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A new approach to nearly compact spaces

Kallol Bhandhu Bagchi, Ajoy Mukharjee,
and Madhusudhan Paul

Abstract. Using the covers formed by pre-open sets, we introduce and
study the notion of po-compactness in topological spaces. The notion of
po-compactness is weaker than that of compactness but stronger than
semi-compactness. It is observed that po-compact spaces are the same
as nearly compact spaces. However, we find new characterizations to
near compactness, when we study it in the sense of po-compactness.

1. Introduction

Unless otherwise mentioned, X stands for the topological space (X,P).
IntX(A) or Int(A) (respectively, ClX(A) or Cl(A)) denotes the interior
(respectively, closure) of a subset A in a topological space X.

Generalizing the concept of open sets, Levine [7] introduced the notion
of semi-open sets: a subset A of a topological space X is semi-open if there
exists an open set G such that G ⊂ A ⊂ Cl(G). One more generalization of
open sets is the notion of pre-open sets (see Mashhour et al. [8]) introduced
by Corson and Michael [3] under the name locally dense sets: a subset A of
a topological space X is called locally dense if there exists an open set U
such that A ⊂ U ⊂ Cl(A). The complement of a pre-open set is called a
pre-closed set (see [8]). The concepts of semi-open sets and pre-open sets are
independent. Several covering properties have been introduced and studied
using covers formed by semi-open and pre-open sets (see, for example, [2, 6,
9, 8, 11, 16, 17]). A cover formed by semi-open sets is called an s-cover (see
[16]). A topological space X is called s-compact (see [16]) if each s-cover of
X has a finite subcover. However, s-compactness has been widely studied
under the name semi-compactness by Dorsett [4]. As semi-compactness is
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stronger than compactness, and the term semi-compact delineates a notion
weaker than compactness, we retain the term s-compactness due to Prasad
and Yadav [16] to mean the notion of semi-compactness due to Dorsett [4] as
well, and henceforth, by semi-compactness, we mean the notion introduced
by Mukharjee et al. [11]. Mashhour et al. [9] introduced a compact like
notion called strong compactness: a topological space X is called strongly
compact if each cover of X by pre-open sets of X has a finite subcover.

For a topological space (X,P) and a subset A ⊂ X, we write (A,PA)
to denote the subspace on A of (X,P). We also write SO(X) (respectively,
PO(X)) to denote the collection of all semi-open (respectively, pre-open)
sets of X. Throughout the paper, N denotes the set of natural numbers and
R denotes the set of real numbers.

2. Po-compactness

We begin by recalling that a subset A of a topological space X is called
regularly open if A = Int(Cl(A)). So if G is open in X, then Int(Cl(G)) is
regularly open in X.

We agree to mean by an open collection and pre-open collection a collec-
tion consisting, respectively, of open sets and pre-open sets of a topological
space X. An open (respectively, a pre-open) collection A of subsets of X
such that

⋃
A∈A A = X is called an open cover (respectively, a pre-open

cover) of X. The terms regularly open collection and regularly open cover
are apparent. A collection A of subsets of X is called a weak cover of X if
Cl
(⋃

A∈AA
)

= X.

Definition 2.1 (Singal and Mathur [18]). A topological space X is called
nearly compact if, for each open cover U of X, there exists a finite subcol-
lection V ⊂ U such that

⋃
{Int(Cl(V )) | V ∈ V } = X.

Definition 2.2 (Alexandroff and Urysohn [1], see also [5] or [15]). A
Hausdorff topological space is called H-closed if the space is closed in every
Hausdorff topological space containing it as a subspace.

It is seen that a Hausdorff topological space X is H-closed if and only
if each open cover U of X has a finite subcollection V ⊂ U such that⋃
{Cl(V ) | V ∈ V } = X.
Dropping the Hausdorffness from the notion of H-closedness, we get a

type of covering notion called quasi H-closed spaces (see [15]).

