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Summands in locally almost square and
locally octahedral spaces

Jan-David Hardtke

Abstract. We study the question whether properties like local/weak
almost squareness and local octahedrality pass down from an absolute
sum X ⊕F Y to the summands X and Y .

1. Introduction

First we fix some notation. Throughout this paper we denote by X and
Y real Banach spaces; X∗ denotes the dual of X, BX its closed unit ball,
and SX denotes its unit sphere.

Let us now begin by recalling the following definition (see [8]): X is called
octahedral (OH) if for every finite-dimensional subspace F of X and every
ε > 0 there is some y ∈ SX such that

‖x+ y‖ ≥ (1− ε)(‖x‖+ 1), x ∈ F.
The space `1 is the standard example of an octahedral space. In fact, a Ba-
nach space possesses an equivalent octahedral norm if and only if it contains
an isomorphic copy of `1 (see Theorem 2.5 (p. 106) in [7]).

In the paper [11], the following weaker forms of octahedrality were intro-
duced: X is called weakly octahedral (WOH) if for every finite-dimensional
subspace F of X, every x∗ ∈ BX∗ , and each ε > 0 there is some y ∈ SX such
that

‖x+ y‖ ≥ (1− ε)(|x∗(x)|+ 1), x ∈ F.
The space X is called locally octahedral (LOH) if for every x ∈ X and every
ε > 0 there exists y ∈ SX such that

‖sx+ y‖ ≥ (1− ε)(|s|‖x‖+ 1), s ∈ R.
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The motivation for these definitions was to give dual characterisations of
the so-called diameter-two-properties, see [11].

There are many equivalent formulations of the three octahedrality pro-
perties (see for instance [9] and [11]). We will recall only those which we
need here (they can be found in [11]): a Banach space X is octahedral if and
only if for every n ∈ N, all x1, . . . , xn ∈ SX , and every ε > 0 there exists an
element y ∈ SX such that ‖xi + y‖ ≥ 2 − ε for all i = 1, . . . , n. The space
X is locally octahedral if and only if for every x ∈ SX and all ε > 0 there
exists y ∈ SX such ‖x± y‖ ≥ 2− ε. We will use these characterisations later
without further mention.

Now we come to the classes of almost square spaces and their relatives. In
the paper [1], the following definitions were introduced. A Banach space X
is said to be almost square (ASQ) if the following holds: for all n ∈ N and all
x1, . . . , xn ∈ SX there exists a sequence (yk)k∈N in BX such that ‖yk‖ → 1
and ‖xi + yk‖ → 1 for all i = 1, . . . , n. The space X is called weakly almost
square (WASQ) if for every x ∈ SX there is a weak null sequence (yk)k∈N
in BX such that ‖yk‖ → 1 and ‖x± yk‖ → 1. The space X is called locally
almost square (LASQ) if it fulfils the definition of an LASQ space without
the additional condition that the sequence (yk)k∈N converges weakly to zero.

Obviously, WASQ implies LASQ. It was shown in [1] that ASQ implies
WASQ and that the converse of this statement does not hold, while it is not
known whether LASQ is strictly weaker than WASQ.

The model example of an ASQ space is c0 and it was further proved in
[1] that every ASQ space contains an isomorphic copy of c0 and, conversely,
every separable Banach space containing an isomorphic copy of c0 can be
equivalently renormed to become ASQ. In [4] it was shown that the same
holds true also for nonseparable spaces. Also, it was proved in [1] that if X
is ASQ, then X∗ is OH.

Next we will recall the necessary basics on absolute sums. A norm F on
R2 is called absolute if F (a, b) = F (|a|, |b|) for all (a, b) ∈ R2 and it is called
normalised if F (1, 0) = 1 = F (0, 1). If F is an absolute, normalised norm on
R2, and X and Y are two Banach spaces, then the absolute sum of X and
Y with respect to F , denoted by X ⊕F Y , is defined as the direct product
X × Y equipped with the norm ‖(x, y)‖F = F (‖x‖, ‖y‖). Then X ⊕F Y is
again a Banach space.

For every 1 ≤ p ≤ ∞, the p-norm ‖·‖p on R2 is an absolute, normalised
norm and the corresponding sum is just the usual p-direct sum of two Banach
spaces. We also note the following important facts (see for instance Lemmas
1 and 2 on p. 36 in [5]): if F is an absolute, normalised norm on R2, then
we have for all a, b, c, d ∈ R
1) |a| ≤ |c| and |b| ≤ |d| ⇒ F (a, b) ≤ F (c, d),
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2) |a| < |c| and |b| < |d| ⇒ F (a, b) < F (c, d),
3) ‖(a, b)‖∞ ≤ F (a, b) ≤ ‖(a, b)‖1.

