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On new extensions of the generalized Hermite
matrix polynomials

Ayman Shehata

Abstract. Various families of generating matrix functions have been
established in diverse ways. The objective of the present paper is to
investigate these generalized Hermite matrix polynomials, and derive
some important results for them, such as, the generating matrix func-
tions, matrix recurrence relations, an expansion of xnI, finite summation
formulas, addition theorems, integral representations, fractional calculus
operators, and certain other implicit summation formulae.

1. Introduction and preliminaries

Various possible extensions to the matrix framework of the classical fam-
ilies of Laguerre, Hermite, Legendre, Gegenbauer, and Chebyshev poly-
nomials have been widely investigated in the literature (see, for example,
[2, 3, 4, 7, 10, 11, 14, 16, 22, 24, 25, 26, 27]). Earlier, the Hermite ma-
trix polynomials and its extensions and generalizations were introduced in
[15, 21, 23, 29] for matrices in CN×N, whose eigenvalues are all situated in
the right open half-plane.

Since it has been amply demonstrated that the various extended
Hermite matrix polynomials of one variable potential have applications in
many diverse areas of mathematics, physical, engineering and statistical sci-
ences (see, for details, [1, 12, 13] and the references cited therein), we propose
to provide a new extension of the Hermite matrix polynomials in this paper
which shall also find applications in the diverse fields mentioned hitherto.
The structure of this work is as follows. In Section 2, we deal with important
properties of the generalized Hermite matrix polynomials such as addition,
multiplication theorems, and summation formula. In Section 3, we obtain
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integral transforms for the generalized Legendre matrix polynomials, the
Chebyshev matrix polynomials of the first, the second, and the third kind
in terms of the generalized Hermite matrix polynomials introduced by us.
In Section 4, we have dealt with the fractional integrals and the fractional
derivatives which yield a different view of the generalized Hermite matrix
polynomials. Finally, in Section 5, some concluding remarks are given.

Frequently occurring definitions, theorems, notations, and miscellaneous
results used throughout this paper are as given below. Throughout this
paper, for a matrix A in CN×N, its spectrum σ(A) will denote the set of all
eigenvalues of A. Furthermore, the unit matrix and the null matrix in CN×N
will be denoted by I and 0, respectively.

Lemma 1.1 (see [3]). If A(k, n) and B(k, n) are matrices in CN×N for
n ≥ 0, k ≥ 0, then

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

[ 1
m
n]∑

k=0

A(k, n−mk), m ∈ N. (1.1)

Similarly to (1.1), we can write

∞∑
n=0

[ 1
m
n]∑

k=0

A(k, n) =
∞∑
n=0

∞∑
k=0

A(k, n+mk), m ∈ N. (1.2)

Definition 1.1 (see [9]). A matrix A in CN×N is said be a positive stable
matrix if

<(µ) � 0 for every eigenvalue µ ∈ σ(A). (1.3)

Fact 1.1 (see [9]). If B is a matrix in CN×N such that

B + nI is an invertible matrix for all integers n ≥ 0, (1.4)

then

Γ(B) =

∫ ∞
o

e−texp ((B − I) ln t) dt

is an invertible matrix in CN×N, and one gets

(B)n : = B(B + I) . . . (B + (n− 1)I)

= Γ(B + nI)Γ−1(B), n ≥ 1, (B)0 = I,

where Γ−1(B) is the image of Γ−1(z) = 1/Γ(z) acting on B.

Fact 1.2 (see [8]). For a matrix A in CN×N we have

(1− z)−A =

∞∑
n=0

1

n!
(A)nz

n, |z| < 1. (1.5)
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If Φ(z) is a holomorphic function at z = z0, Φ(z0) 6= 0, and if z =
z0 + wΦ(z) and f(z) is an analytic function, we expanded a power series in
w by the Lagrange expansion formula as (see [19])

f(z)

1− wΦ′(z)
=
∞∑
n=0

wn

n!

dn

dzn

[
f(z) (Φ(z))n

]∣∣∣∣
z=z0

. (1.6)

From the definition of the Gamma function, we have (see [28])∫ ∞
0

e−t
2
t
2n−mk

p dt =
1

2
Γ

(
2n−mk

2p
+

1

2

)
=

√
π

2

(
1

2

)
2n−mk

2p

(1.7)

and ∫ ∞
0

e−tt
n−(m−p)k

p dt = Γ

(
n− (m− p)k

p
+ 1

)
. (1.8)

In order to describe more details of our work, we will need some definitions
of fractional integrals and fractional derivatives, which are given as below,
and can be found in standard works in this field, like, [5, 6, 17, 18, 20].

