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Matrix transformations related to I-convergent
sequences

Enno Kolk

Abstract. Characterized are matrix transformations related to certain
subsets of the space of ideal convergent sequences. Obtained here results
are connected with the previous investigations of the author on some
transformations defined by infinite matrices of bounded linear operators.

1. Introduction and preliminaries

Let N = {1, 2, . . . } and let X, Y be normed spaces over the field K of real
numbers R or complex numbers C. As usual, a linear subset of the vector
space ω(X) of all X-valued sequences is called a sequence space. A subset Φ
of X is called fundamental if the linear span of Φ is dense in X. By B(X,Y )
we denote the space of all bounded linear operators from X to Y . We write
supn, limn and

∑
n instead of supn∈N, limn→∞ and

∑∞
n=1, respectively.

Let λ(X) be a subset of ω(X), let µ(Y ) be a subset of ω(Y ), and let
A = (Ank) be an infinite matrix of operators Ank ∈ B(X,Y ) (n, k ∈ N).
We say that A maps λ(X) into µ(Y ), and write A : λ(X)→µ(Y ), if for
all x = (xk) ∈ λ(X) the series Anx =

∑
k Ankxk (n ∈ N) converge and

the sequence Ax = (Anx) belongs to µ(Y ). For a sequence (Ank) we define
so-called group norms (cf. [18], p. 5)

|‖(Ank)|‖n,m := sup
r

sup
‖xk‖≤1

∥∥∥∥∥
r∑

k=m

Ankxk

∥∥∥∥∥ (n,m ∈ N).

It is known that the sets c(X), c0(X) and `∞(X) of all convergent, con-
vergent to zero and bounded sequences x = (xk) ∈ ω(X) are Banach se-
quence spaces with the norm ‖x‖∞ = supk ‖xk‖, and the set `p(X) of
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sequences x such that
∑

k ‖xk‖p < ∞ is a Banach space with the norm

‖x‖p = (
∑

k ‖xk‖p)
1/p if 1 ≤ p <∞.

For x ∈ X and k ∈ N, let e(x) = (x, x, . . . ) be a constant sequence and
let ek(x) = (ekj (x)) be the sequence with ekj (x) = x if j = k and ekj (x) = 0

otherwise. It is not difficult to see that if Φ is a (countable) fundamental set
in X, then

E0(Φ):= {ek(φ) : k ∈ N, φ ∈ Φ}
is a (countable) fundamental set in c0(X) and `p(X), and E0(Φ)

⋃
E(Φ) with

E(Φ):= {e(φ) : φ ∈ Φ}
is a (countable) fundamental set in c(X).

If a matrix map A is defined on a Banach sequence space λ(X), then
the operators An (n ∈ N) defined above are linear and bounded, i.e., An ∈
B(λ(X), Y ). Therefore, by the investigation of matrix transformations the
following two well-known theorems of functional analysis (see, for example,
[8] or [17]) are useful.

Theorem 1.1 (Principle of uniform boundedness). Let X,Y be Banach
spaces and An ∈ B(X,Y ) (n ∈ N). If supn ‖Anx‖ < ∞ for every x ∈ X,
then

sup
n
‖An‖ <∞. (1.1)

Theorem 1.2 (Banach–Steinhaus). Let X, Y be Banach spaces, An ∈
B(X,Y ) (n ∈ N), and let Φ be a fundamental set of X. The limit limnAnx
exists for any x ∈ X if and only if

sup
n
‖An‖ <∞ (1.2)

and limnAnφ exists for every φ ∈ Φ. Moreover, the limit operator A, Ax =
limnAnx (x ∈ X), is bounded and linear, i.e., A ∈ B(X,Y ), and ‖A‖ ≤
supn ‖An‖.

The equality limnAnx = Ax (x ∈ X) with A ∈ B(X,Y ) is true if and
only if (1.2) holds and limnAnφ = Aφ (φ ∈ Φ).

Based on Theorems 1.1 and 1.2, Zeller [23] (see also [18]) and Kangro [9]
characterized the matrix transformations A from c(X), c0(X) and `1(X) to
c(Y ) as follows.

