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Boundedness of the L-index in a direction of entire
solutions of second order partial differential
equation

ANDRIY BANDURA AND OLEH SKASKIV

ABSTRACT. We construct a continuous function L : C* — (0, +00)? such
that every entire solution of a certain second order partial differential
equation has bounded L-index in a direction b = (b1, b2) € C*\ {0}. On
the other hand, the entire bivariate function F(z1,22) = cos \/M is a
solution of this equation. The function F' has unbounded index in each
direction b € C?\ {0}. The constructed function L is a full solution of
a problem posed by A. A. Kondratyuk’s in 2007 about the existence of
the function L with specified properties. We also suggest a continuous
function L; : C* — (0,400)? such that the function F has bounded
Li-index in every direction b € C™ \ {0}.

1. Introduction

Entire functions of bounded index have been used in the theory of value
distribution and differential equations [2,4,8,11,14-16]. A full bibliography
can be found in [6]. In particular, Strelitz [13] developed a Wiman-Valiron
method for a description of the asymptotic behavior of analytical solutions of
ordinary differential equations. He [14] also used the method to investigate
index boundedness of entire solutions of algebraic differential equations. In
this paper, we apply a partial differential equation to establish the bound-
edness of the L-index in a direction of a function F'. Namely, the present
work is devoted to the construction of a function L such that the function

P(z29)P

F(z1,22)=cos \/@—Z(_l)@(p)'
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has bounded L-index in a direction b = (b1, b2) (see the definition below). It
is an interesting problem in view of the properties of the function F(z1, 22):
for a given 2% = (29, 29) € C?, the function g,o(t) = F(2 +tby, 29 + tby) has
bounded index as a function of the variable ¢, but F(z1, 22) is of unbounded
index in the direction b = (b1, bs), i.e., indices of F(2 + tby, 29 + thy) are
uniformly unbounded in 2°. Simultaneously, it is known [5] that, for an
entire function F, there exists a positive continuous function L(z) such that
F(z) is a function of bounded L-index in the direction b if and only if the
multiplicities of zeros of the function g,o(t) #Z 0 are uniformly bounded in
29,

Note that the concept of bounded L-index in a direction has a few advan-
tages in the comparison with traditional approaches to study the properties
of entire solutions of differential equations. In particular, if an entire solu-
tion has bounded index, then it immediately yields its growth estimates, a
uniform in a sense distribution of its zeros, a certain regular behavior of the
solution, etc (see the bibliography in [6]).

2. Main definitions and notations

An entire function F(z), z € C", is called a function of bounded L-index
in a direction b € C™\ {0} (see [4,6,7]) if there exists mg € Z such that,
for every m € Z and every z € C",

1 O"F(z)| _ N 1 |0FF(2)
mlLm(z) | obm | = T\ RILE(z) | obk

:nggm%, (1)

n
where L;igz) =F(2), 81;1(:) = Zl 852(;) b; = (gradF,b), Lgigf) = %(82:,5(13)),
k> 2. ’

The least such integer mo = mg(b) is called the L-index in the direction
b € C"\{0} of the entire function F(z), and is denoted by Ny, (F, L) = my. If
such an mg does not exist, then F' is called a function of unbounded L-index
in the direction b, and we write Ny (F, L) = oc.

If L(z) = 1, then F(z) is called a function of bounded index in the direction
b, and Nb(F) = Nb(F, 1)

In the case n = 1, we obtain the definition of an entire function of one
variable of bounded I-index (see [9,12]); in the case n = 1 and L(z) = 1, it
is reduced to the definition of bounded index, suggested by Lepson [10].