Definition 1.2. Riemann–Liouville fractional integral of order µ is de-
fined by

Iµ{f(x)} =
1

Γ(µ)

∫ x

0
(x− t)µ−1f(t)dt, <(µ) > 0. (1.9)

Definition 1.3. Let f(x) ∈ L(b, c), α ∈ C, and <(α) > 0. The left-sided
operator of Riemann–Liouville fractional integral of order α is defined by

bIαx{f(x)} =
1

Γ(µ)

∫ x

b
(x− t)α−1f(t)dt, x > b. (1.10)

Definition 1.4. Let f(x) ∈ L(b, c), α ∈ C, and Re(α) > 0. The right-
sided operator of Riemann–Liouville fractional integral of order α is defined
by

xIαc {f(x)} =
1

Γ(α)

∫ c

x
(t− x)α−1f(t)dt, x < c. (1.11)

Definition 1.5. The Weyl integral of f(x) of order α, denoted by xW
α
∞,

is defined by

xW
α
∞{f(x)} =

1

Γ(α)

∫ ∞
x

(t− x)α−1f(t)dt, −∞ < x <∞, (1.12)

where α ∈ C and <(α) > 0.

Definition 1.6. Let f(x) ∈ L(b, c), α ∈ C, <(α) ≥ 0, and n = [<(α)] + 1.
The left-sided operator of Riemann–Liouville fractional derivative of order
α is defined by

bD
α
x{f(x)} =

1

Γ(n− α)

(
∂

∂x

)n ∫ x

b

f(t)

(x− t)α−n+1
dt, x > b. (1.13)
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Definition 1.7. Let f(x) ∈ L(b, c), α ∈ C, <(α) ≥ 0, and n = [<(α)] + 1.
The right-sided operator of Riemann–Liouville fractional derivative of order
α is defined by

xD
α
c {f(x)} =

(−1)n

Γ(n− α)

(
∂

∂ x

)n ∫ c

x

f(t)

(t− x)α−n+1
dt, x < c. (1.14)

Definition 1.8. Let f(x) ∈ L(b, c), α ∈ C, <(α) ≥ 0, and n = [<(α)] + 1.
The Weyl fractional derivative of f(x) of order α, denoted by xD

α
∞, is

defined by

xD
α
∞{f(x)} =

(−1)m

Γ(m− α)

(
∂

∂x

)m ∫ ∞
x

f(t)

(t− x)α−m+1
dt, (1.15)

where −∞ < x <∞, m− 1 ≤ α < m, and m ∈ N.

2. The definition of generalized Hermite matrix polynomials
and their properties

Let A and B be commutative matrices in CN×N. For any complex number
ν let νA be a positive stable matrix in CN×N satisfying condition (1.3),
and let B be a matrix satisfying condition (1.4). We define the generalized
Hermite matrix polynomials by means of the matrix generating function

F =
∞∑
n=0

Hn,m,p(x,A,B; a, b, ν)
tn

n!
= axt

p
√
νA

(
1 +

tm

b

)−B
,

∣∣∣∣ tmb
∣∣∣∣ < 1,

(2.1)
where a > 0, a 6= 1, and p and m are any numbers.

Making use of the exponential matrix function and the binomial expansion
(1.5), we obtain

F =
∞∑
n=0

∞∑
k=0

(−1)k(B)k
k!bkΓ(n+ 1)

(
x log(a)

√
νA
)n
tpn+km. (2.2)

Using (1.1) and (2.2), we can write

F =

∞∑
n=0

[ n
m
]∑

k=0

(−1)k(B)k

k!bkΓ
(
n−mk
p + 1

) (x log(a)
√
νA
)n−mk

p
tn.

Comparing the coefficients of tn, we obtain an explicit representation of the

matrix version of generalized Hermite matrix polynomials for <
(
n−mk
p

)
>−1:

Hn,m,p = Hn,m,p(x,A,B; a, b, ν)

= n!

[ 1
m
n]∑

k=0

(−1)k(B)k

k!bkΓ
(
n−mk
p + 1

) (x log(a)
√
νA
)n−mk

p
.

(2.3)
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In the following theorem, we obtain the matrix recurrence relations for
the generalized Hermite matrix polynomials.

Theorem 2.1. The generalized Hermite matrix polynomials satisfy the
relations

dr

dxr
Hn,m,p =

n!

(n− pr)!

(
log(a)

√
ν A

)r
×Hn−pr,m,p(x,A,B; a, b, ν), 0 ≤ r ≤

[
n

p

]
,

(2.4)

b

n!
Hn+1,m,p(x,A,B; a, b, ν) +

(n−m)I +mB

(n−m+ 1)!
Hn−m+1,m,p(x,A,B; a, b, ν)

=
bpx log(a)

√
ν A

(n− p+ 1)!
Hn−p+1,m,p(x,A,B; a, b, ν)

+
px log(a)

√
ν A

(n−m− p+ 1)!
Hn−m−p+1,m,p(x,A,B; a, b, ν), n ≥ m+ p− 1,

(2.5)
and

b log(a)
√
νA

(n− p)!
Hn−p+1,m,p(x,A,B; a, b, ν)

+
log(a)

√
ν A

(n− p−m)!
Hn−m−p+1,m,p(x,A,B; a, b, ν)

=
bpx log(a)

√
ν A

(n− p+ 1)!

d

dx
Hn−p+1,m,p(x,A,B; a, b, ν)

+
px log(a)

√
ν A

(n−m− p+ 1)!

d

dx
Hn−m−p+1,m,p(x,A,B; a, b, ν)

− mB

(n−m+ 1)!

d

dx
Hn−m+1,m,p(x,A,B; a, b, ν), n ≥ m+ p− 1.