It follows in particular that |a|, |b| ≤ F (a, b) for all a, b ∈ R.

We will also need the following (see [12]): for every t ∈ (−1, 1) there exists
a unique f(t) ∈ (0, 1] such that F (t, f(t)) = 1. We will call the function f
the upper boundary curve of B(R2,F ). It is even, concave (hence continuous),
decreasing on [0, 1), and increasing on (−1, 0]. Thus it can be extended to a
concave, continuous, even function on [−1, 1], which will also be denoted by
f .

Octahedrality properties in p-direct sums were already studied in [11].
Among others, the following results were proved.

(i) For 1 < p ≤ ∞, X ⊕p Y is LOH/WOH if and only if X and Y are
LOH/WOH.

(ii) X ⊕∞ Y is OH if and only if X and Y are OH.
(iii) For 1 < p < ∞, X ⊕p Y is never OH (provided that X and Y are

nontrivial).

In [1] it is proved that the properties LOH and LASQ are stable under
arbitrary (even infinite) absolute sums, and that WOH and WASQ are stable
under all absolute sums which fulfil a simple density assumption, including in
particular all finite absolute sums. Among others, also the following results
were obtained in [1] for any two nontrivial Banach spaces X and Y .

(i) For 1 ≤ p < ∞, X ⊕p Y is LASQ/WASQ if and only if X and Y are
LASQ/WASQ.

(ii) X⊕∞Y is LASQ/WASQ/ASQ if and only if X or Y is LASQ/WASQ/
ASQ.

(iii) For 1 ≤ p < ∞, X ⊕p Y is never ASQ (provided that X and Y are
nontrivial).

The purpose of this note is to extend these results by showing that (i) and
(iii) also hold if we replace ‖·‖p by any absolute, normalised norm F 6= ‖·‖∞.
We will also prove some results on summands in LOH spaces, which imply
in particular that X and Y are LOH whenever X ⊕F Y is LOH and F is
strictly convex.

Finally, we will also discuss some results on ultrapowers of LOH, LASQ,
etc. spaces and the closedness of these classes with respect to the Banach–
Mazur distance.

2. Almost square properties in absolute sums

We start with the following lemma, which is surely well known, but since
the author was not able to find it explicitly in the literature, a proof is
included here for reader’s convenience.

Lemma 2.1. Let F be an absolute, normalised norm on R2.
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(a) F (1, 1) = 1 ⇔ F = ‖·‖∞.
(b) F (1, 1) = 2 ⇔ F = ‖·‖1.

Proof. (a) Assume that F (1, 1) = 1. Let (a, b) ∈ R2 be such that F (a, b) = 1.
Then |a|, |b| ≤ 1. If both |a| < 1 and |b| < 1, then we would have F (a, b) <
F (1, 1) = 1 (by the general monotonicity properties of absolute norms listed
in Section 1).

It follows that |a| = 1 or |b| = 1, hence ‖(a, b)‖∞ = 1.
Thus we have S(R2,F ) ⊆ S(R2,‖·‖∞), which implies F = ‖·‖∞.

(b) Suppose that F (1, 1) = 2, i. e., the midpoint of (0, 1) and (1, 0) lies on
the unit sphere of (R2, F ). It follows that the whole line segment from (0, 1)
to (1, 0) lies on S(R2,F ), thus F (t, 1− t) = 1 for every t ∈ [0, 1].

Hence we have for every (a, b) 6= (0, 0)

1 = F (|a|/(|a|+ |b|), 1− |a|/(|a|+ |b|)) = F (|a|/(|a|+ |b|), |b|/(|a|+ |b|)),

i. e., F (a, b) = ‖(a, b)‖1. �

Before we can come to the first main result on sums of LASQ (etc.) spaces,
we have to prove another auxiliary lemma.

Lemma 2.2. Let F be an absolute, normalised norm on R2 with F 6= ‖·‖∞
and let ε > 0. Then there is a δ > 0 such that the following holds:

a, b ≥ 0, F (a, b) = 1 and F (a, 1) ≤ 1 + δ ⇒ b ≥ 1− ε.

Proof. Denote by f the upper boundary curve of B(R2,F ). If the claim was
false, then we could find sequences (an)n∈N, (bn)n∈N in [0,∞) such that
F (an, bn) = 1, F (an, 1) ≤ 1 + 1/n and bn < 1− ε for each n ∈ N.