Theorem 1.3. Let X,Y be Banach spaces and let A = (Ank) be an
infinite matrix with Ank ∈ B(X,Y ). Then the following statements hold.

(i) A : c(X)→ c(Y ) if and only if

|‖(Ank)|‖n,1 <∞ (n ∈ N), (1.3)

∃ lim
m

m∑
k=1

Ankx (n ∈ N, x ∈ X), (1.4)
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‖An‖ = O(1), (1.5)

∃ lim
n
Ankx =: Akx (k ∈ N, x ∈ X), (1.6)

∃ lim
n

∑
k

Ankx (x ∈ X). (1.7)

(ii) A : c0(X)→ c(Y ) if and only if (1.3) – (1.6) hold.

(iii) A : `1(X)→ c(Y ) if and only if (1.6) holds and

Hn := sup
k
‖Ank‖ <∞ (n ∈ N), (1.8)

Hn = O(1). (1.9)

Necessary and sufficient conditions for the matrix transformation
A : `∞(X) → c(Y ) are contained in the following theorem of Maddox (see
[18], Theorem 4.6; cf. also [9], Theorem 2).

Theorem 1.4. Let X,Y be Banach spaces and let A = (Ank) be an
infinite matrix with Ank ∈ B(X,Y ). Then A : `∞(X)→ c(Y ) if and only if
(1.3) – (1.7) are satisfied and

lim
m
|‖(Ank)|‖n,m = 0 (n ∈ N),

lim
m

sup
n
|‖(Ank −Ak)|‖n,m = 0.

Remark 1.5. It is not difficult to see, using Theorem 1.2, that in Theo-
rems 1.3 and 1.4 it suffices to require the fulfillment of conditions (1.4), (1.6)
and (1.7) only for all elements φ from a fundamental set Φ of X.

The classical summability theory deals mostly with the transformations
defined by infinite matrices of real or complex numbers. Characterizations
of such matrix transformations from (and to) various spaces of number se-
quences may be found, for example, in [22].

As a generalization of usual convergence, Fast [4] (see also [21] and [20])
introduced the statistical convergence of number sequences in terms of as-
ymptotic density of subsets of N. Later several applications and generaliza-
tions of this notion have been investigated (for references, see [2] and [3]).
For instance, Maddox [19] and Kolk [10, 11] considered the statistical con-
vergence of sequences taking values in a locally convex space and a normed
space, respectively. Another extension of statistical convergence is related
to generalized densities.

Let T = (tnk) be a non-negative regular matrix of scalars (i.e., tnk ≥
0 (n, k ∈ N) and limn

∑
k tnkuk = limk uk for any convergent scalar sequence

(uk)). A set K ⊂ N is said to have T-density δT (K) if the limit

δT (K) := lim
n

∑
k∈K

tnk
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exists (cf. [6]).
A sequence x = (xk) ∈ ω(X) is called T -statistically convergent to a point

l ∈ X, briefly stT -limk xk = l, if

δT ({k : ‖xk − l‖ ≥ ε}) = 0

for every ε > 0 (see [1], Definition 7; [11], p. 44).
If T is the identity matrix, then the T -statistical convergence is just

the usual convergence in X, and if T is the Cesàro matrix C1, then the
T -statistical convergence is just the statistical convergence as defined by
Fast [4].

A further extension of statistical convergence was given in [16] by means
of ideals. Recall that a subfamily I of the family 2N of all subsets of N is an
ideal if for each K,L ∈ I we have K ∪ L ∈ I and for each K ∈ I and each
L ⊂ K we have L ∈ I. An ideal I is called non-trivial if I 6= ∅ and N /∈ I.
A non-trivial ideal I is called admissible if I contains all finite subsets of N.
Any non-trivial ideal I defines a filter

F(I) := {K ⊂ N : N \K ∈ I}.