(2.6)

Proof. Differentiating (2.1) with respect to x, we have

∂F

∂x
=
∞∑
n=0

d

dx
Hn,m,p

tn

n!
= log(a)

√
νA

∞∑
n=0

Hn,m,p
tn+p

n!
. (2.7)

Comparing the coefficients of tn for 0 ≤ p ≤ n, we obtain

d

dx
Hn,m,p =

n!

(n− p)!
log(a)

√
ν A Hn−p,m,p(x,A,B; a, b, ν), (2.8)

which is the required matrix differential recurrence relation. The iteration
of (2.8) for 0 ≤ r ≤ [n/p] leads us to (2.4).
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Again, by differentiating (2.1) with respect to t, we have

∂F

∂t
=
∞∑
n=1

Hn,m,p
tn−1

(n− 1)!
= px log(a)tp−1

√
νAaxt

p
√
νA

(
1 +

tm

b

)−B
− m

b
Btm−1axt

p
√
νA

(
1 +

tm

b

)−B−I
,

(2.9)

and we can write

b
∞∑
n=1

Hn,m,p
tn−1

(n− 1)!
+
∞∑
n=1

Hn,m,p
tn+m−1

(n− 1)!

= bpx log(a)
√
νA

∞∑
n=0

Hn,m,p
tn+p−1

n!
+ px log(a)

√
ν A

∞∑
n=0

Hn,m,p
tn+m+p−1

n!

−mB
∞∑
n=0

Hn,m,p
tn+m−1

n!
.

Equating the coefficients of tn, we get

b

n!
Hn+1,m,p(x,A,B; a, b, ν) +

(n−m)I +mB

(n−m+ 1)!
Hn−m+1,m,p(x,A,B; a, b, ν)

=
bpx log(a)

√
ν A

(n− p+ 1)!
Hn−p+1,m,p(x,A,B; a, b, ν)

+
px log(a)

√
ν A

(n−m− p+ 1)!
Hn−m−p+1,m,p(x,A,B; a, b, ν),

which is the required pure matrix recurrence relation (2.5).
From (2.7) and (2.9), we observe that

b log(a)tp
√
νA

∂F

∂t
+ log(a)

√
νAtm+p∂F

∂t
= bpx log(a)tp−1

√
νA

∂F

∂x

+ px log(a)
√
νAtm+p−1∂F

∂x
−mBtm−1∂F

∂x
.

This, again in view of (2.1), by comparing the coefficients of tn, yields (2.6).
The proof is complete. �

Theorem 2.2. For any complex number ν, let νA be a positive stable
matrix in CN×N satisfying (1.3). Then we have the expansion of xnI in the
form(

x log(a)
√
ν A

)n
= n!

[np
m

]∑
k=0

(−1)k(−B)k
k!(np−mk)!bk

Hnp−mk,m,p(x,A,B; a, b, ν),

(2.10)

where B is a matrix in CN×N satisfying (1.4).
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Proof. By (2.1), we can write

axt
p
√
νA =

∞∑
n=0

∞∑
k=0

(−1)k(−B)k
k!n!bk

Hn,m,p(x,A,B; a, b, ν)tn+mk. (2.11)

Replacing n by np−mk in the right hand side of (2.11), we get

∞∑
n=0

1

n!

(
x log(a)

√
ν A

)n
tnp

=
∞∑
n=0

[np
m

]∑
k=0

(−1)k(−B)k
k!(np−mk)!bk

Hnp−mk,m,p(x,A,B; a, b, ν)tnp,

and, by comparing the coefficients of tn in the above equation, we arrive at
(2.10). �

Now, we give the multiplication, addition, and summation formulae for
the generalized Hermite matrix polynomials in the following theorems.

Theorem 2.3. For any complex number ν, let νA be a positive stable
matrix in CN×N satisfying the condition (1.3). For commutative matrices
B, D, and B−D in CN×N satisfying (1.4), the generalized Hermite matrix
polynomials satisfy the finite summation formula

Hn,m,p = n!

[ n
m
]∑

k=0

(B −D)k
k!bkΓ (n−mk + 1)

Hn−mk,m,p(x,A,D; a, b, ν). (2.12)

Proof. From (2.1) and (1.1), we have

∞∑
n=0

Hn,m,p
tn

n!
= axt

p
√
νA

(
1 +

tm

b

)−D (
1 +

tm

b

)D−B
=

(
1 +

tm

b

)D−B ∞∑
n=0

Hn,m,p(x,A,D; a, b, ν)
tn

n!

