An entire function sharing fixed points with its linear differential polynomial

Imrul Kaish and Indrajit Lahiri

Abstract

We study the uniqueness of entire functions, when they share a linear polynomial, in particular, fixed points, with their linear differential polynomials.

1. Definitions and results

Let f be a nonconstant meromorphic function defined in the open complex plane \mathbb{C}, and let $a=a(z)$ be a polynomial. Let us denote by $E(a ; f)$ and $\bar{E}(a ; f)$ the set of zeros of $f-a$, counted with multiplicities, and the set of all distinct zeros of $f-a$, respectively. If $A \subset \mathbb{C}$, then we denote by $n_{A}(r, a ; f)$ the number of zeros of $f-a$, counted with multiplicities, that lie in $\{z:|z| \leq r\} \cap A$. The corresponding integrated counting function is defined by

$$
N_{A}(r, a ; f)=\int_{0}^{r} \frac{n_{A}(t, a ; f)-n_{A}(0, a ; f)}{t} d t+n_{A}(0, a ; f) \log r
$$

We also denote by $\bar{N}_{A}(r, a ; f)$ the reduced counting functions of those zeros of $f-a$ that lie in $\{z:|z| \leq r\} \cap A$.

Clearly, if $A=\mathbb{C}$, then $N_{A}(r, a ; f)=N(r, a ; f)$ and $\bar{N}_{A}(r, a ; f)=\bar{N}(r, a ; f)$. The standard definitions and notation of the value distribution theory are available in [1].

The uniqueness of an entire function sharing a nonzero finite value with its first two derivatives was considered by Jank et al. [2] in 1986. The following is their result.

Theorem A (see [2]). Let f be a nonconstant entire function and let a be a nonzero finite value. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right) \subset \bar{E}\left(a ; f^{(2)}\right)$, then $f \equiv f^{(1)}$.

Received March 14, 2017.
2010 Mathematics Subject Classification. 30D35.
Key words and phrases. Entire function; differential polynomial; fixed point; sharing. http://dx.doi.org/10.12697/ACUTM.2018.22.11

Considering $f=e^{\omega z}+\omega-1$ and $a=\omega$, where ω is a $(k-1)$ th imaginary root of unity and $k(\geq 3)$ is an integer, Zhong [10] pointed out that in Theorem A one can not replace the second derivative by any higher order derivative. Under this context, Zhong [10] proved the following theorem.

Theorem B (see [10]). Let f be a nonconstant entire function and let a be a nonzero finite number. If $E(a ; f)=E\left(a ; f^{(1)}\right)$ and $\bar{E}(a ; f) \subset \bar{E}\left(a ; f^{(n)}\right) \cap$ $\bar{E}\left(a ; f^{(n+1)}\right)$ for $n \geq 1$, then $f \equiv f^{(n)}$.

Considering a shared linear polynomial, Lahiri and Ghosh [3] extended Theorem A in the following manner.

Theorem C (see [3]). Let f be a nonconstant entire function and let $a(z)=\alpha z+\beta$, where $\alpha(\neq 0), \beta$ are constants. If $E(a ; f) \subset E\left(a ; f^{(1)}\right) \subset$ $E\left(a ; f^{(2)}\right)$, then either $f=\lambda e^{z}$ or $f=\alpha z+\beta+(\alpha z+\beta-2 \alpha) \exp \left(\frac{\alpha z+\beta-2 \alpha}{\alpha}\right)$, where $\lambda(\neq 0)$ is a constant.

In 1999, Li [7] considered linear differential polynomials and proved the following result.

Theorem D (see [7]). Let f be a nonconstant entire function and $L=$ $a_{1} f^{(1)}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}$, where $a_{1}, a_{2}, \ldots, a_{n}(\neq 0)$ are constants and $a(\neq 0)$ is a finite number. If $\bar{E}(a ; f)=\bar{E}\left(a ; f^{(1)}\right) \subset \bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)$, then $f \equiv f^{(1)} \equiv L$.

In this paper, we consider the uniqueness of an entire function that shares a linear polynomial with linear differential polynomials generated by it. For two subsets A and B of \mathbb{C}, we denote by $A \Delta B$ the set $(A-B) \cup(B-A)$, which is called the symmetric difference of the sets A and B.