Since an, bn ≤ 1 for every n ∈ N, we can find subsequences (ank
), (bnk

)
such that ank

→ a and bnk
→ b for some a, b ∈ [0, 1]. It follows that

F (a, b) = 1 = F (a, 1) and b ≤ 1− ε.
Since F 6= ‖·‖∞, it follows from Lemma 2.1 that F (1, 1) > 1 and hence

a < 1. But then b = f(a) = 1, be definition of f . This is a contradiction
since b < 1. �

Now we can prove the first main result of this paper.

Proposition 2.3. If F is any absolute, normalised norm on R2 with
F 6= ‖·‖∞, and X and Y are nontrivial Banach spaces, then the following
holds:

(i) If X ⊕F Y is LASQ, then X and Y are LASQ.
(ii) If X ⊕F Y is WASQ, then X and Y are WASQ.

(iii) X ⊕F Y is not ASQ.

Note that the converses of (i) and (ii) also hold by the general results in
[1].
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Proof. First we will prove statement (ii). So let Z := X ⊕F Y be WASQ
and let y ∈ SY . Then there is a weakly null sequence (zn = (un, vn))n∈N in
BZ such that ‖zn ± (0, y)‖F → 1 and ‖zn‖F → 1. Actually, we may assume
that ‖zn‖F = F (‖un‖, ‖vn‖) = 1 for every n ∈ N.

By Lemma 2.2 there exists a sequence (δn)n∈N in (0,∞) such that δn → 0
and for every n ∈ N the following holds:

a, b ≥ 0, F (a, b) = 1 and F (a, 1) ≤ 1 + δn ⇒ b ≥ 1− 2−n.

By passing to a subsequence if necessary, we may assume that F (‖un‖, ‖y±
vn‖) ≤ 1 + δn for every n ∈ N. It follows that

F (‖un‖, 1) ≤ 1

2
(F (‖un‖, ‖y + vn‖) + F (‖un‖, ‖y − vn‖) ≤ 1 + δn

and hence ‖vn‖ ≥ 1− 2−n for every n.
Since we also have ‖vn‖ ≤ F (‖un‖, ‖vn‖) = 1 for each n, we obtain ‖vn‖ →

1. Also, (vn)n∈N is a weakly null sequence in Y , since (zn)n∈N is weakly null
in Z.

We further have ‖y ± vn‖ ≤ F (‖un‖, ‖y ± vn‖) ≤ 1 + δn and thus

1 + δn ≥ ‖y + vn‖ ≥ 2− ‖y − vn‖ ≥ 1− δn, n ∈ N,

which implies ‖y ± vn‖ → 1. Thus Y is WASQ.

Since X ⊕F Y ∼= Y ⊕F̃ X, where F̃ (a, b) := F (b, a), the same argument
also shows that X is LASQ. This completes the proof of (ii) and statement
(i) is proved analogously.

Now we will prove (iii). Assume to the contrary that X ⊕F Y is ASQ.
Since F 6= ‖·‖∞, we have F (1, 1) > 1 (Lemma 2.1). Choose ε > 0 such that
(1− ε)F (1, 1) > 1.

By Lemma 2.2 (applied to F and F̃ ) there exists a δ > 0 such that for all
a, b ≥ 0 with F (a, b) = 1 the following holds:

F (a, 1) ≤ 1 + δ ⇒ b ≥ 1− ε,
F (1, b) ≤ 1 + δ ⇒ a ≥ 1− ε.

Now let x ∈ SX and y ∈ SY . Since X ⊕F Y is ASQ, there exist u ∈ X,
v ∈ Y such that F (‖u‖, ‖v‖) = 1 and F (‖x± u‖, ‖v‖) ≤ 1 + δ, F (‖u‖, ‖y ±
v‖) ≤ 1 + δ.

A similar calculation as in the proof of (ii) shows that F (‖u‖, 1) ≤ 1 + δ
and F (1, ‖v‖) ≤ 1 + δ. It follows that ‖u‖, ‖v‖ ≥ 1− ε.

But then 1 = F (‖u‖, ‖v‖) ≥ (1−ε)F (1, 1) > 1 and with this contradiction
the proof is finished. �

3. Local octahedrality properties in absolute sums

Next we turn our attention to LOH sums. First recall that a Banach space
X is strictly convex (SC) if x, y ∈ SX and ‖x + y‖ = 2 imply x = y. The
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p-norms are strictly convex for 1 < p < ∞. We will call a point x ∈ SX an
SC-point of X if ‖x+y‖ < 2 for every y ∈ SX with y 6= x. Thus X is strictly
convex if and only if every point of SX is an SC-point.