=
∞∑
n=0

∞∑
k=0

(B −D)k
n!k!bk

Hn,m,p(x,A,D; a, b, ν)tn+mk

=
∞∑
n=0

[ n
m
]∑

k=0

(B −D)k
k!bkΓ (n−mk + 1)

Hn−mk,m,p(x,A,D; a, b, ν)tn.

Comparing the coefficients of tn in the above equation leads us to (2.12). �
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Theorem 2.4. The generalized Hermite matrix polynomials satisfy the
multiplication formula

Hn,m,p(α x,A,B; a, b, ν)

= n!

[n
p
]∑

k=0

(
(α− 1)x log(a)

√
νA
)k
Hn−kp,m,p(x,A,B; a, b, ν)

k!Γ(n− kp+ 1)
,

(2.13)

where α is constant.

Proof. By (2.1) and (1.1), we have

∞∑
n=0

Hn,m,p(α x,A,B; a, b, ν)tn

n!
= a(α−1)t

p
√
νAaxt

p
√
νA

(
1 +

tm

b

)−B

=

∞∑
n=0

∞∑
k=0

(
(α− 1) log(a)

√
νA
)k
Hn,m,p(x,A,B; a, b, ν)tn+kp

k!n!

=

∞∑
n=0

[n
p
]∑

k=0

(
(α− 1)x log(a)

√
νA
)k
Hn−kp,m,p(x,A,B; a, b, ν)tn

k!Γ(n− kp+ 1)
.

Thus, comparing the coefficients of tn, we get (2.13). �

Theorem 2.5. For commutative matrices B, D and B+D in CN×N , sat-
isfying the condition (1.4), the finite summation formula for the generalized
Hermite matrix polynomials is as follows:

Hn,m,p(αx+ βz,A,B +D; a, b, ν)

= n!

n∑
k=0

Hk,m,p(βz,A,B; a, b, ν)Hn−k,m,p(αx,A,D; a, b, ν)

k!(n− k)!
,

(2.14)

where α and β are constants.

Proof. Using (1.2), we consider the series

∞∑
n=0

n∑
k=0

Hn−k,m,p(βz,A,B; a, b, ν)Hk,m,p(αx,A,D; a, b, ν)tn

k!(n− k)!

=
∞∑
n=0

∞∑
k=0

Hn,m,p(βz,A,B; a, b, ν)Hk,m(αx,A,D; a, b, ν)tn+k

k!n!

= a(αx+βz)t
p
√
νA

(
1 +

tm

b

)−B−D
=

∞∑
n=0

Hn,m,p(αx+ βz,A,B +D; a, b, ν)tn

n!
.

By comparing the coefficients of tn, we get (2.14). �
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Theorem 2.6. The generalized Hermite matrix polynomials satisfy the
addition formula

Hn,m,p(x+ y,A,B; a, b, ν)

= n!

[n
p
]∑

k=0

yk

k!(n− pk)!

(
log(a)

√
ν A

)k
Hn−pk,m,p(x,A,B; a, b, ν).

(2.15)

Proof. Rewriting (2.1) in the form(
1 +

tm

b

)−B
= a−xt

p
√
νA

∞∑
n=0

Hn,m,p(x,A,B; a, b, ν)
tn

n!

and replacing x by y, we have(
1 +

tm

b

)−B
= a−yt

p
√
νA

∞∑
n=0

Hn,m,p(y,A,B; a, b, ν)
tn

n!
.

By comparing, we get

a(y−x)t
p
√
νA

∞∑
n=0

Hn,m,p(x,A,B; a, b, ν)
tn

n!
=

∞∑
n=0

Hn,m,p(y,A,B; a, b, ν)
tn

n!
.

(2.16)

Futher, by expanding the exponential matrix function in (2.16), we have
∞∑
n=0

∞∑
k=0

(y − x)k

n!k!

(
log(a)

√
ν A

)k
Hn,m,p(x,A,B; a, b, ν)tn+pk

=
∞∑
n=0

Hn,m,p(y,A,B; a, b, ν)
tn

n!
.

(2.17)

Replacing n by n− pk and comparing the coefficients of tn in (2.17), we get

n!

[n
p
]∑

k=0

(y − x)k

k!(n− pk)!

(
log(a)

√
ν A

)k
Hn−pk,m,p(x,A,B; a, b, ν)

= Hn,m,p(y,A,B; a, b, ν).

(2.18)

Replacing y by y + x in (2.18), we get the addition formula (2.15). �

Theorem 2.7. For matrices A and B in CN×N with commutative ma-
trices, the matrix generating function for the generalized Hermite matrix
polynomials can be given as

∞∑
n=0

Hn,m,p(x+ ny,A,B; a, b, ν)
tn

n!
= axt

p
√
νA

(
1 +

tm

b

)−B
×
[
I − ytp log(a)

√
ν Aaxt

p
√
ν A
]−1

.