We now state the main result of the paper.
Theorem 1.1. Let f be a nonconstant entire function and $L=a_{2} f^{(2)}+$ $a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}$, where $a_{2}, a_{3}, \ldots, a_{n}(\neq 0)$ are constants and $n(\geq 2)$ is a positive integer. Also, let $a(z)=\alpha z+\beta$, where $\alpha(\neq 0), \beta$ are constants. Suppose that $A=\bar{E}(a ; f) \Delta \bar{E}\left(a ; f^{(1)}\right)$ and $B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}$. If the conditions
(i) $N_{A}(r, a ; f)+N_{A}\left(r, a ; f^{(1)}\right)=O\{\log T(r, f)\}$,
(ii) $N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$,
(iii) each common zero of $f-a$ and $f^{(1)}-a$ has the same multiplicity, are satisfied, then $f=L=\lambda e^{z}$, where $\lambda(\neq 0)$ is a constant.

Putting $A=B=\emptyset$, we obtain the following corollary which improves Theorem B for $n \geq 2$.

Corollary 1.1. Let f be a nonconstant entire function and $L=a_{2} f^{(2)}+$ $a_{3} f^{(3)}+\cdots+a_{n} f^{(n)}$, where $a_{2}, a_{3}, \ldots, a_{n}(\neq 0)$ are constants and $n(\geq 2)$ is an integer. Also let $a(z)=\alpha z+\beta$, where $\alpha(\neq 0), \beta$ are constants. Suppose
that $E(a ; f)=E\left(a ; f^{(1)}\right)$ and $\bar{E}\left(a ; f^{(1)}\right) \subset\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}$. Then $f=L=\lambda e^{z}$, where $\lambda(\neq 0)$ is a constant.

The following examples show that the hypotheses (i) and (ii) of Theorem 1.1 are essential.

Example 1.1. Let $f(z)=e^{z}, L=f^{(2)}+f^{(3)}$ and $a(z)=z$. Then clearly $N_{A}(r, a ; f)+N_{A}\left(r, a ; f^{(1)}\right)=O\{\log T(r, f)\}$ and $N_{B}\left(r, a ; f^{(1)}\right)=T(r, f)+$ $O(1) \neq S(r, f)$. Also we note that the hypothesis (iii) of Theorem 1.1 holds, but $f \not \equiv L$.

Example 1.2. Let $f(z)=e^{z}+z^{2}, L=f^{(3)}+f^{(4)}$ and $a(z)=2 z$. Then clearly $N_{A}(r, a ; f)+N_{A}\left(r, a ; f^{(1)}\right)=T\left(r, e^{z}\right)+O(1) \neq O\{\log T(r, f)\}$ and $N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$. Since $E\left(a ; f^{(1)}\right)=\emptyset$, we note that the hypothesis (iii) of Theorem 1.1 holds, but $f \not \equiv L$.

We denote by $N_{(2}(r, a ; f)$ the counting function, counted with multiplicities, of the multiple zeros of $f-a$.

A related result concerning the derivatives of an entire function can be found in [4].

2. Lemmas

In this section, we present some lemmas.
Lemma 2.1 (see [9]). Let g be a transcendental entire function and let $\phi(\not \equiv 0)$ be a meromorphic function satisfying $T(r, \phi)=S(r, g)$. Then

$$
T(r, g) \leq C_{n}\left\{N(r, 0 ; g)+\bar{N}\left(r, 0 ; g^{(n)}-\phi\right)\right\}+S(r, g)
$$

where C_{n} is a constant depending only on $n(\geq 1)$.
Lemma 2.2. Let f be a transcendental entire function and let $a=a(z)$ be a meromorphic function satisfying $a-a^{(n)} \not \equiv 0$ and $T(r, a)=S(r, f)$. Then

$$
T(r, f) \leq C_{n}\left\{N(r, a ; f)+\bar{N}\left(r, a ; f^{(n)}\right)\right\}+S(r, f)
$$

where C_{n} is a constant depending only on $n(\geq 1)$.
Proof. Putting $g=f-a$ and $\phi=a-a^{(n)}$ in Lemma 2.1, we obtain the result.

Lemma 2.3 (see [5]). Let f be transcendental entire function of finite order and let $a=a(z)=\alpha z+\beta$, where $\alpha(\neq 0), \beta$ are constants. Suppose that $A=\bar{E}(a ; f) \Delta \bar{E}\left(a ; f^{(1)}\right)$. If $N_{A}(r, a ; f)+N_{A}\left(r, a ; f^{(1)}\right)=O\{\log T(r, f)\}$ and each common zero of $f-a$ and $f^{(1)}-a$ have the same multiplicity, then $m(r, a ; f)=m\left(r, \frac{1}{f-a}\right)=S(r, f)$.

To prove the following lemma, we adapt some techniques from [5].