A sequence x = (xk) ∈ ω(X) is said to be I-convergent to l ∈ X, briefly
I-limk xk = l, if for each ε > 0 the set {k ∈ N : ‖xk − l‖ ≥ ε} belongs to I
(see [16], Definition 3.1). For example,

IT := {K ⊂ N : δT (K) = 0}

is an admissible ideal and the IT -convergence coincides with the T -statistical
convergence.

The following two notions are closely related with the I-convergence. A
sequence x = (xk) ∈ ω(X) is said to be I∗-convergent to l ∈ X, briefly
I∗-limxk = l, if there exists an index set K = (ki) such that K ∈ F(I) and
limi xki = l in X (see [16], Definition 3.2). A sequence x = (xk) ∈ ω(X) is
said to be I-bounded, briefly ‖xk‖ = OI(1), if for some K = (ki) ∈ F(I) the
subsequence (xki) is bounded in X (cf. [7]).

We remark that the I∗-convergence of number sequences was introduced
already by Freedman [5] as I-near convergence.

It is easy to see that I∗-convergence implies I-convergence and every I∗-
convergent sequence is I-bounded.

An admissible ideal I ⊂ 2N is said to have property (AP) if for every
countable family of mutually disjoint sets K1,K2, . . . from I there exist sets
L1, L2, . . . from 2N such that the symmetric differences Ki∆Li (i ∈ N) are
finite and L = ∪iLi ∈ I. It is known that the ideal IT defined above has
the property (AP) (see [6], Proposition 3.2).

The following characterization of I-convergence is important for us (see
[16], Theorem 3.2).
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Proposition 1.6. Let I be an admissible ideal with property (AP). If
I-limxk = l in a Banach space X, then I∗-limxk = l in X.

By the investigation of matrix transformations related to the I-convergence,
the sets cI(X), cI0 (X) and `I∞(X) of all I-convergent, I-convergent to zero
and I-bounded sequences x ∈ ω(X) appear instead of c(X), c0(X) and
`∞(X), respectively. For X = K we omit the symbol X in notations.

In the following two sections we characterize matrix transformations A
related to some subsets of cI(X).

2. Matrix transformations of cI(X)

Let X, Y be Banach spaces, and let A = (Ank) be an infinite matrix of
operators Ank ∈ B(X,Y ) (n, k ∈ N). For a set K = (ki) ⊂ N we define the

K-column-section of A as A[K] = (A
[K]
nk ), where, for any n ∈ N, A

[K]
nk = Ank

if k ∈ K and A
[K]
nk = 0 otherwise. Analogously, the K-section of a sequence

x = (xk) is defined by x[K] = (zk), where zk = xk if k ∈ K and zk = 0
otherwise.

Let I ⊂ 2N be an ideal. We say that a sequence space λ(X) is I-section-

closed if for every x ∈ λ(X) and for any K ∈ I ∪ F(I) we have x[K] ∈ λ(X).

Theorem 2.1. Let I be an admissible ideal. Let λ(X) be an I-section-
closed sequence space containing the set E(X) = {e(x) : x ∈ X}, and let
µ(Y ) be an arbitrary sequence space. If A : cI(X) ∩ λ(X)→ µ(Y ), then

A : c(X) ∩ λ(X)→ µ(Y ), (2.1)

A[K] : λ(X)→ µ(Y ) (K ∈ I). (2.2)

If I has property (AP), then (2.1) and (2.2) imply that A : cI(X)∩λ(X)→
µ(Y ).

Proof. Let A : cI(X)∩λ(X)→ µ(Y ). Then (2.1) holds in view of c(X) ⊂
cI(X) because the ideal I is admissible.

Now, let K ∈ I and x ∈ λ(X). The sequence y = x[K] is obviously I∗-
convergent to 0 and so, y ∈ cI(X). Moreover, since λ(X) is I-section-closed,
we have that y ∈ λ(X). Thus y ∈ cI(X) ∩ λ(X) and so, Ay ∈ µ(Y ). By

A
[K]
n x = Any (n ∈ N) we get A[K]x ∈ µ(Y ), i.e., (2.2) holds.