Given an absolute, normalised norm F on R2, set

rF := inf{a ∈ [0, 1] : ∃ b ≥ 0F (a, b) = 1 and F (a+ 1, b) = 2}.
The following lemma is intuitively clear, but we include a proof for the

sake of completeness.

Lemma 3.1. Let F be an absolute, normalised norm on R2 with upper
boundary curve f . Then

(i) rF = 1 ⇔ (1, 0) is an SC-point of (R2, F ) or f(1) > 0;
(ii) rF = 0 ⇔ F = ‖·‖1.

Proof. (i) If rF < 1, then there must be a ∈ [0, 1) and b > 0 such that
F (a, b) = 1 and F (a+ 1, b) = 2. Hence (1, 0) is not an SC-point of (R2, F ).

Moreover, the whole line segment from (1, 0) to (a, b) belongs to the unit
sphere of (R2, F ), which implies that f(a+ t(1− a)) = (1− t)b for t ∈ [0, 1).
Hence f(s) = 1−s

1−ab for s ∈ [a, 1). Thus f(1) = 0. This shows “⇐”.

Now assume that rF = 1 and (1, 0) is not an SC-point of (R2, F ). Then
we can find (a, b) ∈ R2 such that F (a, b) = 1 and F (1 + a, b) = 2 but
(a, b) 6= (1, 0). Without loss of generality we may assume that a, b > 0.
Since rF = 1, it follows that a = 1, hence F (1, b) = 1.

If f(1) = 0, there would be s ∈ [0, 1) such that f(s) < b. But then we
obtain a contradiction since 1 = F (s, f(s)) < F (1, b) = 1. Thus we must
have f(1) > 0.

(ii) Suppose that rF = 0. This easily implies F (1, 1) = 2 and thus we
have F = ‖·‖1 by Lemma 2.1. The converse is clear. �

We need two more auxiliary lemmas.

Lemma 3.2. Let F be an absolute, normalised norm on R2. If a, b ≥ 0
are such that F (a, b) = 1 and 0 ≤ c ≤ 1 + a is such that F (c, b) = 2, then
c = 1 + a and a ≥ rF .

Proof. First note that under the above assumptions we have 2 = F (c, b) ≤
F (1 +a, b) ≤ F (1, 0) +F (a, b) = 2. Hence, by definition of rF , we must have
a ≥ rF .

Now we denote again by f the upper boundary curve of F and distinguish
two cases.

Case 1: rF = 1. Then a = 1 and 1 < c ≤ 2 (if c ≤ 1, we would obtain
2 = F (c, b) ≤ F (1, b) = 1). Thus a′ := c− 1 ∈ (0, 1] and F (1 + a′, b) = 2 as
well as 1 = F (1, b) ≥ F (a′, b) ≥ F (c, b)− F (1, 0) = 1.

Since rF = 1, it follows that a′ = 1, i. e. c = 2.
Case 2: rF < 1. Then we have rF ≤ a < c ≤ 1 + a. Put d := c− a ∈ (0, 1]

and let w > 0 be such that F (rF , w) = 1 and F (1 + rF , w) = 2.
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Then the line segment from (1, 0) to (rF , w) lies completely in S(R2,F ) and
we obtain

f(s) = h(s− 1) ∀s ∈ [rF , 1], where h :=
w

rF − 1
.

We also put g(s) := (d+1)f(s/(d+1)) for s ∈ [0, d+1]. Then F (s, g(s)) =
d+ 1 for every such s.

It is easy to see that c/(d + 1) ∈ [a, 1] ⊆ [rF , 1] and thus we have g(c) =
(d+ 1)f(c/(d+ 1)) = h(c− (d+ 1)) = h(a− 1).

If a < 1, we have f(a) = b and since a ≥ rF it follows that f(a) = h(a−1),
thus g(c) = b.

For a = 1 we must have b = 0 = g(c) (otherwise there is s ∈ [0, 1) such
that f(s) < b and hence 1 = F (s, f(s)) < F (1, b) = F (a, b) = 1).

Thus we always have g(c) = b, which imples that 2 = F (c, b) = F (c, g(c)) =
d+ 1. Hence d = 1 and c = 1 + a. �

Lemma 3.3. Let F be an absolute, normalised norm on R2 and let ε > 0.
Then there exists δ > 0 such that the following holds: whenever a, b ≥ 0 with
F (a, b) = 1 and 0 ≤ c ≤ 1 + a with F (c, b) ≥ 2− δ, then c ≥ 1 + rF − ε.

Proof. This follows from Lemma 3.2 and a standard compactness argument.
�

Now we can prove the main result on local octahedrality in absolute sums.

