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Boundedness of the L-index in a direction of entire
solutions of second order partial differential

equation

Andriy Bandura and Oleh Skaskiv

Abstract. We construct a continuous function L : C2 → (0,+∞)2 such
that every entire solution of a certain second order partial differential
equation has bounded L-index in a direction b = (b1, b2) ∈ C2 \ {0}. On
the other hand, the entire bivariate function F (z1, z2) = cos

√
z1z2 is a

solution of this equation. The function F has unbounded index in each
direction b ∈ C2 \ {0}. The constructed function L is a full solution of
a problem posed by A. A. Kondratyuk’s in 2007 about the existence of
the function L with specified properties. We also suggest a continuous
function L1 : C2 → (0,+∞)2 such that the function F has bounded
L1-index in every direction b ∈ Cn \ {0}.

1. Introduction

Entire functions of bounded index have been used in the theory of value
distribution and differential equations [2,4,8,11,14–16]. A full bibliography
can be found in [6]. In particular, Strelitz [13] developed a Wiman–Valiron
method for a description of the asymptotic behavior of analytical solutions of
ordinary differential equations. He [14] also used the method to investigate
index boundedness of entire solutions of algebraic differential equations. In
this paper, we apply a partial differential equation to establish the bound-
edness of the L-index in a direction of a function F . Namely, the present
work is devoted to the construction of a function L such that the function

F (z1, z2)=cos
√
z1z2=

∞∑
p=0

(−1)p(z1z2)
p

(2p)!
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has bounded L-index in a direction b = (b1, b2) (see the definition below). It
is an interesting problem in view of the properties of the function F (z1, z2):
for a given z0 = (z01 , z

0
2) ∈ C2, the function gz0(t) = F (z01 + tb1, z

0
2 + tb2) has

bounded index as a function of the variable t, but F (z1, z2) is of unbounded
index in the direction b = (b1, b2), i.e., indices of F (z01 + tb1, z

0
2 + tb2) are

uniformly unbounded in z0. Simultaneously, it is known [5] that, for an
entire function F , there exists a positive continuous function L(z) such that
F (z) is a function of bounded L-index in the direction b if and only if the
multiplicities of zeros of the function gz0(t) 6≡ 0 are uniformly bounded in
z0.

Note that the concept of bounded L-index in a direction has a few advan-
tages in the comparison with traditional approaches to study the properties
of entire solutions of differential equations. In particular, if an entire solu-
tion has bounded index, then it immediately yields its growth estimates, a
uniform in a sense distribution of its zeros, a certain regular behavior of the
solution, etc (see the bibliography in [6]).

2. Main definitions and notations

An entire function F (z), z ∈ Cn, is called a function of bounded L-index
in a direction b ∈ Cn \ {0} (see [4, 6, 7]) if there exists m0 ∈ Z+ such that,
for every m ∈ Z+ and every z ∈ Cn,

1

m!Lm(z)

∣∣∣∣∂mF (z)

∂bm

∣∣∣∣ ≤ max

{
1

k!Lk(z)

∣∣∣∣∂kF (z)

∂bk

∣∣∣∣ : 0 ≤ k ≤ m0

}
, (1)

where ∂0F (z)
∂b0 :=F (z), ∂F (z)

∂b :=
n∑
j=1

∂F (z)
∂zj

bj = 〈gradF,b〉, ∂
kF (z)
∂bk

:= ∂
∂b

(∂k−1F (z)
∂bk−1

)
,

k ≥ 2.
The least such integer m0 = m0(b) is called the L-index in the direction

b ∈ Cn\{0} of the entire function F (z), and is denoted by Nb(F,L) = m0. If
such an m0 does not exist, then F is called a function of unbounded L-index
in the direction b, and we write Nb(F,L) =∞.

If L(z) ≡ 1, then F (z) is called a function of bounded index in the direction
b, and Nb(F ) = Nb(F, 1).

In the case n = 1, we obtain the definition of an entire function of one
variable of bounded l-index (see [9, 12]); in the case n = 1 and L(z) ≡ 1, it
is reduced to the definition of bounded index, suggested by Lepson [10].