Forn >0, z€ C", b= (by,...,b,) € C"\ {0}, and a positive continuous
function L : C" — Ry, we define

. L(z +tb) n
)\b t =inf{ ——F -t < ——m——
1(27 0)77) m {L(Z+t0b) | 0| = L(Z+t0b> }a

AP(z,n) = inf{A\D(2,t0,m) : to € C}, AD(n) = inf{AD(z,m) : 2 € C"},
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L(z 4+ tb) n

A (z,t = —— ittty < —m—

2(2 to, 1) SUP{L(Z Taob) Tl S by } ’

A5 (z,m) = sup{A3 (2, t0,m) : to € C}, AB(n) = sup{A3(z,n) : z € C"}.
By Q} we denote the class of functions L, which satisfy the condition

(Vn>0): 0<AP(n) < AB(n) < +oo. (2)

For a positive continuous function I(z) with z € C, and zp € C, n > 0,
we denote Ai(z0,1) = AP(0,20,7) and A2(20,1) = A2(0,20,n) in the case
2=0,b=1,n=1, L =1, and M\ (n) = inf{A\1(20,7) : 20 € C}, Xa(n) =
sup{A2(20,7) : 20 € C}, and Q@ = Q1.

Let L*(z) be a positive continuous function in C". We write L =< L* if
for some 61,65 with 0 < 81 < s < +00, and for all z € C", the inequalities
01L(z) < L*(z) < 62L(2) hold.

For a given z* € C", we denote g.0(t) := F(2° +tb). If one has g,0(t) # 0
for all t € C, then GP(F,z°) := 0; if g,0(t) = 0, then GP(F,2°) := {0 +
tb:t € C}. If g.o(t) # 0 and a) are zeros of the function g,o(t), then

b 0y ._ 0 ) 0 r
Let
Gr(F) = | GR(E"). (3)
20eCn

Remark that if L(z) = 1, then GP(F) c {z € C":dist(z,Zr) < r|b|},
where Zr is the zero set of the function F. By n(r, 29 to, 1/F) = Z|a2—t0|gr 1
we denote the counting function of the zero sequence (a?).

Exploring properties of entire functions of bounded L-index in a direction,
we obtained the following assertion.

Theorem 1 (see [4], [6]). An entire function F(z) is of bounded L-index
in the direction b if and only if there exists a number M > 0 such that, for
all 20 € C", the function g.o(t) is of bounded I o-index with N(g,0,l0) <
M < +00 as a function of variable t € C, and Ny(F, L) = max{N(g,0,l,0) :
20 e C}.

In view of Theorem 1, a natural question (see [3]) arises.

Problem 1. Does there exist an entire function F(z), z € C", with
N(g,0,l0) < +oo for every 2 € C*, but Ny,(F,L) = +00?
We gave an affirmative answer (see [3]) to the above-mentioned question:

we proved that

)p Z]. 22 )p

= cos\/z122 = v~ (17
F(z1,22) = cos/z122 pz;) @p)!
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is of unbounded index in the direction b = (1,1). Recently, this result was
generalized for each direction b € C2\ {0} in [6].

At the Lviv city seminar on the theory of analytic functions (fall, 2007),
A. A. Kondratyuk asked the following question.

Problem 2. Does there exist a continuous function L : C*> — R, provid-
ing the boundedness of L-index in the direction b of the function F'(z1, z9) =
CcoS+/Z1227

Using methods from [3], we give an answer to Kondratyuk’s question in
Theorem 5.

3. Auxiliary propositions

The notation L < L* means that for some 01,6 € Ry with 0 < 61 < 6y <
+oo and for all z € C", the inequalities 61 L(z) < L*(z) < 62L(z) hold.

Theorem 2 (see [4,6]). Let L € Q}, L < L*. An entire function F(z) is
of bounded L*-index in the direction b if and only if F' is of bounded L-index
in the direction b.

We consider the partial differential equation (PDE)

OPw P~ 1w
go(z)@ + Ql(Z)W + ...+ gp(z)w = h(z). (4)

Theorem 3 (see [4,6]). Let L € QF, let entire functions go(2), ..., gp(2),
h(z) be functions of bounded L-index in a direction b, and suppose that, for
every r > 0, there exists T = T(r) > 0 such that, for each z € C"\GP(go)
and j=1,...,p,

195(2)] < TLA(2)lgo )] 5)
Then an entire function F(z) satisfying (4) has bounded L-index in the di-
rection b.