Proposition 3.4. Let F be an absolute, normalised norm on R2 and let
X and Y be nontrivial Banach spaces such that X ⊕F Y is LOH. Then for
every x ∈ SX and every ε > 0 there is a z ∈ SX such that ‖x±z‖ ≥ 2rF −ε.

Proof. Let x ∈ SX and ε > 0. Choose δ > 0 according to Lemma 3.3 for
the parameter ε/2. Since X ⊕F Y is LOH, we can find (u, v) ∈ SX⊕FY such
that F (‖x± u‖, ‖v‖) ≥ 2− δ.

Because of ‖x± u‖ ≤ 1 + ‖u‖ and F (‖u‖, ‖v‖) = 1 this implies ‖x± u‖ ≥
1 + rF − ε/2. It follows that ‖u‖ ≥ ‖x + u‖ − 1 ≥ rF − ε/2. Now put
z := u/‖u‖. Then

‖x± z‖ ≥ ‖x± u‖ − ‖u− u/‖u‖‖ ≥ 1 + rF −
ε

2
− (1− ‖u‖) ≥ 2rF − ε.

�

It follows in particular from Proposition 3.4 that X is LOH if X ⊕F Y
is LOH and rF = 1 (which, by Lemma 3.1, is equivalent to the fact that
f(1) > 0 or (1, 0) is an SC-point of (R2, F )).

More generally, for any Banach space X we may define

s(X) := sup{s ∈ [0, 2] : ∀x ∈ SX ∀ε > 0 ∃y ∈ SX ‖x± y‖ ≥ s− ε}.
Then X is LOH if and only if s(X) = 2 and Proposition 3.4 reads: if

X ⊕F Y is LOH, then s(X) ≥ 2rF .
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Note that s(R) = 0, while it easily follows from Riesz’s Lemma that
s(X) ≥ 1 whenever dim(X) ≥ 2. The following statements are also easy to
verify: s(`∞) = s(c0) = 1 = s(`∞(n)) for n ≥ 2, where `∞ is the space of
bounded sequences, c0 is the space of null sequences (both equipped with the
supremum norm), and `∞(n) is the space Rn equipped with the maximum
norm. It is also easy to prove that s(H) =

√
2 for any Hilbert space H with

dim(H) ≥ 2.
Putting everything together, we obtain the following corollary (for (b)

note that rF > 0 if F 6= ‖·‖1 (Lemma 3.1)).

Corollary 3.5. Let F be an absolute, normalised norm on R2, and let X
and Y be nontrivial Banach spaces. Then the following holds.

(a) If rF = 1 and X ⊕F Y is LOH, then so is X. In particular, this holds if
F is strictly convex or F = ‖·‖∞.

(b) If F 6= ‖·‖1, then R⊕F Y is not LOH.
(c) If rF > 1/2, then `∞ ⊕F Y , c0 ⊕F Y and `∞(n)⊕F Y for n ∈ N are not

LOH.
(d) If rF > 1/

√
2 and H is a Hilbert space, then H ⊕F Y is not LOH.

Of course, it is also possible to prove results analogous to Proposition 3.4
and Corollary 3.5 for the second summand by modifying the definition of rF
accordingly (i. e., using instead rF̃ , where F̃ (a, b) := F (b, a)).

The author does not know whether there are any analogous results for
WOH spaces, but let us remark that the above proof-techniques could also be
used to show that X⊕F Y is not octahedral if X and Y are nontrivial Banach
spaces, F 6= ‖·‖∞ and rF = 1 = rF̃ . However, this result already follows from
the more general results on octahedrality in absolute sums that were proved
in the recent paper [10]. The authors of this paper investigated the stability
of average roughness (which is a generalisation of octahedrality) with respect
to absolute sums. They introduced the notion of positive octahedrality for an
absolute, normalised norm F on R2, meaning that there exist c, d ≥ 0 with
F (c, d) = 1 and F (c+ 1, d) = F (c, d+ 1) = 2. They proved that X ⊕F Y is
octahedral whenever X and Y are octahedral and F is positively octahedral,
and, conversely, if X ⊕F Y is octahedral for some nontrivial Banach spaces
X and Y , then F has to be positively octahedral.

Let us note one more corollary concerning the so called local-diameter-
two-property. For x∗ ∈ SX∗ and ε > 0, the slice of BX induced by x∗ and ε
is the set S(x∗, ε) := {z ∈ BX , x

∗(z) > 1− ε}. Following the terminology of
[2], a Banach space X is said to have the local diameter-two-property (LD2P)
if every slice of BX has diameter 2. Then the following result holds (recall
that a norm is smooth if it is Gâteaux-differentiable at each nonzero point).
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Corollary 3.6. If F is a smooth, absolute, normalised norm on R2, and
X and Y are nontrivial Banach spaces such that X ⊕F Y has the LD2P,
then X has the LD2P.