(2.19)
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Proof. Applying Taylor’s expansion in (2.1), we have

∞∑
n=0

Hn,m,p(x,A,B; a, b, ν)
tn

n!
=
∞∑
n=0

dn

dxn

[
axt

p
√
νA

(
1 +

tm

b

)−B] ∣∣∣∣
t=0

tn

n!
.

(2.20)

Equating the coefficients of tn on both sides in (2.20), we have

Hn,m,p(x,A,B; a, b, ν) =
dn

dxn

[
axt

p
√
νA

(
1 +

tm

b

)−B] ∣∣∣∣
t=0

. (2.21)

Replacing x by x+ ny in (2.21), we have

Hn,m,p(x+ ny,A,B; a, b, ν) =
dn

dxn

[
a(x+ny)t

p
√
νA

(
1 +

tm

b

)−B] ∣∣∣∣
t=0

,

and thus

∞∑
n=0

Hn,m,p(x+ ny,A,B; a, b, ν)
tn

n!

=
∞∑
n=0

dn

dxn

[
axt

p
√
νA

(
1 +

tm

b

)−B
anyt

p
√
νA

] ∣∣∣∣
t=0

tn

n!
.

Using Lagrange’s expansion formula (1.6), we obtain the matrix generating
function (2.19). �

Theorem 2.8. For r ∈ N and for complex numbers ν1, ν2, . . . , νr, let
ν1A1, ν2A2, . . . , νrAr be commutative matrices in CN×N satisfying (1.3), and
let B1, B2, . . . , Br be commutative matrices in CN×N satisfying (1.4). Then

[ n
m ]∑
k=0

(−1)k(B1 + . . .+Br)k

k!bkΓ
(
n−mk
p + 1

) (
log(a)(x1

√
ν1A1 + . . .+ xr

√
νrAr)

)n−mk
p

=
∑

n1+n2+...+nr=n

Hn1,m,p(x1, A1, B1; a, b, ν1) Hn2,m,p(x2, A2, B2; a, b, ν2)

n1!n2!× . . . nr!

. . .×Hnr,m,p(xr, Ar, Br; a, b, νr).
(2.22)
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Proof. We have

at
p(x1
√
ν1A1+...+xr

√
νrAk)

(
1 +

tm

b

)−B1−...−Br

= at
px1
√
ν1A1

(
1 +

tm

b

)−B1

. . . at
pxr
√
νkAr

(
1 +

tm

b

)−Br

=
∞∑

n1=0

Hn1,m,p(x1, A1, B1; a, b, ν1)t
n1

n1

. . .×
∞∑

nk=0

Hnk,m,p(xk, Ak, Bk; a, b, νk)t
nk

nk!

=
∞∑
n=0

[ ∑
n1+...+nr=n

Hn1,m,p(x1, A1, B1; a, b, ν1) Hn2,m,p(x2, A2, B2; a, b, ν2)

n1! . . . nr!

]
tn

. . .×Hnr,m,p(xr, Ar, B2; a, b, νr) =
∞∑
n=0

[ n
m
]∑

k=0

(−1)k(B1 +B2 + . . .+Br)k

k!bkΓ
(
n−mk
p + 1

)
×
(

log(a)(x1
√
ν1A1 + . . .+ xr

√
νrAr)

)n−mk
p

tn.

Comparing the coefficients of tn, we have the desired relation (2.22). �

3. Integral representations

The aim of this section is to introduce a generalization for Chebyshev,
Legendre, and Gegenbauer matrix polynomials by modifying the integral
transform, which can be easily established by the application of beta and
gamma function formulae, generalized Hermite matrix polynomials, and
other techniques in the following theorem.

Theorem 3.1. Let A and B be commutative matrices in CN×N . For any
complex number ν, let νA be a positive stable matrix in CN×N satisfying
(1.3), and let B be a matrix in CN×N satisfying (1.4). Then the gener-
alized Chebyshev, Legendre, and Gegenbauer matrix polynomials are given
by modifying the integral transforms involving generalized Hermite matrix
polynomials as follows:

Pn,m,p(x,A,B; a, b, ν) =
2

n!
√
π

∫ ∞
0

e−t
2
tnHn,m,p(xt,A,B; a, b, ν)dt, (3.1)

Un,m,p(x,A,B; a, b, ν) =
1

n!

∫ ∞
0

e−tt
n
mHn,m,p(xt

m−p
m , A,B; a, b, ν)dt, (3.2)
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Tn,m,p(x,A,B; a, b, ν)

=
(
√
νA)−1

(n− 1)!

∫ ∞
0

e−tt
n
m
−1Hn,m,p(xt

m−p
m , A,B; a, b, ν)dt, n ≥ 1,

(3.3)

where T0,m,p(x,A,B; a, b, ν) = 0,

Wn,m,p(x,A,B; a, b, ν)

=

√
νA

(n+ 1)!