Definition 2.3 (Thompson [19]). A topological space X is called S-closed
if for each s-cover U of X, there exists a finite subcollection V ⊂ U such
that {Cl(V ) | V ∈ V } covers X.
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Definition 2.4 (Mukharjee et al. [11]). Let U be a collection of open
sets of X. Then the collection

V = {V | U ∈ U , U ⊂ V ⊂ Cl(U), V 6= Cl(U) when Cl(U) /∈P}

is called a semi-open super-collection of U .

We note that V is a cover of X if U is a cover of X. In this case, V is
called a semi-open super-cover of the open cover U .

Definition 2.5 (Mukharjee et al. [11]). A topological space X is called
semi-compact if each open cover of X has a finite semi-open super-cover.

We now introduce the following definitions.

Definition 2.6. Let S be a pre-open collection of X. If, for each A ∈ S ,
there exists an open set U such that A ⊂ U ⊂ Cl(A), then the collection

U = {U | A ∈ S , A ⊂ U ⊂ Cl(A)}

is said to be an open super-collection of S .

Note that there always exists an open super-collection of a pre-open col-
lection of a topological space X. Let us also note that U is a cover of X if
S is a cover of X. In this case, U is said to be an open super-cover of the
pre-open cover S .

Definition 2.7. A topological space X is said to be po-compact if each
pre-open cover of X has a finite open super-cover.

Let U be a finite open super-cover of a pre-open cover S of a po-compact
space X. For each U ∈ U , there exists a pre-open set A ∈ S such that
A ⊂ U ⊂ Cl(A). Thus we have a finite subcollection {A | U ∈ U , A ⊂ U ⊂
Cl(A)} of S corresponding to U .

It is easy to see that compact and hence strongly compact spaces, and s-
compact spaces are po-compact spaces. However, a po-compact space need
not be a compact space, and a semi-compact space need not be a po-compact
space.

Example 1. Let P = {(−∞, n) | n ∈ N}. The topological space (R,P)
is po-compact, but not compact.

We summarize the implication relations of po-compactness with compact-
ness and compact like notions in the following diagram for better understand-
ing its position.
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In the figure, “P → Q” stands to mean “P implies Q” and “P 6→ Q” stands
to mean “P does not imply Q”.

Theorem 2.1. A space X is po-compact if and only if it is nearly compact.

Proof. The necessity follows directly from the fact that open sets in a
topological space X are pre-open.

Conversely, let X be a nearly compact space and let S be a pre-open cover
of X. For each A ∈ S , there exists an open set G such that A ⊂ G ⊂ Cl(A).
Since S is a cover of X, the collection G = {G ∈P | A ⊂ G ⊂ Cl(A), A ∈
S } is an open cover of X. By near compactness of X, the collection G
has a finite subcollection Gn = {Gk ∈ G | k ∈ {1, 2, . . . , n}} such that⋃n
k=1Int(Cl(Gk)) = X. For each k ∈ {1, 2, . . . , n}, there exists an Ak ∈ S

such that Ak ⊂ Gk ⊂ Cl(Ak). It means that Cl(Ak) = Cl(Gk) which implies
that Ak ⊂ Int(Cl(Gk)) = Int(Cl(Ak)) ⊂ Cl(Ak) for each k ∈ {1, 2, . . . , n}.
So {Int(Cl(Gk)) | Gk ∈ Gn, k ∈ {1, 2, . . . , n}} is a finite open super-cover of
S . �

Lemma 2.1. If A is pre-open, then Int(Cl(A)) is regularly open.

Proof. If A is a pre-open set, then there exists an open set G such that
Cl(A) = Cl(G). So Int(Cl(A)) is regularly open. �

Theorem 2.2. A topological space X is nearly compact if and only if each
pre-open cover A of X has a finite regularly open super-cover {Int(Cl(A)) |
A ∈ B}, where B is a finite subcollection of A .