Lemma 2.4. Let f be a transcendental entire function and $a(z)=\alpha z+$ $\beta(\not \equiv 0)$. Suppose that

$$
L=a_{2} f^{(2)}+a_{3} f^{(3)}+\cdots+a_{n} f^{(n)} \text { and } h=\frac{\left(a-a^{(1)}\right) L-a\left(f^{(1)}-a^{(1)}\right)}{f-a}
$$

where $a_{2}, a_{3}, \ldots, a_{n}(\neq 0)$ are constants. Further, suppose that

$$
A=\bar{E}(a ; f) \backslash \bar{E}\left(a ; f^{(1)}\right) \text { and } B=\bar{E}\left(a ; f^{(1)}\right) \backslash\left\{\bar{E}(a ; L) \cap \bar{E}\left(a ; L^{(1)}\right)\right\}
$$

If the conditions
(i) $N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$,
(ii) each common zero of $f-a$ and $f^{(1)}-a$ has the same multiplicity,
(iii) h is transcendental entire or meromorphic,
hold, then $m\left(r, a ; f^{(1)}\right)=m\left(r, \frac{1}{f^{(1)}-a}\right)=S(r, f)$.
Proof. Since $a-a^{(1)}=\left(f^{(1)}-a^{(1)}\right)-\left(f^{(1)}-a\right)$, we have that if z_{0} is a common zero of $f-a$ and $f^{(1)}-a$ with multiplicity $q(\geq 2)$, then z_{0} is a zero of $a-a^{(1)}$ with multiplicity $q-1$. So

$$
N_{(2}(r, a ; f) \leq 2 N\left(r, 0 ; a-a^{(1)}\right)+N_{A}(r, a ; f)=S(r, f)
$$

Hence, by the hypothesis, we see that

$$
\begin{aligned}
N(r, h) & \leq N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)+N_{(2}(r, a ; f)+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

Since $m(r, h)=S(r, f)$, we have $T(r, h)=S(r, f)$.
Now, by a simple calculation we get

$$
f=a+\frac{1}{h}\left\{\left(a-a^{(1)}\right)(L-a)-a\left(f^{(1)}-a\right)\right\}
$$

Differentiating, we obtain

$$
\begin{aligned}
f^{(1)}= & a^{(1)}+\left(\frac{1}{h}\right)^{(1)}\left\{\left(a-a^{(1)}\right)(L-a)-a\left(f^{(1)}-a\right)\right\} \\
& +\left(\frac{1}{h}\right)\left\{a^{(1)}(L-a)+\left(a-a^{(1)}\right)\left(L^{(1)}-a^{(1)}\right)-a^{(1)}\left(f^{(1)}-a\right)\right. \\
& \left.-a\left(f^{(2)}-a^{(1)}\right)\right\}
\end{aligned}
$$

This implies

$$
\begin{align*}
\frac{1}{f^{(1)}-a}= & \frac{\xi}{\zeta}-\frac{1}{\zeta}\left(\frac{a-a^{(1)}}{h}\right)^{(1)} \frac{L-a_{2} a^{(1)}}{f^{(1)}-a}-\frac{a-a^{(1)}}{h \zeta} \frac{L^{(1)}}{f^{(1)}-a} \tag{2.1}\\
& +\frac{a}{h \zeta} \frac{f^{(2)}-a^{(1)}}{f^{(1)}-a}
\end{align*}
$$

where
$\xi=1+\left(\frac{a}{h}\right)^{(1)}$ and $\zeta=a^{(1)}-a-\left(\frac{a\left(a-a^{(1)}\right)}{h}\right)^{(1)}+\left(\frac{a-a^{(1)}}{h}\right)^{(1)} a_{2} a^{(1)}$.
We now verify that $\xi \not \equiv 0$ and $\zeta \not \equiv 0$. If $\xi \equiv 0$, then $1+(a / h)^{(1)} \equiv 0$. Integrating, we get $h=a /(c-z)$, where c is a constant. This implies a contradiction as h is transcendental.

If $\zeta \equiv 0$, then

$$
a^{(1)}-a-\left(\frac{a\left(a-a^{(1)}\right)}{h}\right)^{(1)}+\left(\frac{a-a^{(1)}}{h}\right)^{(1)} a_{2} a^{(1)} \equiv 0,
$$

and so

$$
(\alpha-\beta) z-\frac{\alpha z^{2}}{2}+\alpha_{2}=\frac{a(a-\alpha)}{h}-\frac{a_{2} \alpha(a-\alpha)}{h},
$$

where α_{2} is a constant. Therefore,

$$
h=\frac{(\alpha z+\beta-\alpha)\left(\alpha z+\beta-a_{2} \alpha\right)}{-\frac{\alpha z^{2}}{2}+(\alpha-\beta) z+\alpha_{2}},
$$

which is a contradiction as h is transcendental.
Since clearly $T(r, \xi)+T(r, \zeta)=S(r, f)$, from (2.1) we get

$$
m\left(r, a ; f^{(1)}\right)=m\left(r, \frac{1}{f^{(1)}-a}\right)=S(r, f) .
$$