Recently, an improved version of Theorem 3 was obtained in [8] with
restrictions for the values of r.

By G, we denote the closure of a domain G. The following assertion gives
sufficient conditions for a positive continuous function to belong to Q}. (some
other similar propositions are given in [1]). In a conversation with the au-
thors (2015), S. Yu. Favorov posed a problem to describe functions in Qp
by their differential characteristics. The next lemma is a proposition of such

type.

Proposition 1. Let L : C" — C and let g—ﬁ be continuous functions in a
domain G. If there exist numbers P > 0 and ¢ > 0 such that, for all z € G,

<P (6)

1 ‘6L(z)
c+|L(z)| | Ob
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then the inequalities

0< inf inf inf La(z+1tb)

2€G  t0€C,  |t—to|<+—F—L— Ll(z—l-t()b)
2+tobel trlztiob)

Li(z +tb)

<sup sup sup m

G to€C, |t—to|<+—"~L—~

=< z+z?obe@| oIS TR

hold for every n > 0, where L1(z) = c+|L(2)|. If, in addition, G = C™, then
L, € Qﬁ

Proof. Clearly, the function L;(z) is positive and continuous. For given
z € C" and tg € C, we define an analytic curve

o(T) = z+tob + Teiarg(t_to)b, T € [0, ]t — to]-

For every continuously differentiable function g of real variable 7, the in-
equality %\9(7)] < |¢'(7)| holds except for the points where ¢'(7) = 0. Using
restrictions of this lemma, we deduce the upper estimate of )\E(z,to, n) for
the function L :

B c+|L(z +tb)| n
e to) =m0 { S 0 e
= sup {exp {In(c + |L(z + tb)|) — In(c + |L(z + tob)|) } }

[t—to|<n/(c+|L(z+tob)])

- [t=tol d(c + |L(z + p(r)b)]) | '
= sup{exp{/o e+ 1L(z - p(r)b)] } Dt —to] < c+ |L(z+t0b)}q

ol gl (oL el
é“p{"p{/o e e '}}

—c+|L(z+tgb)]

< sup {exp{ P\b|77 } < 77>
- ‘t*to‘g n C+ ’L z + tob ‘

HIL(zF10B)|

Hence, for all n > 0,

Plb
A2(n) = sup sup AB(z,to,n) < exp (\In) <
2€C™ tpeC c

Using the inequality %|g(t)] > —|¢/(t)], it can be proved that Ai(y) >
exp < P\bln) > 0. for every n > 0. Therefore, L; € Q}. O

Note that the assertion of Proposition 1 is new also in the case n = 1.
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Lemma 1. Let € > 0, b = (b1, b) € C?\ {0}, and
|b122+b2z1|

Ley(21,22) := Vz122|

|b122J€rb221| + 1’

+1, |z122] > €%
|21 20| < €2.
Then L.y, € Q3.

Proof. At first, we show that L., € Q. Let by # 0, by # 0, [2122] > £2.
Then
A3 (2,1%,m)
:Sup{(’bl (22 + tbg)—l—bg(zl + tb1)| +1)/<|bl (22+t0b2)+b2(2’1 + tobl)‘ +1)7
V(21 +101) (22 + tho))] V(21 + tob1) (22 + toba)|

U
’t - to‘ < |b1 (z2+tob2)+ba(214t0b1)| 41 }
\/|(z1+tob1)(22+t052)|

“ |b1 (22 4+tb2)+bo (21 +1b1)| |b1 (22 +tob2) +b2(21+tob1)]
SHOF@K VGt )z 1 o)) “>/ ( V/[Gor o) (22 Fioba) “>}‘

Since ||z; +bjt| — |25 + bjtol| < [z + bjto — (2 + bito)| = [bj] - [t —to| < |bj[n,
it follows that ‘Zj + bjt0| — |b]‘7] < |Zj + bjt| < |Zj + bjto‘ + ’b]|7’/ Hence,