Proof. Suppose that A is a pre-open cover of a nearly compact topological
space X. By near compactness of X, the cover A has a finite open super-
cover G . For each G ∈ G , we get a pre-open set A ∈ A such that A ⊂
G ⊂ Cl(A) and hence A ⊂ G ⊂ Int(Cl(A)) ⊂ Cl(A). Thus we get a finite
subcollection B = {A ∈ A | G ∈ G , A ⊂ G ⊂ Cl(A)} of A . As G is a
cover of X, {Int(Cl(A)) | A ∈ B} is also a cover of X. By Lemma 2.1,
Int(Cl(B)) is regularly open for each B ∈ B. So B is a finite subcollection
of A such that {Int(Cl(B)) | B ∈ B} is a regularly open super-cover of the
pre-open cover A of X.
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Conversely, since Int(Cl(A)) is open and A ⊂ Int(Cl(A)) ⊂ Cl(A) for
each A ∈ B, the collection {Int(Cl(A)) | A ∈ B} is a finite open super-cover
of A . So X is nearly compact. �

Corollary 2.1. If F is a collection of pre-closed sets such that
⋂
F∈FF =

∅ in a nearly compact space X, then there exists a finite subcollection E of
F such that

⋂
E∈ECl(Int(E)) = ∅.

Proof. Since F is a collection of pre-closed sets satisfying
⋂
F∈FF = ∅,

the collection {X − F | F ∈ F} is a pre-open cover of X. By Theorem 2.2,
we get a finite subcollection {X − F1, X − F2, . . . , X − Fn} of F such that⋃n
k=1Int(Cl(X − Fk)) = X. Hence

⋂n
k=1Cl(Int(Fk)) = ∅. �

Theorem 2.3. Each pre-open cover of a nearly compact space has a finite
pre-open weak cover.

Proof. Let X be a nearly compact space and let S be a pre-open cover
of X. By near compactness of X, the cover S has a finite open super-cover
G . For each G ∈ G , there exists an A ∈ S such that A ⊂ G ⊂ Cl(A)
which implies that Cl(A) = Cl(G). So it follows that H = {A | A ⊂ G ⊂
Cl(A), G ∈ G } is a finite pre-open weak cover of X. �

Theorem 2.4. In a topological space X, the following statements are
equivalent.

(a) X is nearly compact.
(b) Each pre-open cover A of X has a finite subcollection B such that
{Int(Cl(B)) | B ∈ B} covers X.

(c) Each family F of pre-closed sets has nonempty intersection if⋂
{(Cl(Int(E)) | E ∈ E } 6= ∅ for each finite subcollection E of F .

Proof. (a)⇒(b) follows from Theorem 2.2.
(b)⇒(c). Let F = {Fα | α ∈ A} be a collection of pre-closed sets of X

such that for each finite subfamily E of F ,
⋂
{(Cl(Int(E)) | E ∈ E } 6= ∅.

If possible, let
⋂
F∈FF = ∅. Then G = {X − Fα | α ∈ A} is a pre-

open cover of X. By (b), we get a finite subcollection {X − Fαk
| k ∈

{1, 2, . . . , n}} of G such that {Int(Cl(X − Fαk
)) | k ∈ {1, 2, . . . , n}} covers

X. It means that X −
⋃n
k=1Int(Cl(X − Fαk

)) = ∅ which in turn implies
that

⋂n
k=1Cl(Int(Fαk

)) = ∅, a contradiction to our assumption.
(c)⇒(a). Let X be a topological space satisfying (c). Suppose for contra-

diction that X is not nearly compact. Let W = {Wα | α ∈ A} be a pre-open
cover of X. By Theorem 2.2, for each finite subcollection V of W , we have⋃
V ∈V Int(Cl(V )) 6= X which implies that