Conversely, suppose that (2.1) and (2.2) hold and I has property (AP). If
x ∈ cI(X)∩λ(X), then for some l ∈ X the sequence y = (yk) with yk = xk−l
is I-convergent to 0 and, by Proposition 1.6, I∗- lim yk = 0. Thus, for some
K ∈ I, the sequence z = y[N/K] belongs to c0(X) which gives Az ∈ µ(Y ) by
(2.1). Further, since y ∈ λ(X) because of E(X) ⊂ λ(X), by (2.2) we get

A[K]y ∈ µ(Y ). Now, using the equality Ay = Az+A[K]y, we get Ay ∈ µ(Y ).
But this shows that Ax ∈ µ(Y ) with I- limxk = l. �
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It is not difficult to see that `∞(X) and `I∞(X) are examples of I-section-
closed sequence spaces which contain E(X).

Let stT (X) denote the set of all T -statistically convergent sequences x ∈
ω(X). Since the ideal IT is admissible and has property (AP), from Theorem
2.1 we immediately get a generalization of Theorem 4.1 from [12].

Proposition 2.2. Let T = (tnk) be a non-negative regular matrix of
scalars. Assume that λ(X) is an IT -section-closed sequence space containing
E(X). Then, for an arbitrary sequence space µ(Y ), A : stT (X) ∩ λ(X) →
µ(Y ) if and only if (2.1) holds and

A[K] : λ(X)→ µ(Y ) (δT (K) = 0).

Theorem 2.1 reduces, for λ(X) = `∞(X), to the following result.

Proposition 2.3. Let µ(Y ) ⊂ ω(Y ) be a sequence space and let I be an
admissible ideal. If A : cI(X) ∩ `∞(X)→ µ(Y ), then (2.1) and

A[K] : `∞(X)→ µ(Y ) (K ∈ I) (2.3)

are satisfied. If I has property (AP), then (2.1) and (2.3) imply A : cI(X)∩
`∞(X)→ µ(Y ).

Proposition 2.3 together with Theorems 1.3(i) and 1.4 gives the following
characterization of the matrix transformation A : cI(X) ∩ `∞(X)→ c(Y ).

Corollary 2.4. Let X,Y be Banach spaces, A = (Ank) be an infinite
matrix with Ank ∈ B(X,Y ), and let I be an admissible ideal. If A maps
cI(X) ∩ `∞(X) to c(Y ), then (1.3) – (1.7) hold and, for any K = (ki) ∈ I,

the matrix A[K] = (A
[K]
nk ) satisfies the conditions

lim
m
|‖(A[K]

nk )|‖n,m = 0 (n ∈ N), (2.4)

lim
m

sup
n
|‖(A[K]

nk −A
[K]
k )|‖n,m = 0, (2.5)

If I has property (AP), then (1.3) – (1.7), (2.4) and (2.5) are also sufficient
for A : cI(X) ∩ `∞(X)→ c(Y ).

Let B = (bnk) be an infinite matrix of scalars. Using the known char-
acterizations of matrix transformations B : c → c and B : `∞ → c (see,
for example, [22]), Proposition 2.3 permits to formulate also an extension of
Corollary 5.1 from [12].

Corollary 2.5. Let I be an admissible ideal. If B : cI ∩ `∞ → c, then

sup
n

∑
k

|bnk| <∞, (2.6)

∃ lim
n
bnk =: bk (k ∈ N), (2.7)
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∃ lim
n

∑
k

bnk, (2.8)

lim
n

∑
k∈K
|bnk − bk| = 0 (K ∈ I). (2.9)

If I has property (AP), then (2.6)–(2.9) are also sufficient for B : cI∩`∞→c.

3. Matrix transformations to cI(Y )

Let I be an admissible ideal and let X, Y and A be the same as in Section
2. The following characterizations of matrix transformations A to the space
of I-convergent sequences are known.

Theorem 3.1 (see [14, 15]). Let Φ X be a fundamental set of X. The
following statements are true.