Proof. It is well known that a finite-dimensional Banach space is smooth if
and only if its dual is strictly convex. If we put

F ∗(c, d) := sup
{
|ac|+ |bd| : (a, b) ∈ B(R2,F )

}
,

then F ∗ is an absolute, normalised norm on R2 and (X⊕F Y )∗ ∼= X∗⊕F ∗ Y
∗

(this is a standard fact from the theory of absolute sums, which is easy to
prove). The claim now follows from Corollary 3.5 and the duality between
LOH and LD2P ([11], see also Section 5). �

4. Ultrapowers of OH/LOH and ASQ/LASQ spaces

Next we will consider ultrapowers of OH/LOH and ASQ/LASQ spaces.
First we recall the necessary definitions. Given a free ultrafilter U on N and
a bounded sequence (an)n∈N of real numbers, there exists (by a compactness
argument) a unique number a ∈ R such that for every ε > 0 we have
{n ∈ N : |an − a| < ε} ∈ U . It is called the limit of (an)n∈N along U and will
be denoted by limn,U an.

For a Banach space X, denote by `∞(X) the space of all bounded se-
quences in X and set NU := {(xn) ∈ `∞(X) : limn,U‖xn‖ = 0}. The ultra-

power XU of X with respect to U is the quotient space `∞(X)/NU equipped
with the (well-defined) norm ‖[(xn)]‖U := limn,U‖xn‖. Then XU is again a
Banach space (for more information on ultraproducts see for example [13]).

We have the following observations concerning octahedrality in ultrapow-
ers.

Proposition 4.1. Let X be a Banach space and U a free ultrafilter on N.
Then the following assertions are equivalent.

(i) X is octahedral.
(ii) For all z1, . . . , zn ∈ SXU there exists an element z ∈ SXU such that
‖zi + z‖U = 2 for every i ∈ {1, . . . , n}.

(iii) XU is octahedral.

Likewise, the following statements are equivalent.

(i) X is locally octahedral.
(ii) For every z ∈ SXU there is some z̃ ∈ SXU such that ‖z ± z̃‖U = 2.

(iii) XU is locally octahedral.

Proof. We will only prove the statement for octahedral spaces. The proof
for local octahedrality is completely analogous.

So let us first assume that X is OH and let z1, . . . , zn ∈ SXU . Let
(xi,k)k∈N be a representative of zi. We may assume that xi,k 6= 0 for all
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k ∈ N and all i = 1, . . . , n. (Since limk,U‖xi,k‖ = 1, we have, for example,
Ai := {k ∈ N : ‖xi,k‖ > 1/2} ∈ U . So if we replace (xi,k)k∈N by the se-
quence (x̃i,k)k∈N which agrees with (xi,k)k∈N on Ai and takes some fixed
value x ∈ SX on N \Ai, then we obtain a representative of zi whose entries
are all nonzero.)

Since X is octahedral, we can find, for each k ∈ N, an element xk ∈ SX
such that ∥∥∥∥ xi,k

‖xi,k‖
+ xk

∥∥∥∥ ≥ 2− 2−k, i = 1, . . . , n.

Let z := [(xk)k∈N] ∈ SXU . For each k ∈ N and every i ∈ {1, . . . , n} we
have

‖xi,k + xk‖ ≥
∥∥∥∥ xi,k
‖xi,k‖

+ xk

∥∥∥∥− ∥∥∥∥ xi,k
‖xi,k‖

− xi,k
∥∥∥∥ ≥ 2− 2−k − |1− ‖xi,k‖|.

Since limk,U‖xi,k‖ = ‖zi‖U = 1, it follows that ‖zi + z‖U = limk,U‖xi,k +
xk‖ = 2 for all i ∈ {1, . . . , n}. This proves (i) ⇒ (ii).

(ii) ⇒ (iii) is clear.
(iii) ⇒ (i). Let x1, . . . , xn ∈ SX and ε > 0. We consider X as a subspace

of XU (via the canonical embedding). Since XU is octahedral, there exists
y = [(yk)k∈N] ∈ SXU such that

lim
k,U
‖xi + yk‖ = ‖xi + y‖U ≥ 2− ε, i = 1, . . . , n.