⋂
V ∈V Cl(Int(X − V )) 6= ∅. So

we find that F = {X − Wα | α ∈ A} is a collection of pre-closed sets
such that

⋂
{(Cl(Int(E)) | E ∈ E } 6= ∅ for each finite subcollection E

of F . By (c), we conclude that
⋂
{F | F ∈ F} 6= ∅. But according to



142 K. B. BAGCHI, A. MUKHARJEE, AND M. PAUL

our assumption
⋃
α∈AWα = X which means that

⋂
α∈A(X −Wα) = ∅, i.e.,⋂

{F | F ∈ F} = ∅, a contradiction. So X is nearly compact. �

Lemma 2.2 (Mashhour et al. [10]). Let A and B be subsets of a topological
space X.

(i) If A ∈ PO(X) and B ∈ SO(X), then A ∩B ∈ PO(B).
(ii) If A ∈ PO(B) and B ∈ PO(X), then A ∈ PO(X).

Theorem 2.5. If A is both open and closed in (X,P), then A is nearly
compact with respect to (A,PA) if and only if A is nearly compact with
respect to (X,P).

Proof. Firstly, suppose that A is nearly compact with respect to (X,P).

Let S (A) be a pre-open cover of A with respect to (A,PA). Since A ∈
PO(X), we have S ∈ PO(X) for all S ∈ S (A) by Theorem 2.2. So S (X) =

S (A) ∪ {X −A} is a pre-open cover of X. By near compactness of X, there

exists a finite open super-cover G (X) of S (X). Since G (X) is a cover of X and
Cl(X −A) = X −A, there exists a V ∈ G (X) such that V = X −A and no

V ∈ G (X) with X−A $ V $ Cl(X−A) = X−A. Let G (A) be obtained from

G (X) by removing all V = X −A ∈ G (X). It means that for each G ∈ G (A),
there exists an S ∈ S (A) such that S ⊂ G ⊂ ClX(S). Since S ∈ S (A) are
subsets of A, we get S = A ∩ S ⊂ A ∩ G ⊂ A ∩ ClX(S) = ClA(S). As

A∩G is open in (A,PA), the collection {A∩G | G ∈ G (A)} is a finite open

super-cover of S (A). So (A,PA) is a nearly compact subspace of (X,P).

Conversely, let A be nearly compact with respect to (A,PA) and let S (X)

be a pre-open cover of A with respect to (X,P). We have nothing to prove

if there exists an S ∈ S (X) such that A ⊂ S. So we suppose that S $ A for

each S ∈ S (X). Since A ∈ SO(X), we have S = A ∩ S ∈ PO(A) for each

S ∈ S (X) by Theorem 2.2. So {S | S ∈ S (X)} is a pre-open cover of A
with respect to (A,PA). By near compactness of A, we obtain a finite open

super-cover G (A) with respect to (A,PA) of S (X). For each G ∈ G (A), we

have S ⊂ G ⊂ ClA(S) = A ∩ ClX(S) ⊂ ClX(S) for some S ∈ S (X). Thus

G (A) is a finite open super-cover of S (X) with respect to (X,P). �

Definition 2.8. A topological space X is said to be pre-regular if for each
x ∈ X and each closed set F with x /∈ F , there exist a pre-open set G and
an open set H such that x ∈ G, F ⊂ H, and G ∩H = ∅.

It is easy to show that a topological space X is pre-regular if and only if,
for each x and each open set U with x ∈ U , there exists a pre-open set V
such that x ∈ V ⊂ Cl(V ) ⊂ U .

Theorem 2.6. A pre-regular nearly compact space is a compact space.

Proof. Let X be a pre-regular nearly compact space and let G = {Gα | α ∈
A} be an open cover of X. For each x ∈ X, there exists a Gα(x), α(x) ∈ A
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such that x ∈ Gα(x). By pre-regularity of X, we obtain a pre-open set
Vα(x) such that x ∈ Vα(x) ⊂ Cl(Vα(x)) ⊂ Gα(x). So V = {Vα(x) | x ∈
X} is a pre-open cover of X. By near compactness of X, we get a finite
open super-cover {U(x1), U(x2), . . . , U(xn)} of V . For each k ∈ {1, 2, . . . , n},
there exists a Vα(xk) ∈ V such that Vα(xk) ⊂ U(xk) ⊂ Cl(Vα(xk)) ⊂ Gα(xk).