This proves the lemma.
Lemma 2.5 (see [6], p. 58). Each solution of the differential equation

$$
a_{n} f^{(n)}+a_{n-1} f^{(n-1)}+\cdots+a_{0} f=0,
$$

where $a_{0}(\not \equiv 0), a_{1}, \cdots, a_{n}(\not \equiv 0)$ are polynomials, is an entire function of finite order.

Lemma 2.6 (see [1], p. 47). Let f be a nonconstant meromorphic function and let a_{1}, a_{2}, a_{3} be three distinct meromorphic functions satisfying $T\left(r, a_{\nu}\right)=S(r, f)$ for $\nu=1,2,3$. Then

$$
T(r, f) \leq \bar{N}\left(r, 0 ; f-a_{1}\right)+\bar{N}\left(r, 0 ; f-a_{2}\right)+\bar{N}\left(r, 0 ; f-a_{3}\right)+S(r, f) .
$$

Lemma 2.7 (see [8], p. 92). Let $f_{1}, f_{2}, \ldots, f_{n}$ be meromorphic functions which are nonconstant except possibly for f_{n}, where $n \geq 3$. If $f_{n} \not \equiv 0$, $\sum_{j=1}^{n} f_{j} \equiv 1$, and

$$
\sum_{j=1}^{n} N\left(r, 0 ; f_{j}\right)+(n-1) \sum_{j=1}^{n} \bar{N}\left(r, \infty ; f_{j}\right)<\{\mu+o(1)\} T\left(r, f_{k}\right)
$$

for $k=1,2, \ldots, n-1$ and for some $\mu(0<\mu<1)$, then $f_{n} \equiv 1$.

3. Proof of Theorem 1.1

Proof. First, we see that f can not be a polynomial. We suppose that f is a polynomial. Then $T(r, f)=O(\log r)$ and $N_{A}(r, a ; f)+N_{A}\left(r, a ; f^{(1)}\right)=$ $O(\log T(r, f))=S(r, f)$ imply $A=\emptyset$. Also $N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)$ implies $B=\emptyset$. Therefore,

$$
E(a ; f)=E\left(a ; f^{(1)}\right) \text { and } \bar{E}\left(a ; f^{(1)}\right) \subset \bar{E}(a, L) \cap \bar{E}\left(a ; L^{(1)}\right) .
$$

Let the degree of f be greater than 1 . Then $\operatorname{deg}(f-a)>\operatorname{deg}\left(f^{(1)}-a\right)$. Since each common zero of $f-a$ and $f^{(1)}-a$ has the same multiplicity, this contradicts the fact that $E(a ; f)=E\left(a ; f^{(1)}\right)$.
Next, let $f=A_{1} z+B_{1}$, where $A_{1}(\neq 0), B_{1}$ are constants. Then $f^{(1)}=A_{1}$ and $L \equiv L^{(1)} \equiv 0$. Now, $\left(A_{1}-\beta\right) / \alpha$ is the only zero of $f^{(1)}-a$, and $-\beta / \alpha$ is the only zero of $L-a$. Consequently, $\bar{E}\left(a ; f^{(1)}\right) \subset \bar{E}(a, L)$ implies that $\left(A_{1}-\beta\right) / \alpha=-\beta / \alpha$ and so $A_{1}=0$, a contradiction. Therefore f is a transcendental entire function.

Now

$$
\begin{align*}
N_{(2}\left(r, a ; f^{(1)}\right) \leq & N_{A}\left(r, a ; f^{(1)}\right)+N_{B}\left(r, a ; f^{(1)}\right) \\
& +N_{(2}\left(r, a ; f^{(1)} \mid f=a\right)+S(r, f) \tag{3.1}\\
= & N_{(2}\left(r, a ; f^{(1)} \mid f=a\right)+S(r, f),
\end{align*}
$$

where $N_{(2}\left(r, a ; f^{(1)} \mid f=a\right)$ denotes the counting function (counted with multiplicities) of those multiple zeros of $f^{(1)}-a$, which are also zeros of $f-a$.

