

f

)
+m(r, f)−N(r, 0;L) + S(r, f)

= m(r, f)−N(r, 0;L) + S(r, f) = T (r, f)−N(r, 0;L) + S(r, f)

and so

N(r, 0;L) ≤ N(r, a; f) + S(r, f).

Now, by (3.13) we get

N
(
r, a; f (1)

)
≤ N(r, a; f) + S(r, f). (3.14)

Also,

N(r, a; f) ≤ NA(r, a; f) +N
(
r, a; f (1) | f = a

)
≤ N

(
r, a; f (1)

)
+ S(r, f).

(3.15)

From (3.14) and (3.15) we get (3.6).
Now, using Lemmas 2.3–2.5 and (3.6), we similarly obtain (3.8). Further,

using φ and ψ and proceeding likewise, we get (3.12).
Solving L− f ≡ 0, we find that

f = c1e
α1z + c2e

α2z + · · ·+ cke
αkz, (3.16)

where α1, α2, . . . , αk are the roots of
∑n

j=2 ajz
j = 1 and c1, c2, . . . , ck are

constants or polynomials, not all identically zero, and k(≤ n) is an integer.
Differentiating (3.16), we get

f (1) =
(
c
(1)
1 + c1α1

)
eα1z +

(
c
(1)
2 + c2α2

)
eα2z + · · ·+

(
c
(1)
k + ckαk

)
eαkz.

(3.17)

From (3.16), (3.17), and φ =
(
f (1) − a

)
/(f − a), we get(

φc1 − c(1)1 − c1α1

)
eα1z +

(
φc2 − c(1)2 − c2α2

)
eα2z + . . .

+
(
φck − c

(1)
k − ckαk

)
eαkz ≡ a(φ− 1).

We suppose that φ 6≡ 1. Then, from the above, we have

k∑
j=1

φcj − c(1)j − cjαj
a(φ− 1)

eαjz ≡ 1. (3.18)

We note that T (r, f) = O(T (r, eαjz)) for j = 1, 2, . . . , k.
If the left hand side of (3.18) contains more than two terms, then by

Lemma 2.7 we get

φcj − c(1)j − cjαj
a(φ− 1)

eαjz ≡ 1 (3.19)

for one value of j ∈ {1, 2, . . . , k}. From (3.19) we see that T (r, eαjz) =
S(r, f) = S(r, eαjz), a contradiction.
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We now suppose that the left hand side of (3.18) contains only two terms,
say,

φcj − c(1)j − cjαj
a(φ− 1)

eαjz +
φcl − c

(1)
l − clαl

a(φ− 1)
eαlz ≡ 1.

By Lemma 2.6 we get

T (r, eαjz) ≤ N (r, 0; eαjz) +N (r,∞; eαjz)

+N

(
r,

a(φ− 1)

φcj − c(1)j − cjαj
; eαjz

)
+ S (r, eαjz)

= N (r, 0; eαlz) + S (r, eαjz) = S (r, eαjz) ,

a contradiction.
Finally, we suppose that the left hand side of (3.18) contains only one

term, say,

φcj − c(1)j − cjαj
a(φ− 1)

eαjz ≡ 1.

Then T (r, eαjz) = S(r, f) = S(r, eαjz), a contradiction.

Therefore, φ ≡ 1 and so f (1) ≡ f . Hence, by (3.12) we get L ≡ L(1), a

contradiction to the supposition. Thus, indeed, we have L ≡ L(1).

Now L ≡ L(1) ≡ f (1) implies L = L(1) = f (1) = λez, where λ(6= 0) is a
constant. Therefore f = λez +K, where K is a constant. By Lemma 2.6 we
get

T (r, λez) ≤ N (r, 0;λez) +N (r,∞;λez) +N (r, a−K;λez) + S (r, λez)

= N(r, a; f) + S (r, λez) ,

which implies N(r, a; f) 6= S(r, f). Again, since

NA(r, a; f) +NB

(
r, a; f (1)

)
= S(r, f),

we get

E(a; f) ∩ E
(
a; f (1)

)
6= ∅.

But this implies K = 0 and so f = L = λez. The proof is complete. �
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