Since
⋃n
k=1U(xk) = X, the collection {Gα(x1), Gα(x2), . . . , Gα(xn)} is a finite

subcover of G . �

Theorem 2.7. If E is pre-closed and open, and F is closed such that
E ∩ F = ∅ in a pre-regular nearly compact topological space X, then there
exist open sets G, H in X such that E ⊂ G, F ⊂ H, and G ∩H = ∅.

Proof. For each x ∈ E, we obtain a pre-open set Ax and an open set Hx

such that x ∈ Ax, F ⊂ Hx and Ax ∩ Hx = ∅ by pre-regularity of X. This
means that S = {Ax | x ∈ E} ∪ {X − E} is a pre-open cover of X. By
near compactness of X, we get a finite open super-cover G of S . We now
extract a finite subcollection G (E) = {G1, G2, . . . , Gn} from G to cover E,

and G (E) is associated to {Ax | x ∈ E}. For each k ∈ {1, 2, . . . , n}, we
obtain Axk ∈ {Ax | x ∈ E} such that Axk ⊂ Gk ⊂ Cl(Axk). We write
G =

⋃n
k=1Gk and H =

⋂n
k=1Hxk . We see that E ⊂ G,F ⊂ H. Now we

show that G ∩ H = ∅. Suppose for contradiction that G ∩ H 6= ∅ and let
z ∈ G ∩ H. So z ∈ Gk for some k ∈ {1, 2, . . . , n} and z ∈ Hxk for each
k ∈ {1, 2, . . . , n}. Let z ∈ Gl for some l ∈ {1, 2, . . . , n}. So z ∈ Cl(Axl).
This implies that Cl(Axl) ∩ Hxl 6= ∅, which is a contradiction to the fact
that Cl(Axl) ∩Hxl = ∅. �

Recall that a topological space X is called extremally disconnected if
the closure of each open set in X is open. Sometimes Hausdorffness is also
included in the definition of extremal disconnectedness of a topological space.

Theorem 2.8. A quasi H-closed extremally disconnected topological space
is nearly compact.

Proof. Let A = {Aα | α ∈ ∆} be a pre-open cover of a quasi H-closed
extremally disconnected topological space X. For each α ∈ ∆, there exists
an open set Gα such that Aα ⊂ Gα ⊂ Cl(Aα) = Cl(Gα). We see that
G = {Gα | α ∈ ∆} is an open cover of X. By quasi H-closedness of X,
we get a finite subcollection {Gαk

| αk ∈ ∆, k ∈ {1, 2, . . . , n}} such that
{Cl(Gαk

) | αk ∈ ∆, k ∈ {1, 2, . . . , n}} covers X. It now follows by extremal
disconnectedness of X that {Cl(Gαk

) | αk ∈ ∆, k ∈ {1, 2, . . . , n}} is a finite
open super-cover of A . �

Definition 2.9 (Mukharjee et al. [12]). A semi-open set A in X is called
covered if whenever G ⊂ A ⊂ Cl(G) for some open set G, there exists an
open set H such that G ⊂ A ⊂ H ⊂ Cl(G).
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Lemma 2.3 (Mukharjee et al. [12]). A covered semi-open set in X is
pre-open in X.

Theorem 2.9. If each semi-open subset of a nearly compact space X is
covered, then X is S-closed.