We note that a common zero of $f-a$ and $f^{(1)}-a$ of multiplicity $q(\geq 2)$ is a zero of $a-a^{(1)}=\left(f^{(1)}-a^{(1)}\right)-\left(f^{(1)}-a\right)$ with multiplicity $q-1(\geq 1)$. Therefore,

$$
N_{(2}\left(r, a ; f^{(1)} \mid f=a\right) \leq 2 N\left(r, 0 ; a-a^{(1)}\right)=S(r, f) .
$$

So, from (3.1) we get

$$
\begin{equation*}
N_{(2}\left(r, a ; f^{(1)}\right)=S(r, f) \tag{3.2}
\end{equation*}
$$

First, we suppose that $L^{(1)} \not \equiv f^{(1)}$. Then, using (3.2), we get by the hypothesis that

$$
\begin{align*}
& N\left(r, a ; f^{(1)}\right) \leq N_{B}\left(r, a ; f^{(1)}\right)+N\left(r, \frac{a}{a-\alpha} ; \frac{L^{(1)}}{f^{(1)}-\alpha}\right)+S(r, f) \\
& \quad \leq T\left(r, \frac{L^{(1)}}{f^{(1)}-\alpha}\right)+S(r, f)=N\left(r, \frac{L^{(1)}}{f^{(1)}-\alpha}\right)+S(r, f) \tag{3.3}\\
& \quad \leq N\left(r, \alpha ; f^{(1)}\right)+S(r, f) .
\end{align*}
$$

Again,

$$
\begin{aligned}
m(r, a ; f) & \leq m\left(r, \frac{f^{(1)}-\alpha}{f-a} \frac{1}{f^{(1)}-\alpha}\right) \leq m\left(r, \alpha ; f^{(1)}\right)+S(r, f) \\
& =T\left(r, f^{(1)}\right)-N\left(r, \alpha ; f^{(1)}\right)+S(r, f) \\
& =m\left(r, f^{(1)}\right)-N\left(r, \alpha ; f^{(1)}\right)+S(r, f) \\
& \leq m(r, f)-N\left(r, \alpha ; f^{(1)}\right)+S(r, f) \\
& =T(r, f)-N\left(r, \alpha ; f^{(1)}\right)+S(r, f)
\end{aligned}
$$

and so

$$
N\left(r, \alpha ; f^{(1)}\right) \leq N(r, a ; f)+S(r, f)
$$

Thus from (3.3) we get

$$
\begin{equation*}
N\left(r, a ; f^{(1)}\right) \leq N(r, a ; f)+S(r, f) \tag{3.4}
\end{equation*}
$$

Again,

$$
\begin{align*}
N(r, a ; f) & \leq N_{A}(r, a ; f)+N\left(r, a ; f^{(1)} \mid f=a\right) \tag{3.5}\\
& \leq N\left(r, a ; f^{(1)}\right)+S(r, f)
\end{align*}
$$

Therefore, from (3.4) and (3.5), we deduce that

$$
\begin{equation*}
N\left(r, a ; f^{(1)}\right)=N(r, a ; f)+S(r, f) \tag{3.6}
\end{equation*}
$$

Let h, defined as in Lemma 2.4, be transcendental. Then

$$
\begin{aligned}
T(r, f) & =m(r, f) \leq m\left(r, \frac{1}{h}\left\{\left(a-a^{(1)}\right) L-a f^{(1)}\right\}\right)+S(r, f) \\
& \leq m\left(r, f^{(1)}\right)+m\left(r,\left(a-a^{(1)}\right) \frac{L}{f^{(1)}}-a\right)+S(r, f) \\
& \leq m\left(r, f^{(1)}\right)+S(r, f)=T\left(r, f^{(1)}\right)+S(r, f) \\
& =m\left(r, f^{(1)}\right)+S(r, f) \leq m(r, f)+S(r, f)=T(r, f)+S(r, f)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
T\left(r, f^{(1)}\right)=T(r, f)+S(r, f) \tag{3.7}
\end{equation*}
$$

Again, by Lemma 2.4 we get $m\left(r, a ; f^{(1)}\right)=S(r, f)$. Then, from (3.6) and (3.7), we have that

$$
\begin{equation*}
m(r, a ; f)+m\left(r, a ; f^{(1)}\right)=S(r, f) \tag{3.8}
\end{equation*}
$$

Next we suppose that h is rational. Then by Lemma 2.5 we see that f is of finite order. So, by the hypothesis and Lemma 2.3, we get the equality $m(r, a ; f)=S(r, f)$.