ACRR)
b1 (29 + tha) +b2(21 + thy)|++/|(22 + tha) (21 + tby)|
‘bl (ZQ + tobg)-i-bz(zl + tobl)‘—l-\/’(a + tob1)(22 -+ ton)’

y V1(z1+ tobr) (za+ tobs)] }
VI(z2+ tha) (214 th)|

< sup{ (Jba (22 + toba)| + ba(21 + tobr)| + 2lbibaln
toeC

< sup
[t—tol<n

+/ (|21 + tob1| + |b1|n) (|22 + toba| + |b2!?7)>/(|b1(22 + toba) + ba(z1 + tob1)]

2 > su V] (z1+tob1) (z2+toba)|
+\/’( 1+t0b1)( 2+t0b2)‘)}xtoe%{\/(|Z2+t0b2‘_‘b2|7])(Zl+t0b1|—|b1|n)|}

< Cz(n,bl,bg) < +00.
Similarly, AP(2,% ) > C1(n, by, b2) > 0.
Let by # 0, by # 0, |z120] < €2, and Lq(z1,22) = %. Then
1 L 2|b1b
OL1(z1,22)| |b1ba| < 2bba|.
1+ |L1(2’1,22)| Ob

= ‘ble:bQZﬂ +1
Hence, L.y, € Q} by Proposition 1. The cases by = 0, b # 0 or by # 0, and
ba = 0, can be considered analogously. O
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4. Main results

We consider the following partial differential equations related to a direc-
tion b = (bl, bQ):

62F + (512’2 — 5221)2 8£

b b 3
+ (b2 + boa)” Z 271) F(z1,22) =0,

z122(b122 + baz1)

for b1 75 0, b2 7& 0, and

O*F oF

W + 2b1% + bIZQF(Zl, 22) = 0, (8)
for by # 0, b = 0. For b; = 0, by # 0, one can consider a PDE which
matches to (8) up to permutations of the variables z; and zs.

4Z1

Theorem 4. Let b = (by,by) € C2\ {0}. If an entire bivariate function
F(z1, z2) satisfies either equation (7) or (8), then, for each € > 0, the func-
tion F' has bounded L. -index in the direction b, where L., is the function
from Lemma 1.

Proof. We will verify the conditions of Theorem 3 for the partial differential
equation (7). The functions
go(21,22) = z122(b122 + baz1), g1(21,22) = (brz2 — baz1)?/2
and
g2(21, 22) = (b122 + bo21)* /4

are polynomials. Therefore, they have bounded L-index in the direction b
for every positive continuous function L(z1, 2z2).

We assume that by # 0, by # 0. For z; = 2? + bit, z9 = Zg + bot, the
function

go(ZO + tb) = (Z? + blt)(zg + bgt)(blzg + bzz? + 2b1()2t)

has three zeros
2 CRE L s

by’ by 2b1bo
The condition (21, z2) € C?\ GP(gog) means that

t1 =

|t —t;] > for any t;, j € {1,2,3}.

r
Lgyb(zo + tjb)
Hence,

|22 + bt — (22 + bkt]’)| > T|bk|/L6’b(ZO + tjb), ke {1,2}.
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In particular,
|21 = |20 + but| = 2] + but — (2] + bata)|
7|b1 | B er|by|
Lop (0,8 - 220) =+ 1ba(e - §220)] 9)
er|by | 7|b1]

B g+ |b12’8 + blbgt — bQZ'? — blbgt‘ N 1—Hb122 — bgzll/&T7

>

|zo] = |29 + bat| = |29 + bot — (29 + bats)|

S 7|ba| _ er|bs|
Len(2) — 829,00 e+ |ba(=) — 129))] (10)
. 57“’()2‘ . 57’”()2‘
e + |b22’? + bobyt — blzg — blb2t| N 6+|b12’2 — b221|/67
b129 + by2?