∫ ∞
0

e−tt
n
m
+1Hn,m,p(xt

m−p
m , A,B; a, b, ν)dt,

(3.4)

and

Cv
n,m,p(x,A,B; a, b, ν)

=
1

n!Γ(v)

∫ ∞
0

e−tt
n
m
+v−1Hn,m,p(xt

m−p
m , A,B; a, b, ν)dt.

(3.5)

Proof. To prove (3.1), by using (2.3), (1.7), and (1.8), it follows that

2

n!
√
π

∫ ∞
0

e−t
2
t
n
pHn,m,p(xt,A,B; a, b, ν)dt

=
2√
π

[ n
m ]∑
k=0

(−1)k(B)k

(
x log(a)t

√
ν A

)n−mk
p

k!bkΓ (fracn−mkp+ 1)

∫ ∞
0

e−t
2
t
2n−mk

p dt

=

[ n
m ]∑
k=0

(−1)k(B)kΓ
(
2n−mk

p + 1
)(

x log(a)
√
ν A

)n−mk
p

2
2n−mk

p k!bk Γ
(
n−mk
p + 1

)
Γ
(
2n−mk

2p

) .

Hence, the generalized Legendre matrix polynomials can be given by

Pn,m,p(x,A,B; a, b, ν)

=

[ n
m ]∑
k=0

(−1)k(B)kΓ
(
2n−mk

p + 1
)(

x log(a)
√
ν A

)n−mk
p

2
2n−mk

p k!bk Γ
(
n−mk
p + 1

)
Γ
(
2n−mk

2p

) ,

or

Pn,m,p(x,A,B; a, b, ν) =

[ n
m ]∑
k=0

(−1)k(B)k
(
1
2

)
2n−mk

2p

k!bk Γ
(
n−mk
p + 1

) (x log(a)
√
ν A

)n−mk
p

,

which completes the proof of (3.1).
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Using (1.8), (2.3) and (3.2), we can write

1

n!

∫ ∞
0

exp(−t)t
n
mHn,m,p(xt

m−p
p , A,B; a, b, ν)dt

=

[ n
m ]∑
k=0

(−1)kΓ
(
n−(m−p)k

p + 1
)
yk

k!Γ
(
n−mk
p + 1

) (x
√
mA)

n−mk
p .

Hence, the generalized Chebyshev matrix polynomials of the second kind
can be defined by

Un,m,p(x,A,B; a, b, ν)=

[ n
m ]∑
k=0

(−1)k(B)kΓ
(
n−(m−p)k

p + 1
)

k!bkΓ
(
n−mk
p + 1

) (
x log(a)

√
ν A

)
n−mk

p .

In a similar way, we define the generalized Chebyshev matrix polynomials
of the first kind

Tn,m,p(x,A,B; a, b, ν)

= n

[ n
m ]∑
k=0

(−1)k(B)kΓ
(
n−(m−p)k

p

)
k!bkΓ

(
n−mk
p + 1

) (
x log(a)

√
ν A

)n−mk
p

, n > 0,

the generalized Chebyshev matrix polynomials of the third kind

Wn,m,p(x,A,B; a, b, ν)

=
1

n+ 1

[ n
m ]∑
k=0

(−1)k(B)kΓ
(
n−(m−p)k

p + 2
)

k!bkΓ
(
n−mk
p + 1

) (
x log(a)

√
ν A

)n−mk
p
, n >−1,

and the generalized Gegenbauer matrix polynomials in the form

Cv
n,m,p(x,A,B; a, b, ν)

=
1

Γ(v)

[ 12n]∑
k=0

(−1)k(B)kΓ
(
n−(m−p)k

p + v
)

k!bkΓ
(
n−mk
p + 1

) (
x log(a)

√
ν A

)n−mk
p

.

Using (1.7) and (1.8), we get the explicit expressions (3.3), (3.4), and (3.5)
in a similar manner. �

4. Fractional integrals and derivatives for the generalized
Hermite matrix polynomials

In this section, we determine the fractional integrals and fractional deriva-
tives for the generalized Hermite matrix polynomials Hn,m,p(x,A,B; a, b, ν).
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Theorem 4.1. The generalized Hermite matrix polynomials satisfy the
formula

Iµ{Hn,m,p} =
1

(n+ 1)pµ

(
log(a)

√
ν A

)−µ
×Hn+pµ,m,p(x,A,B; a, b, ν), n+ pµ ≥ 0.

(4.1)

Proof. From (2.3) and (1.9), we have

Iµ{Hn,m,p} =
1

Γ(µ)

∫ x

0
(x− t)µ−1Hn,m,p(x,A,B; a, b, ν)dt

=
n!

Γ(µ)

[ 1
m
n]∑

k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
n−mk
p + 1

) ∫ x

0
(x− t)µ−1t

n−mk
p dt.