Since

$$
T\left(r, f^{(1)}\right)=m\left(r, f^{(1)}\right) \leq m(r, f)+S(r, f)=T(r, f)+S(r, f)
$$

from (3.6) we get

$$
m\left(r, a ; f^{(1)}\right) \leq m(r, a ; f)+N(r, a ; f)-N\left(r, a ; f^{(1)}\right)+S(r, f)=S(r, f)
$$

Hence in this case also we obtain (3.8).
We now put

$$
\phi=\frac{f^{(1)}-a}{f-a} \text { and } \psi=\frac{L-a}{f^{(1)}-a}
$$

Then by (3.8) we get $m(r, \phi)+m(r, \psi)=S(r, f)$. Also, from the hypothesis we have

$$
N(r, \phi) \leq N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)+N_{(2}(r, a ; f)+S(r, f)=S(r, f)
$$

because

$$
N_{(2}(r, a ; f) \leq N_{A}(r, a ; f)+2 N\left(r, 0 ; a-a^{(1)}\right)+S(r, f)=S(r, f)
$$

Again, by (3.2) and the hypothesis, we get
$N(r, \psi) \leq N_{A}\left(r, a ; f^{(1)}\right)+N_{B}\left(r, a ; f^{(1)}\right)+N_{(2}\left(r, a ; f^{(1)}\right)+S(r, f)=S(r, f)$.
Therefore,

$$
\begin{equation*}
T(r, \phi)+T(r, \psi)=S(r, f) \tag{3.9}
\end{equation*}
$$

Let z_{1} be a simple zero of $f-a$ such that $z_{1} \notin A \cup B$ and $a\left(z_{1}\right)-a^{(1)}\left(z_{1}\right) \neq$ 0 . Then $f\left(z_{1}\right)=f^{(1)}\left(z_{1}\right)=L\left(z_{1}\right)=L^{(1)}\left(z_{1}\right)=a\left(z_{1}\right)$. Now, by Taylor's expansion in some neighbourhood of z_{1}, we get

$$
\begin{aligned}
f(z)-a(z) & =(f-a)\left(z_{1}\right)+(f-a)^{(1)}\left(z_{1}\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2} \\
& =\left(a\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2} \\
f^{(1)}(z)-a(z) & =\left(f^{(1)}-a\right)\left(z_{1}\right)+\left(f^{(1)}-a\right)^{(1)}\left(z_{1}\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2} \\
& =\left\{f^{(2)}\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right\}\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
L(z)-a(z) & =(L-a)\left(z_{1}\right)+(L-a)^{(1)}\left(z_{1}\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2} \\
& =\left(a\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}
\end{aligned}
$$

Therefore, in a neighbourhood of z_{1}, we obtain

$$
\begin{align*}
\phi(z) & =\frac{\left\{f^{(2)}\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right\}\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}}{\left(a\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}} \tag{3.10}\\
& =\frac{f^{(2)}\left(z_{1}\right)-\alpha+O\left(z-z_{1}\right)}{a\left(z_{1}\right)-\alpha+O\left(z-z_{1}\right)}=\frac{f^{(2)}\left(z_{1}\right)-\alpha}{a\left(z_{1}\right)-\alpha}+O\left(z-z_{1}\right)
\end{align*}
$$

and

$$
\begin{align*}
\psi(z) & =\frac{\left(a\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}}{\left(f^{(2)}\left(z_{1}\right)-a^{(1)}\left(z_{1}\right)\right)\left(z-z_{1}\right)+O\left(z-z_{1}\right)^{2}} \tag{3.11}\\
& =\frac{a\left(z_{1}\right)-\alpha+O\left(z-z_{1}\right)}{f^{(2)}\left(z_{1}\right)-\alpha+O\left(z-z_{1}\right)}=\frac{a\left(z_{1}\right)-\alpha}{f^{(2)}\left(z_{1}\right)-\alpha}+O\left(z-z_{1}\right)
\end{align*}
$$

We put $M=\psi-1 / \phi$. Then from (3.9) we get $T(r, M)=S(r, f)$. Also, in some neighbourhood of z_{1}, we have, by (3.10) and (3.11), that $M(z)=$ $O\left(z-z_{1}\right)$.

If $M \not \equiv 0$, then

$$
\begin{aligned}
\bar{N}(r, a ; f) & \leq N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)+N_{(2}(r, a ; f) \\
& +N\left(r, 0 ; a-a^{(1)}\right)+N(r, 0 ; M) \\
& =S(r, f),
\end{aligned}
$$

and so, by (3.6) and Lemma 2.2, we have $T(r, f)=S(r, f)$, a contradiction. Thus $M \equiv 0$ and so

$$
\begin{equation*}
L \equiv f \tag{3.12}
\end{equation*}
$$

Differentiating (3.12) we get $L^{(1)} \equiv f^{(1)}$, which contradicts our hypothesis that $L^{(1)} \not \equiv f^{(1)}$. Therefore, indeed we have $L^{(1)} \equiv f^{(1)}$.