(i) If A : c(X)→ cI(Y ) ∩ `∞(Y ), then (1.3), (1.5) hold and

∃ lim
m

m∑
k=1

Ankφ (n ∈ N, φ ∈ Φ), (3.1)

∃I- lim
n
Ankφ =: Akφ (k ∈ N, φ ∈ Φ), (3.2)

∃I- lim
n

∑
k

Ankφ (φ ∈ Φ). (3.3)

Conversely, if Φ is countable and I has property (AP), then (1.3), (1.5) and
(3.1)–(3.3) are also sufficient for A : c(X)→ cI(Y ) ∩ `∞(Y ).

(ii) If A : c0(X)→ cI(Y ) ∩ `∞(Y ), then (1.3), (1.5) and (3.2) hold. If
Φ is countable and I has property (AP), then (1.3), (1.5) and (3.2) imply
A : c0(X)→ cI(Y ) ∩ `∞(Y ).

(iii) If A : `1(X)→ cI(Y ) ∩ `∞(Y ), then (1.8), (1.9) and (3.2) are sat-
isfied. Conversely, if Φ is countable and I has property (AP), then (1.8),
(1.9) and (3.2) are also sufficient for A : `1(X)→ cI(Y ) ∩ `∞(Y ).

If O(1) is replaced by OI(1) in (1.5) and (1.9), then (i)−(iii) give the char-
acterizations of matrix maps A : c(X)→ cI(Y )∩`I∞(Y ), A : c0(X)→ cI(Y )∩
`I∞(Y ) and A : `1(X)→ cI(Y ) ∩ `I∞(Y ), respectively.

Our purpose is to consider the same type transformations A without the
separability assumption of the space X. As one may expect, results obtained
in this case are in some respects weaker in comparison with the results in
Theorem 3.1.

Let N = (ni) be a set from the filter F(I). We say that a sequence

x ∈ ω(X) is I,N -bounded if (xni) ∈ `∞(X). If `I,N∞ (X) denotes the set of all
I,N -bounded sequences x ∈ ω(X), then it is clear that

`∞(X) ⊂ `I,N∞ (X) and `I∞(X) =
⋃

N∈F(I)

`I,N∞ (X).
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Theorem 3.2. Let λ(X) ⊂ ω(X) be a Banach sequence space with the
norm ‖ · ‖λ and a fundamental set E. Let I, J be admissible ideals and

N = (ni) ∈ F(J ). If A : λ(X)→ cI(Y ) ∩ `J ,N∞ (Y ), then

sup
m

sup
‖x‖λ≤1

∥∥∥∥∥
m∑
k=1

Ankxk

∥∥∥∥∥ <∞ (n ∈ N), (3.4)

∃ lim
m

m∑
k=1

Ankxk (n ∈ N, x ∈ E), (3.5)

‖Ani‖ = O(1), (3.6)

∃ I- lim
n

Anx (x ∈ E). (3.7)

Conversely, if J ⊂ I, conditions (3.4)–(3.6) hold, and there exists a set
K = (ki) ∈ F(I) such that

∃ lim
i
Akix (x ∈ E), (3.8)

then A : λ(X)→ cI(Y ) ∩ `J ,N∞ (Y ).

Proof. Assume that A : λ(X) → cI(Y ) ∩ `J ,N∞ (Y ). Then the series
Anx =

∑
k Ankxk converge for all x ∈ λ(X). Thus, because of Theorem

1.2, conditions (3.4), (3.5) hold and An ∈ B(λ(X), Y ) (n ∈ N). Further,

since Ax ∈ `I,N∞ (Y ), (Anix) is bounded for any x ∈ λ(X). So, in view of
Theorem 1.1, condition (3.6) must be satisfied. Condition (3.7) holds by
Ax ∈ cI(Y ) (x ∈ E).

Now. assume that J ⊂ I and conditions (3.4)–(3.6) and (3.8) are satisfied.
Then the operator A is determined on λ(X) and An ∈ B(λ(X), Y ) (n ∈ N)
in view of (3.4) and (3.5). Condition (3.6) shows, by Theorem 1.1, that the

sequences Ax (x ∈ λ(X)) are in `J ,N∞ (Y ). Moreover, since J ⊂ I implies
N ∈ F(I), we have M := N ∩ K ⊂ F(I). Consequently, the sequence
of operators (Ami), where M = (mi), satisfies the conditions of Theorem
1.2 with respect to the fundamental set E of λ(X). Thus the sequences Ax
(x ∈ λ(X)) must be I∗-convergent, hence also I-convergent in Y . �

In the case λ ∈ {c, c0, `1}, from Theorem 3.2 we get the following result.