It follows that Bi := {k ∈ N : ‖xi + yk‖ ≥ 2− 2ε} ∈ U for all i = 1, . . . , n.
Since limk,U‖yk‖ = ‖y‖U = 1 we also have A := {k ∈ N : |‖yk‖−1| ≤ ε} ∈ U .
Hence M := A ∩B1 ∩ · · · ∩Bn ∈ U and in particular, M 6= ∅.

Now let k0 ∈M . Then we have, for each i ∈ {1, . . . , n},∥∥∥∥xi +
yk0
‖yk0‖

∥∥∥∥ ≥ ‖xi + yk0‖ −
∥∥∥∥yk0 − yk0

‖yk0‖

∥∥∥∥ ≥ 2− 2ε− |‖yk0‖ − 1| ≥ 2− 3ε,

thus X is octahedral. �

For weakly octahedral spaces, the situation seems to be more complicated.
Let us first introduce one more notation: if s = (x∗n)n∈N is a sequence in
SX∗ , then we may define a norm-one functional ϕs on XU by ϕs([(xn)]) :=
limn,U x

∗
n(xn).

Using the characterisation for WOH spaces from Proposition 2.2 in [11],
one can easily prove the following: if X is WOH, then for all z1, . . . , zn ∈ SXU
and every sequence s = (x∗n)n∈N in SX∗ there exists z ∈ SXU such that

‖zi + tz‖U ≥ |ϕs(zi)|+ t ∀i ∈ {1, . . . , n}, t > 0.

However, it is not clear whether the converse of this statement also holds,
nor whether is it equivalent to the weak octahedrality of XU .

Similarly to Proposition 4.1 one can also prove the following result for
ASQ/LASQ spaces (we skip the details).
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Proposition 4.2. Let X be a Banach space and U a free ultrafilter on N.
Then the following assertions are equivalent.

(i) X is ASQ.
(ii) For all z1, . . . , zn ∈ SXU there exists an element z ∈ SXU such that
‖zi + z‖U = 1 for every i ∈ {1, . . . , n}.

(iii) XU is ASQ.

Likewise, the following statements are equivalent.

(i) X is LASQ.
(ii) For every z ∈ SXU there is some z̃ ∈ SXU such that ‖z ± z̃‖U = 1.
(iii) XU is LASQ.

For WASQ spaces, the situation is again a bit more involved. First we note
the following equivalent characterisation of WASQ spaces with separable
dual.

Lemma 4.3. Let X be a Banach space. If X is WASQ, then the following
holds: for every x ∈ SX , every ε > 0, and all x∗1, . . . , x

∗
n ∈ SX∗ there exists

a y ∈ SX such that ‖x± y‖ ≤ 1 + ε and x∗i (y) ≤ ε for every i = 1, . . . , n.
If X∗ is separable, then the converse of this statement also holds.

Proof. Assume first that X is WASQ and let x ∈ SX , ε > 0, and x∗1, . . . , x
∗
n ∈

SX∗ . Since X is WASQ, there exists a weakly null sequence (yk)k∈N in BX

such that ‖yk‖ → 1 and ‖x±yk‖ → 1. Replacing yk by yk/‖yk‖ if necessary,
we can assume that ‖yk‖ = 1 for all k.

Since (yk)k∈N is weakly convergent to zero and ‖x± yk‖ → 1, we can take
k large enough so that x∗i (yk) ≤ ε for all i = 1, . . . , n and ‖x± yk‖ ≤ 1 + ε.

Now assume that X fulfils the condition of the Lemma and that X∗ is
separable. We choose a sequence (x∗i )i∈N which is dense in SX∗ .

If x ∈ SX , then, using the condition of the Lemma, we can find a sequence
(yk)k∈N in SX such that the following holds: ‖x±yk‖ ≤ 1+1/k for all k ∈ N
and x∗i (yk) ≤ 1/k, −x∗i (yk) ≤ 1/k for all i = 1, . . . , k and all k ∈ N.

Then we have limk→∞ x
∗
i (yk) = 0 for every i ∈ N. Since (x∗i )i∈N is dense

in SX∗ , this easily implies that (yk)k∈N is a weakly null sequence.
We also have

1 + 1/k ≥ ‖x± yk‖ ≥ 2− ‖x∓ yk‖ ≥ 1− 1/k

for every k ∈ N, hence ‖x± yk‖ → 1. Thus X is WASQ. �

Using this lemma, it is easy to show the next result (the details are omit-
ted).

Proposition 4.4. Let X be a Banach space and U a free ultrafilter on N.
If X is WASQ, then for every z ∈ SXU and all double-sequences (x∗ik)i,k∈N
in SX∗ there is some z̃ ∈ SXU satisfying ‖z ± z̃‖U = 1 and ϕsi(z̃) = 0 for
every i ∈ N, where si := (x∗ik)k∈N.
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If X∗ is separable, then the converse also holds.