Next we suppose that $L^{(1)} \not \equiv L$. Then, by the hypothesis and (3.2), we get

$$
\begin{align*}
N\left(r, a ; f^{(1)}\right) & \leq N_{B}\left(r, a ; f^{(1)}\right)+N\left(r, 1 ; \frac{L^{(1)}}{L}\right)+S(r, f) \\
& \leq T\left(r, \frac{L^{(1)}}{L}\right)+S(r, f)=N\left(r, \frac{L^{(1)}}{L}\right)+S(r, f) \tag{3.13}\\
& =\bar{N}(r, 0 ; L)+S(r, f)
\end{align*}
$$

Again,

$$
\begin{aligned}
m(r, a ; f) & =m\left(r, \frac{L}{f-a} \frac{1}{L}\right) \leq m(r, 0 ; L)+S(r, f) \\
& =T(r, L)-N(r, 0 ; L)+S(r, f)=m(r, L)-N(r, 0 ; L)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& \leq m\left(r, \frac{L}{f}\right)+m(r, f)-N(r, 0 ; L)+S(r, f) \\
& =m(r, f)-N(r, 0 ; L)+S(r, f)=T(r, f)-N(r, 0 ; L)+S(r, f)
\end{aligned}
$$

and so

$$
N(r, 0 ; L) \leq N(r, a ; f)+S(r, f)
$$

Now, by (3.13) we get

$$
\begin{equation*}
N\left(r, a ; f^{(1)}\right) \leq N(r, a ; f)+S(r, f) \tag{3.14}
\end{equation*}
$$

Also,

$$
\begin{align*}
N(r, a ; f) & \leq N_{A}(r, a ; f)+N\left(r, a ; f^{(1)} \mid f=a\right) \\
& \leq N\left(r, a ; f^{(1)}\right)+S(r, f) \tag{3.15}
\end{align*}
$$

From (3.14) and (3.15) we get (3.6).
Now, using Lemmas 2.3-2.5 and (3.6), we similarly obtain (3.8). Further, using ϕ and ψ and proceeding likewise, we get (3.12).

Solving $L-f \equiv 0$, we find that

$$
\begin{equation*}
f=c_{1} e^{\alpha_{1} z}+c_{2} e^{\alpha_{2} z}+\cdots+c_{k} e^{\alpha_{k} z} \tag{3.16}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are the roots of $\sum_{j=2}^{n} a_{j} z^{j}=1$ and $c_{1}, c_{2}, \ldots, c_{k}$ are constants or polynomials, not all identically zero, and $k(\leq n)$ is an integer. Differentiating (3.16), we get

$$
\begin{equation*}
f^{(1)}=\left(c_{1}^{(1)}+c_{1} \alpha_{1}\right) e^{\alpha_{1} z}+\left(c_{2}^{(1)}+c_{2} \alpha_{2}\right) e^{\alpha_{2} z}+\cdots+\left(c_{k}^{(1)}+c_{k} \alpha_{k}\right) e^{\alpha_{k} z} \tag{3.17}
\end{equation*}
$$

From (3.16), (3.17), and $\phi=\left(f^{(1)}-a\right) /(f-a)$, we get

$$
\begin{aligned}
\left(\phi c_{1}-c_{1}^{(1)}-c_{1} \alpha_{1}\right) e^{\alpha_{1} z} & +\left(\phi c_{2}-c_{2}^{(1)}-c_{2} \alpha_{2}\right) e^{\alpha_{2} z}+\ldots \\
& +\left(\phi c_{k}-c_{k}^{(1)}-c_{k} \alpha_{k}\right) e^{\alpha_{k} z} \equiv a(\phi-1)
\end{aligned}
$$

We suppose that $\phi \not \equiv 1$. Then, from the above, we have

$$
\begin{equation*}
\sum_{j=1}^{k} \frac{\phi c_{j}-c_{j}^{(1)}-c_{j} \alpha_{j}}{a(\phi-1)} e^{\alpha_{j} z} \equiv 1 \tag{3.18}
\end{equation*}
$$

We note that $T(r, f)=O\left(T\left(r, e^{\alpha_{j} z}\right)\right)$ for $j=1,2, \ldots, k$.
If the left hand side of (3.18) contains more than two terms, then by Lemma 2.7 we get

$$
\begin{equation*}
\frac{\phi c_{j}-c_{j}^{(1)}-c_{j} \alpha_{j}}{a(\phi-1)} e^{\alpha_{j} z} \equiv 1 \tag{3.19}
\end{equation*}
$$

for one value of $j \in\{1,2, \ldots, k\}$. From (3.19) we see that $T\left(r, e^{\alpha_{j} z}\right)=$ $S(r, f)=S\left(r, e^{\alpha_{j} z}\right)$, a contradiction.