Proof. Let S be a semi-open cover of X. By Lemma 2.3, S is a pre-
open cover of X. By Theorem 2.2, S has a finite subcollection T such
that {Int(Cl(A)) | A ∈ T } covers X. For each A ∈ T , we have A ⊂
Int(Cl(A)) ⊂ Cl(A). So T is a finite subcollection of S such that {(Cl(A) |
A ∈ T } covers X, and so X is S-closed. �

A subset A of X is said to be nearly compact with respect to X if each
pre-open cover with respect to X of A has a finite open super-cover. In view
of Theorem 2.2, it can be showed that a subset A of X is nearly compact
with respect to X if each pre-open cover S with respect to X of A has a
finite subcollection T such that {Int(Cl(G)) | G ∈ T } covers A.

Theorem 2.10. If each proper regularly closed set of X is nearly compact
with respect to X, then X is nearly compact.

Proof. Let S = {Aα | α ∈ ∆} be a pre-open cover of X. Since S
is a cover of X, there exits an A ∈ S such that A 6= ∅. By Lemma 2.1,
Int(Cl(A)) is regularly open in X, and so X−Int(Cl(A)) is regularly closed
in X. By the assumption, we get a finite subcollection {Aαk

| αk ∈ ∆, k ∈
{1, 2, . . . , n}} such that

X − Int(Cl(A)) ⊂
⋃n

k=1
Int(Cl(Aαk

))

and thus

X ⊂
⋃n

k=1
(Int(Cl(Aαk

))) ∪ Int(Cl(A)).

Therefore, by Theorem 2.2, X is nearly compact. �

Recall that a nonempty collection F of nonempty subsets of a set X
is called a filter base (see [13, p. 49]) if whenever F1, F2 ∈ F , one has
F3 ⊂ F1 ∩ F2 for some F3 ∈ F . A filter base is called maximal (see [13,
p. 47]) if it is not properly contained in another filter base. A filter base is
always contained in a maximal filter base (see [13, p. 47]).

Definition 2.10. A filter base F on X is said to p-converge to a point
x ∈ X if, for each pre-open set A of X, with x ∈ A, there exists F ∈ F such
that F ⊂ Int(Cl(A)).

Definition 2.11. A filter base F in X is said to p-accumulate to a point
x ∈ X if, for each pre-open setA ofX with x ∈ A, one has F∩(Int(Cl(A))) 6=
∅ for each F ∈ F .
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The following lemmas 2.4, 2.5, and 2.6 are easy to establish and hence
their proofs are omitted.

Lemma 2.4. If a filter base F in X p-converges to a point x ∈ X, then
the filter base p-accumulates to x.

Lemma 2.5. Let F be a maximal filter base in X. Then F p-converges
to x ∈ X if and only if F p-accumulates to x ∈ X.

Lemma 2.6. Let F1 and F2 be two filter bases in X such that F2 is
a subcollection of F1. Then F2 p-accumulates to a point x ∈ X if F1

p-accumulates to x ∈ X.

Theorem 2.11. The following statements are equivalent.

(a) X is nearly compact.
(b) Each maximal filter base p-converges in X.
(c) Each filter base p-accumulates to some x0 ∈ X.
(d) For each family F of pre-closed sets with

⋂
F∈FF = ∅, there exists

a finite subcollection E of F such that
⋂
E∈ECl(Int(E)) = ∅.

Proof. (a)⇒(b). Let F = {Aα | α ∈ ∆} be a maximal filter base in
X. Suppose for contradiction that F does not p-converge to a point of
X. By Lemma 2.5, F does also not p-accumulate to a point of X. This
means that, for each x ∈ X, there exist a pre-open set Gx containing x and
Aα(x), α(x) ∈ ∆ such that (Int(Cl(Gx))) ∩ Aα(x) = ∅. Then G = {Gx |
x ∈ X} is a pre-open cover of X. By Theorem 2.2, we obtain a finite
subcollection {Gx1 , Gx2 , . . . , Gxn} of G such that

⋃n
k=1Int(Cl(Gxk)) = X.