Again, it is not clear whether the property in Proposition 4.4 is equivalent
to the weak almost squareness of XU .

5. The classes of OH/WOH/LOH/ASQ/LASQ spaces are
closed with respect to the Banach–Mazur distance

Finally, we would like to show that the classes of OH/WOH/LOH/ASQ
and LASQ spaces are closed with respect to the Banach–Mazur distance.
Recall that this distance between two isomorphic Banach spaces X and Y
is defined by

d(X,Y ) := inf
{
‖T‖‖T−1‖ |T : X → Y is an isomorphism

}
.

Proposition 5.1. Let X be a Banach space such that for every δ > 0
there is some OH/WOH/LOH/ASQ/LASQ space Y isomorphic to X with
d(X,Y ) < 1 + δ. Then X is also OH/WOH/LOH/ASQ/LASQ.

Proof. The proofs are all similar, so we will only show the most complicated
case of WOH spaces. Let x1, . . . , xn ∈ SX , x∗ ∈ BX∗ and 0 < ε < 1/2.

Choose 0 < δ < ε2 such that
√
δ/(1− 2

√
δ) ≤ ε.

By assumption there is a WOH space Y isomorphic to X such that
d(X,Y ) < 1 + δ. Hence we can find an isomorphism T : X → Y such
that ‖T‖ = 1 and ‖T−1‖ < 1 + δ.

Put yi := Txi ∈ BY \{0} for i = 1, . . . , n and y∗ := (T ∗)−1x∗ = x∗◦T−1 ∈
(1 + δ)BY ∗ .

Since Y is WOH, there exists, by Proposition 2.2 in [11], an element
y ∈ SY such that

‖yi + ty‖ ≥ (1− δ)(|y∗(yi)|/(1 + δ) + t) ∀i ∈ {1, . . . , n}, t > 0. (5.1)

Let z := T−1y/‖T−1y‖ ∈ SX . Then we have for each i ∈ {1, . . . , n} and
every t > 0

‖xi + tz‖ ≥ ‖xi + tT−1y‖ − t|‖T−1y‖ − 1| ≥ ‖yi + ty‖ − tδ.

Combining this with (5.1) and observing that y∗(yi) = x∗(xi) we obtain

‖xi + tz‖ ≥ ‖(1 + δ)yi + ty‖ − δ − tδ ≥ (1− δ)(|x∗(xi)|+ t)− (1 + t)δ

for every i ∈ {1, . . . , n} and every t > 0.

Now if t ≥ ε, then by the choice of δ we obtain (
√
δ − 2δ)t ≥ δ, which

implies (1− 2δ)t− δ ≥ (1−
√
δ)t.

Thus for every t ≥ ε and every i ∈ {1, . . . , n} we have

‖xi + tz‖ ≥ (1− δ)|x∗(xi)|+ (1−
√
δ)t ≥ (1− ε)(|x∗(xi)|+ t).

By Proposition 2.2 in [11] this implies that X is WOH. �
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Concerning WASQ spaces, using Lemma 4.3 one can show the following
result (again an easy proof is omitted).

Proposition 5.2. Let X be a Banach space such that for every δ > 0
there is some WASQ space Y isomorphic to X with d(X,Y ) < 1 + δ. If X∗

is separable, then X is also WASQ.

Finally, we will also consider diameter-two-properties. We have already
recalled the definition of the local-diameter-two-property (LD2P) in Section
3. Furthermore, the following terminology was introduced in [2]: a Banach
space X has the diameter-two-property (D2P) if every nonempty, relatively
weakly open subset of BX has diameter 2, and X has the strong diameter-
two-property (SD2P) if every convex combination of slices ofBX has diameter
2.

The following results were proved in [11]:

(a) X has the LD2P ⇐⇒ X∗ is LOH,
(b) X has the D2P ⇐⇒ X∗ is WOH,
(c) X has the SD2P ⇐⇒ X∗ is OH.

The result (c) was also proved independently in [3], but it was essentially
pointed out already in [6] and [8].

Proposition 5.1 and the duality between diameter-two- and octahedrality
properties, together with the fact that d(X∗, Y ∗) ≤ d(X,Y ) holds for all
Banach spaces X and Y , immediately yield the following corollary.

Corollary 5.3. Let X be a Banach space such that for every δ > 0 there
is a Banach space Y isomorphic to X which has the SD2P/D2P/LD2P and
satisfies d(X,Y ) < 1 + δ. Then X also has the SD2P/D2P/LD2P.
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