We now suppose that the left hand side of (3.18) contains only two terms, say,

$$
\frac{\phi c_{j}-c_{j}^{(1)}-c_{j} \alpha_{j}}{a(\phi-1)} e^{\alpha_{j} z}+\frac{\phi c_{l}-c_{l}^{(1)}-c_{l} \alpha_{l}}{a(\phi-1)} e^{\alpha_{l} z} \equiv 1
$$

By Lemma 2.6 we get

$$
\begin{aligned}
T\left(r, e^{\alpha_{j} z}\right) \leq & \bar{N}\left(r, 0 ; e^{\alpha_{j} z}\right)+\bar{N}\left(r, \infty ; e^{\alpha_{j} z}\right) \\
& +\bar{N}\left(r, \frac{a(\phi-1)}{\phi c_{j}-c_{j}^{(1)}-c_{j} \alpha_{j}} ; e^{\alpha_{j} z}\right)+S\left(r, e^{\alpha_{j} z}\right) \\
= & \bar{N}\left(r, 0 ; e^{\alpha_{l} z}\right)+S\left(r, e^{\alpha_{j} z}\right)=S\left(r, e^{\alpha_{j} z}\right)
\end{aligned}
$$

a contradiction.
Finally, we suppose that the left hand side of (3.18) contains only one term, say,

$$
\frac{\phi c_{j}-c_{j}^{(1)}-c_{j} \alpha_{j}}{a(\phi-1)} e^{\alpha_{j} z} \equiv 1
$$

Then $T\left(r, e^{\alpha_{j} z}\right)=S(r, f)=S\left(r, e^{\alpha_{j} z}\right)$, a contradiction.
Therefore, $\phi \equiv 1$ and so $f^{(1)} \equiv f$. Hence, by (3.12) we get $L \equiv L^{(1)}$, a contradiction to the supposition. Thus, indeed, we have $L \equiv L^{(1)}$.

Now $L \equiv L^{(1)} \equiv f^{(1)}$ implies $L=L^{(1)}=f^{(1)}=\lambda e^{z}$, where $\lambda(\neq 0)$ is a constant. Therefore $f=\lambda e^{z}+K$, where K is a constant. By Lemma 2.6 we get

$$
\begin{aligned}
T\left(r, \lambda e^{z}\right) & \leq \bar{N}\left(r, 0 ; \lambda e^{z}\right)+\bar{N}\left(r, \infty ; \lambda e^{z}\right)+\bar{N}\left(r, a-K ; \lambda e^{z}\right)+S\left(r, \lambda e^{z}\right) \\
& =\bar{N}(r, a ; f)+S\left(r, \lambda e^{z}\right)
\end{aligned}
$$

which implies $\bar{N}(r, a ; f) \neq S(r, f)$. Again, since

$$
N_{A}(r, a ; f)+N_{B}\left(r, a ; f^{(1)}\right)=S(r, f)
$$

we get

$$
\bar{E}(a ; f) \cap \bar{E}\left(a ; f^{(1)}\right) \neq \emptyset
$$

But this implies $K=0$ and so $f=L=\lambda e^{z}$. The proof is complete.

Acknowledgement

The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

[1] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[2] G. Jank, E. Mues, and L. Volkmann, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Variables Theory Appl. 6 (1986), 51-71.
[3] I. Lahiri and G. K. Ghosh, Uniqueness of entire functions and their derivatives, Ann. Polon. Math. 96 (2009), 239-246.
[4] I. Lahiri and I. Kaish, An entire function sharing fixed points with its derivative, Boll. Mat. Ital. 8 (2016), 307-314.
[5] I. Lahiri and I. Kaish, An entire function sharing a polynomial with its derivatives, Boll. Mat. Ital. 10 (2017), 229-240.
[6] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
[7] P. Li, Entire functions that share one value with their linear differential polynomials, Kodai Math. J. 22 (1999), 446-457.
[8] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003
[9] Jinghao Zhu, The general form of Hayman's inequality and fixed points of meromorphic functions, Kexue Tongbao 33(4) (1988), 265-269.
[10] H. Zong, Entire functions that share one value with their derivatives, Kodai Math. J. 18 (1995), 250-259.

Department of Mathematics, Aliah University, Kolkata, West Bengal 700156, InDIA

E-mail address: imrulksh3@gmail.com
Department of Mathematics, University of Kalyani, West Bengal 741235, INDIA

E-mail address: ilahiri@hotmail.com