Since F is a filter base, there exists a A0 ∈ F such that A0 ⊂
⋂n
k=1Axk . So

(Int(Cl(Gxk))) ∩A0 = ∅ for each k ∈ {1, 2, . . . , n}. We see that

A0 = X ∩A0 =
(⋃n

k=1
Int(Cl(Gxk))

)
∩A0

=
⋃n

k=1
((Int(Cl(Gxk))) ∩A0) = ∅,

a contradiction to the fact that A0 6= ∅.
(b)⇒(c). Let F be a filter base in X. Then there exists a maximal filter

base E containing F as a subcollection. By (b), the filter base E p-converges
to some x0 ∈ X. By Lemma 2.4, E p-accumulates to x0 and thus, by Lemma
2.6, F p-accumulates to x0.

(c)⇒(d). Let S = {Aα | α ∈ ∆} be a collection of pre-closed sub-
sets of X such that

⋂
α∈∆Aα = ∅. Suppose for contradiction that for

each finite subcollection ∆0 of ∆, we have
⋂
α∈∆0

Cl(Int(Aα)) 6= ∅. Set
F∆0 =

⋂
α∈∆0

Cl(Int(Aα)). Let Λ be the collection of all finite subcollection
of ∆. We write F = {Fλ | λ ∈ Λ} (each Fλ bears the meaning as of F∆0).
We see that F is a filter base in X. By (c), F p-accumulates to some point
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x0 ∈ X. This means that Fλ ∩ (Cl(Int(A))) 6= ∅ for each λ ∈ Λ and each
pre-open set A of X containing x0, in particular,

Cl(Int(Aα)) ∩A 6= ∅ (2.1)

for each α ∈ ∆ and each pre-open set A containing x0. As
⋂
α∈∆Aα = ∅,

we have x0 /∈
⋂
α∈∆Aα and thus x0 /∈ Aα0 for some α0 ∈ ∆. So we get

a pre-open set X − Aα0 such that that x0 ∈ X − Aα0 . According to the
construction, Cl(Int(Aα0)) ∈ F . Now

(Int(Cl(X −Aα0)) ∩ (Cl(Int(Aα0)))

= (X − Cl(Int(Aα0))) ∩ (Cl(Int(Aα0))) = ∅,

a contradiction to (2.1).
(d)⇒(a). Suppose that S = {Aα | α ∈ ∆} is a pre-open cover of X. Then

{X − Aα | α ∈ ∆} is a collection of pre-closed sets such that
⋂
α∈∆(X −

Aα) = ∅. By (d), we obtain a finite subcollection ∆0 of ∆ such that⋂
α∈∆0

Cl(Int(X−Aα)) = ∅, which in turn implies that
⋃
α∈∆0

Int(Cl(Aα)) =
X. So, by Theorem 2.2, X is nearly compact. �

Remark 1. A subset A of X is α-set (see [14]) if A ⊂ Int(Cl(Int(A))).
So a subset A of X is α-set if and only if there exists an open set G such
that A ⊂ G ⊂ Cl(Int(A)). We agree to call a collection S of α-sets of X
an α-collection. A collection S of subsets of X is said to be an α-cover of
X if S is an α-collection and covers X. We also note here in tune with
Definition 2.6 that corresponding to an α-collection, there exists an open
super-collection U of S . As earlier, we see that U is an open cover of X if
S is an α-cover of X and we call U an open super-cover of S . In tune with
Definition 2.7, a topological space X is said to be α-compact if each α-cover
of X has a finite open super-cover. Proceeding as in the proof of Theorem
2.1, we find that α-compact spaces are also equivalent to nearly compact
spaces. It means that nearly compact spaces can be defined in various ways.
Thus new light to covering properties of topological spaces throws through
the research of this paper.

Acknowledgement. The authors would like to thank the referee for care-
fully examining this paper and providing a number of important comments
including suggesting the present title for the paper.

References

[1] P. Alexandroff and P. Urysohn, Zur Theorie der topologischen Rāume, Math. Ann.
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