Dby |~ Lon(0 + 13b)

|2b1bot 4 b1 29 + bo 20| > 2|bibo|r &

b1 (29 + bot) 4 ba(2) + bit)| > 2|biba|r < |br2a + bozi| > 2|bibolr.  (11)
From (11), for |z122] > €2 and (21, 22) € C%\ GP(go), we obtain

1[b122 + by |?

Z1%22 b12’2 + b221
I Janl |z122( )|

1
lg2(21, 22)| = 1“1122 + b221|3 =

2
1 ( |b1z2 + baz1| 1
_ - (W l90(2)] < L2 b (21, 22) |0 (21, 22)),
1<2

4
|91 (21, 22)| _ |b122 — baz1 |?
|go(21, 22)|Le b (21, 22) V|z122]||b122 + baz1|(|b1z2 + bozi| + v/|2122])
b2 — bol?
= | Z1 ’ S Cl(’f‘7€)7

Vi0zzel|b1 2 + bo|([b1 2 + bo| + /[ 2])

where Ci(r, ) is some positive constant independent of z; and zp. The last
inequality is valid because |z129| > €2, the degree of the numerator of the
fraction % is not greater than the degree of the denominator and, in view of
(11), the modulus of the denominator is greater than some positive constant.

For |2122| < €% and (21, 22) € C?\ GP(go), we consider the following three
cases:

a) |z1] <e,|z2| <e. In view of (9) and (10), the following inequalities are
valid:

1 1 [b1zo + boz1|?
l92(21, 22)| = 1“9122 + 5221|3 = 4’128221|52‘b122 + baz1|
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1 e? 1 (e+]b122 — boz1])?
<-I? —  <-L?
< Lew(a122)lg0(21, 22)] el Zb (21, 22)[g90(21, 22)| 2lbba]
2 2
e“(1 + |b1| + |b2|)
=< 472b1bo| Lg,b(zlaz2)’90(21722>‘,
|gl(21522)| . |b122 — b221|2

l90(21, 22)[Leb(21:22) 9121 20 (b 20 + boz1))| (@ i 1)

2 [ |biza—baz|
rze = bzt P (P22 1) 2 )2+ ol + 1)
2’/’2|b1b2(b122 +b221)| B 4T3|b1l)2‘

b) |z1| > €, |22] < e. In view of (10) and (11), the following inequalities hold:

|b12a + boz |2
22

1 62 1 ele + b122—62z1
§*Lg,b(zhZ2)|90(21,Z2)|m<*Lg,b 21, 22)|go(21, 22)| et )

€2|b122 + bgzl‘

>~ =

1
|g2(21,22)| = Z’blzz + bQZ1|3 =

—~

4 4
e(1 4 [b1| + [b2])
47“‘[)2‘

’2152’7”

Lg,b('zlv 22)|g0(21, 22)],

|gl (Zla Z2)| _ ’1)12’2 — b221|2
190021, 22)| e (Z1:22) 2121 29(br2g + ba2a)| (7'1)122?221‘ + 1)

b —b 2 b by |)?
< b122 — ba21 | < |21 (|b1] + [b2]) < Cy(r,2),
2T‘|Zlb2(b12’2 + b221)| 2T‘b2| . |b12’2 + b221|

where Cy(r, €) is a positive constant independent of z; and 2.

c) |z1] < e, |z2| > €. Using (9) and (11), this case can be considered as the
previous case.

By Theorem 3, the function F'(z1, 22) has bounded L. p-index in the di-
rection b = (b1, be), where by # 0, bg # 0.

Let b = (b1,0), where b; # 0. Now we will verify the conditions of Theorem
3 for the partial differential equation (8). The functions go(z1,22) = 21,

g1(z1,22) = %1, 92(z1,22) = bi% are polynomials or constants. Hence, they
have bounded L-index in any direction and for every positive continuous
function L.