Proposition 3.3. Let I, J and N be the same as in Theorem 3.2.

(i) If A : c(X) → cI(Y ) ∩ `J ,N∞ (Y ), then conditions (1.3), (1.4), (3.6)
hold and

∃ I- lim
n
Ankx (k ∈ N, x ∈ X), (3.9)

∃ I- lim
n

∑
k

Ankx (x ∈ X). (3.10)
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Conversely, if J ⊂ I, conditions (1.3), (1.4), (3.6) are satisfied, and there
exists a set K = (ki) ∈ F(I) such that

∃ lim
i
Aki,kx (k ∈ N, x ∈ X), (3.11)

∃ lim
i

∑
k

Aki,kx (x ∈ X), (3.12)

then A : c(X)→ cI(Y ) ∩ `J ,N∞ (Y ).

(ii) If A : c0(X) → cI(Y ) ∩ `J ,N∞ (Y ), then conditions (1.3), (3.6) and
(3.9) hold. Conversely, if J ⊂ I and conditions (1.3), (3.6), (3.11) are

satisfied, then A : c0(X)→ cI(Y ) ∩ `J ,N∞ (Y ).

(iii) If A : `1(X)→ cI(Y ) ∩ `J ,N∞ (Y ), then (1.8), (3.9) hold and

Hn = OJ (1). (3.13)

If J ⊂ I and conditions (1.8), (3.11) and (3.13) are satisfied, then A :

`1(X)→ cI(Y ) ∩ `J ,N∞ (Y ).

Proof. Our statements follow from Theorem 3.2 by reason of the following
remarks.

(i). Since c(X) has the fundamental set E0(X)
⋃
E(X), conditions (3.4),

(3.5) reduce, respectively, to (1.3), (1.4). Moreover, (3.7) takes the form
(3.9) if x ∈ E0(X), and the form (3.10) if x ∈ E(X). Similarly, (3.8) reduces
to (3.11) and (3.12), respectively

(ii). We argue as above using only the fact that c0(X) has the fundamental
set E0(X).

(iii). The proof is quite similar if we observe that `1(X) has the funda-
mental set E0(X) and ‖An‖ = supk ‖Ank‖ (n ∈ N) (see [9], p. 113). �

If J = If , the ideal of all finite subsets of N, then `J ,N∞ (Y ) = `∞(Y ).
Consequently, Proposition 3.3 gives the following extension of Theorem 3.1.

Proposition 3.4. The following statements hold.

(i) If A : c(X) → cI(Y ) ∩ `∞(Y ), then conditions (1.3)−(1.5), (3.9)
and (3.10) hold. Conversely, if conditions (1.3)−(1.5), (3.11) and (3.12)
are satisfied, then A : c(X)→ cI(Y ) ∩ `∞(Y ).

(ii) If A : c0(X)→ cI(Y )∩`∞(Y ), then conditions (1.3), (1.5) and (3.9)
hold. Conversely, if conditions (1.3), (1.5) and (3.11) are satisfied, then
A : c0(X)→ cI(Y ) ∩ `∞(Y ).

(iii) If A : `1(X)→ cI(Y )∩`∞(Y ), then conditions (1.8), (1.9) and (3.9)
hold. If conditions (1.8), (1.9) and (3.11) are satisfied, then A : `1(X) →
cI(Y ) ∩ `∞(Y ).

This proposition gives, in special case I = IT , the characterizations of
matrix transformations A : c(X)→ stT (Y ) ∩ `∞(Y ), A : c0(X)→ stT (Y ) ∩
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`∞(Y ) and A : `1(X) → stT (Y ) ∩ `∞(Y ). Similar characterizations are
proved, for separable X, in [14] and, for X = Y = K, in [13].
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