Putting t = xu, dt = xdu, t = 0, u = 0, and t = x, u = 1, we get∫ x

0
(x− t)µ−1t

n−mk
p dt = x

µ+n−mk
p

Γ(µ)Γ
(
n−mk
p + 1

)
Γ
(
µ+ n−mk

p + 1
) ,

and we can write

Iµ{Hn,m,p} = n!

[ 1
m
n]∑

k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
µ+ n−mk

p + 1
) x

µ+n−mk
p

=

(
log(a)

√
ν A

)−µ
(n+ 1)pµ

Hn+pµ,m,p(x,A,B; a, b, ν),

which gives (4.1). �

Theorem 4.2. The generalized Hermite matrix polynomials have the left-
sided operator of Riemann–Liouville fractional integral

bIαx{Hn,m,p(x− b, A,B; a, b, ν)} =
1

(n+ 1)pα

(
log(a)

√
ν A

)−α
×Hn+pα,m,p(x− b, A,B; a, b, ν), n+ pα ≥ 0.

(4.2)

Proof. Using (2.3) in the right hand side of (1.10), we have

bIαx{Hn,m,p(x− b, A,B; a, b, ν)}

=
1

Γ(α)

∫ x

b
(x− t)α−1Hn,m,p(t− b, A,B; a, b, ν)dt

=
n!

Γ(α)

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
n−mk
p + 1

) ∫ x

b
(x− t)α−1(t− b)

n−mk
p dt.
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Putting u = t−b
x−b , t − b = (x − b)u, dt = (x − b)du t = b, u = 0, and t = x,

u = 1, we get∫ x

b
(x− t)α−1(t− b)

n−mk
p dt = (x− b)α+

n−mk
p

Γ(α)Γ
(
n−mk
p + 1

)
Γ
(
α+ n−mk

p + 1
) ,

and we can write

bIαx{Hn,m,p(x− b, A,B; a, b, ν)}

= n!

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
α+ n−mk

p + 1
) (x− b)α+

n−mk
p

=

(
log(a)

√
ν A

)−α
(n+ 1)pα

Hn+pα,m,p(x− b, A,B; a, b, ν).

Thus, we get the desired result (4.2). �

Theorem 4.3. For the generalized Hermite matrix polynomials, one has

xIαc {Hn,m,p(c− x,A,B; a, b, ν)} =
1

(n+ 1)pα

(
log(a)

√
ν A

)−α
×Hn+pα,m,p(c− x,A,B; a, b, ν), n+ pα ≥ 0.

(4.3)

Proof. With the help of (1.11) and (2.3), one obtains (4.3). �

Theorem 4.4. The Weyl integral of the generalized Hermite matrix poly-
nomials of order α satisfies the formula

xW
α
∞{Hn,m,p(x,A,B; a, b, ν)} =

(−1)α

(n+ 1)pα

(
log(a)

√
ν A

)−α
×Hn+pα,m,p(x,A,B; a, b, ν), n+ pα ≥ 0.

(4.4)

Proof. From (2.3) and (1.12), we have

xW
α
∞{Hn,m,p} =

1

Γ(α)

∫ ∞
x

(t− x)α−1Hn,m,p(t, A,B; a, b, ν)dt

=
n!

Γ(α)

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
n−mk
p + 1

) ∫ ∞
x

(t− x)α−1t
n−mk

p dt.

Putting u = x
t , t = x

u , dt = − x
u2
du, t =∞, u = 0 and t = x, u = 1, we get∫ ∞

x
(t− x)α−1t

n−mk
p dt = x

α+n−mk
p

Γ(α)Γ
(
mk−n
p − α

)
Γ
(
mk−n
p

) ,
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and

xW
α
∞{Hn,m,p} = n!

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
α+ n−mk

p + 1
) x

α+n−mk
p

=
(−1)α

(
log(a)

√
ν A

)−α
(n+ 1)pα

Hn+pα,m,p(x,A,B; a, b, ν),

which gives (4.4). �

Theorem 4.5. Let α ∈ C, Re(α) ≥ 0, and let n = [Re(α)] + 1. Let

xD
α
c be the right sided Riemann–Liouville fractional derivative. Then for

the generalized Hermite matrix polynomials, one has

xD
α
c {Hn,m,p(c− x,A,B; a, b, ν)} =

Γ(n+ 1)

Γ(n+ 1− pα)

(
log(a)

√
ν A

)α
×Hn−pα,m,p(c− x,A,B; a, b, ν), n− pα ≥ 0.

(4.5)

Proof. Using (2.3) and (1.14), we have

xD
α
c {Hn,m,p(c− x,A,B; a, b, ν)} =

n!(−1)n

Γ(n− α)

[ n
m ]∑
k=0

(−1)k(B)k

k!bkΓ
(
n−mk
p + 1

)
×
(

log(a)
√
νA
)n−mk

p

(
∂

∂x

)n ∫ c

x

(c− t)
n−mk

p

(t− x)α−n+1
dt.