Let r > 0. For 21 = 2 + tby, the function go(2 + tby, 20) = 20 + tb; has

0
one zero ty = —%. The condition (21, 29) € C?\ GP(go) means that

T r r
t —to| > — _ .
o Lep(a) +tob122)  Lep(0,22) Izl g
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Hence,
b
‘Zl| = |Z? + blt — (Z(l) + blto)‘ = |b1(’l“ — to)‘ > ‘ 1|T (12)
|b122] +1
g
For |z122| > €% and (21, 29) € C%\ GP(go), we have
(x| b1 | _ b1 _ L
90(2)[Lep(2)  2(|biy/zize] + 1)) 2(|bie] + |z1]) — 2¢”

g2(2)]  _ b7 22| _ 2] -1
90()IL20(2) 4z (] ol 42 AR 2| + 2[bry/z27] + [a]) 4

In view of (12), for |z;29] S e2 and (21, 29) € C?\ GP(go), the following
estimates are valid:

1) [b1] o
190(2)[Lep(2) 2|z |(azzl 4 q) ~ 27

lg2(2)] b3 22| brea] €
90()LZp(2) 4z |(Brz2l 1)z " gzl gy " dr
By Theorem 3, the function F'(z1, z2) has bounded L, p,-index in the direction
b = (b1,0). ]

Theorem 5. The entire bivariate function F(z1,z9) = cos./z1z2 has
bounded L. y-index in the direction b.

Proof. We prove that the partial differential equation (4) has entire solution
F(z1,22). Let by # 0, by # 0. Formally, the first and second order directional
derivatives of F' are

8F sin 4/
—(b12z2 + baz1) 12n TIVAS
\/ 2122

62F 1 29 1 biv/z2 by 1

— (b b - = — b
b2 2<1\/ i 2\/22> vaz 2<< 3/2+ \/%) 1

by 1 - (b1Z2 + bgzl)

+<5 % - = 3/2 ) sin/z129 = ——42122 F(z1, 22)

(b1za — boz1)? . _ (brzg + boz)?
+ 4(2122>3/2 sin/z129 = 1o

2./2129 oF (blzg + b221)2
cvam OF_ mihalp, ) -
b1z2 + 522’1 Ob 42129

(612’2 — 6221)2
4(21,22)3/2
(b1Z2 — 5221>2 oF

22122(b122 + 5221) %

F(Zl, ZQ) —

Hence, we obtain

O*F n (b122 — b221)2 8£ n (blzg + b221)3
Ob? 2 0b 4

212'2([)12’2 + bgzl) F(Zl, 22) =0,
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i.e., F satisfies equation (7).

If by # 0, bo = 0, then we calculate the directional derivatives of F' and
similarly show that the function satisfies (8). By Theorem 4, the function F
has bounded L. p-index in the direction b. ]

Theorem 5 implies the following assertion.
Theorem 6. Let

|22 [EA] )
L. (z1,22) = R R |z129| > €%, ‘

zo|+|2z
|2\€\1|+1, ’zlz2|§€2.

Then, for each b € C" \ {0}, one has L. € Q} and the entire bivariate
function F(z1,z2) = cos /2122 has bounded L.-index in the direction b.

Proof. The function L. (21, 22) does not exceed c3 - Lo(z1, 22): indeed,

[brzatboz] | 4 <c3 ( % + /=g 1) |21z > €2,

ViER 22| (13)
|b122+b221| +1<e¢ <|22\+|21| + 1) 2129 < 2
z 3 c ) 1<2 )

where c¢3 = max{|b1], |b2], 1}.

In fact, in the proof of Theorem 2 (see the proofs of Theorem 3 in [4] and
Proposition 2.1 in [6, p. 25]), we proved that if G(z) has bounded L;-index
in the direction b € C™ \ {0} and, for all z € C" one has Li(z) < 0 - La(z),
when L1, Ly € Qp, then G(z) has bounded La-index in the direction b.
From (13), it follows that F(z1,22) is a function of bounded L.-index in
each direction b. O
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