Putting u = c−t
c−x , c− t = (c− x)u, dt = (c− x)du, t = c, u = 0, and t = x,

u = 1, we get∫ c

x

(c− t)
n−mk

p

(t− x)α−n+1
dt = (c− x)

n−α+n−mk
p

Γ(n− α)Γ
(
n−mk
p + 1

)
Γ
(
n+ n−mk

p − α+ 1
) ,

and we can write

xD
α
c {Hn,m,p(c− x,A,B; a, b, ν)}

= n!

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(

1− α+ n−mk
p

) (c− x)
n−mk

p
−α

=

(
log(a)

√
ν A

)α
Γ
(
n+ 1

)
Γ (n− pα+ 1)

Hn−pα,m,p(c− x,A,B; a, b, ν),

which gives (4.5). �
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Theorem 4.6. The left-sided operator of Riemann–Liouville fractional
derivative for the generalized Hermite matrix polynomials satisfies the for-
mula

bD
α
x{Hn,m,p(x− b, A,B; a, b, ν)} =

Γ(n+ 1)

Γ(n+ 1− pα)

(
log(a)

√
ν A

)α
×Hn−pα,m,p(x− b, A,B; a, b, ν), n− pα ≥ 0.

(4.6)

Proof. With the help of (1.13) and (2.3), one can obtains (4.6). �

Theorem 4.7. The Weyl fractional derivative of the generalized Hermite
matrix polynomials of order α satisfies the formula

xD
α
∞{Hn,m,p} =

(
log(a)

√
ν A

)α
× (−n)pαHn−pα,m,p(x,A,B; a, b, ν), n− pα ≥ 0.

(4.7)

Proof. Using (2.3) and (1.15), we have

xD
α
∞{Hn,m,p} =

n!(−1)n

Γ(m− α)

[ n
m ]∑
k=0

(−1)k(B)k

(
log(a)

√
νA
)n−mk

p

k!bkΓ
(
n−mk
p + 1

)
×
(
∂

∂x

)m ∫ ∞
x

t
n−mk

p

(t− x)α−n+1
dt.

Putting u = x
t , t = x

u , dt = − x
u2
du, t =∞, u = 0, and t = x, u = 1, we get

∫ ∞
x

t
n−mk

p

(t− x)α−m+1
dt =

(−1)
α−m−n−mk

p

(−1)
−n−mk

p

x
m−α+n−mk

p

Γ(m− α)Γ
(
n−mk
p + 1

)
Γ
(
m− α+ n−mk

p + 1
) ,

and we can write

xD
α
∞{Hn,m,p} =

(−1)α
(

log(a)
√
ν A

)α
Γ
(
n+ 1

)
Γ (n− pα+ 1)

Hn−pα,m,p(x,A,B; a, b, ν),

which gives (4.7). �

5. Concluding remarks

The generalized Hermite matrix polynomials discussed in this paper are be
useful for investigators in various problems of physics, applied sciences and
engineering, and comprise an emerging field of study with important results
in the literature. In this paper, we extend the generalized Hermite matrix
polynomials of one variable to two variables. We define the generalized
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Hermite matrix polynomials of two variables in a series as follows:

Hn,m,p(x, y,A,B; a, b, ν) = n!

[ n
m ]∑
k=0

(−1)k(B)ky
k

k!bkΓ
(
n−mk
p + 1

) (x log(a)
√
νA
)n−mk

p
.

We also consider the sum
∞∑
n=0

Hn,m,p(x, y,A,B; a, b, ν)
tn

n!

=
∞∑
n=0

[ n
m ]∑
k=0

(−1)k(B)ky
k

k!bkΓ
(
n−mk
p + 1

) (x log(a)
√
νA
)n−mk

p
tn

=

∞∑
n=0

∞∑
k=0

(−1)k(B)ky
k

k!bkΓ (n+ 1)

(
x log(a)

√
νA
)n
tnp+mk

= axt
p
√
νA

(
1 +

ytm

b

)−B
,

∣∣∣∣ytmb
∣∣∣∣ < 1.

Using these equalities, we obtain the matrix generating function for the
generalized Hermite matrix polynomials of two variables in the form

∞∑
n=0

Hn,m,p(x, y,A,B; a, b, ν)
tn

n!
= axt

p
√
νA

(
1 +

ytm

b

)−B
.

The results established in this paper express a clear idea that the use of
fractional integrals and fractional derivatives techniques provide a simple and
straightforward method to get new relations for special matrix polynomials
and matrix functions.
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[4] E. Defez and L. Jódar, Chebyshev matrix polynomails and second order matrix differ-
ential equations, Util. Math. 61 (2002), 107–123.

[5] V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus,
Pergamon Press, Oxford – Edinburgh – New York, 1965.

[6] Fractional Calculus, Edited by A. C. McBride and G. F. Roach, Research Notes in
Mathematics 138, Pitman, Boston, 1985.
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