For η > 0, z ∈ Cn, b = (b1, . . . , bn) ∈ Cn \ {0}, and a positive continuous
function L : Cn → R+, we define

λb1 (z, t0, η) = inf

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
,

λb1 (z, η) = inf{λb1 (z, t0, η) : t0 ∈ C}, λb1 (η) = inf{λb1 (z, η) : z ∈ Cn},
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λb2 (z, t0, η) = sup

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
,

λb2 (z, η) = sup{λb2 (z, t0, η) : t0 ∈ C}, λb2 (η) = sup{λb2 (z, η) : z ∈ Cn}.
By Qnb we denote the class of functions L, which satisfy the condition

(∀η ≥ 0) : 0 < λb1 (η) ≤ λb2 (η) < +∞. (2)

For a positive continuous function l(z) with z ∈ C, and z0 ∈ C, η > 0,
we denote λ1(z0, η) ≡ λb1 (0, z0, η) and λ2(z0, η) ≡ λb2 (0, z0, η) in the case
z = 0, b = 1, n = 1, L ≡ l, and λ1(η) = inf{λ1(z0, η) : z0 ∈ C}, λ2(η) =
sup{λ2(z0, η) : z0 ∈ C}, and Q = Q1

1.
Let L∗(z) be a positive continuous function in Cn. We write L � L∗ if

for some θ1, θ2 with 0 < θ1 ≤ θ2 < +∞, and for all z ∈ Cn, the inequalities
θ1L(z) ≤ L∗(z) ≤ θ2L(z) hold.

For a given z0 ∈ Cn, we denote gz0(t) := F (z0 + tb). If one has gz0(t) 6= 0
for all t ∈ C, then Gb

r (F, z0) := ∅; if gz0(t) ≡ 0, then Gb
r (F, z0) := {z0 +

tb : t ∈ C}. If gz0(t) 6≡ 0 and a0k are zeros of the function gz0(t), then

Gb
r (F, z0) :=

⋃
k

{
z0 + tb : |t− a0k| ≤

r

L(z0 + a0kb)

}
, r > 0.

Let
Gb
r (F ) =

⋃
z0∈Cn

Gb
r (F, z0). (3)

Remark that if L(z) ≡ 1, then Gb
r (F ) ⊂ {z ∈ Cn : dist(z, ZF ) < r|b|} ,

where ZF is the zero set of the function F . By n
(
r, z0, t0, 1/F

)
=
∑
|a0k−t0|≤r

1

we denote the counting function of the zero sequence (a0k).
Exploring properties of entire functions of bounded L-index in a direction,

we obtained the following assertion.

Theorem 1 (see [4], [6]). An entire function F (z) is of bounded L-index
in the direction b if and only if there exists a number M > 0 such that, for
all z0 ∈ Cn, the function gz0(t) is of bounded lz0-index with N(gz0 , lz0) ≤
M < +∞ as a function of variable t ∈ C, and Nb(F,L) = max{N(gz0 , lz0) :
z0 ∈ Cn}.

In view of Theorem 1, a natural question (see [3]) arises.

Problem 1. Does there exist an entire function F (z), z ∈ Cn, with
N(gz0 , lz0) < +∞ for every z0 ∈ Cn, but Nb(F,L) = +∞?

We gave an affirmative answer (see [3]) to the above-mentioned question:
we proved that

F (z1, z2) = cos
√
z1z2 =

∞∑
p=0

(−1)p(z1z2)
p

(2p)!
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is of unbounded index in the direction b = (1, 1). Recently, this result was
generalized for each direction b ∈ C2 \ {0} in [6].

At the Lviv city seminar on the theory of analytic functions (fall, 2007),
A. A. Kondratyuk asked the following question.

Problem 2. Does there exist a continuous function L : C2 → R+ provid-
ing the boundedness of L-index in the direction b of the function F (z1, z2) =
cos
√
z1z2?

Using methods from [3], we give an answer to Kondratyuk’s question in
Theorem 5.

3. Auxiliary propositions

The notation L � L∗ means that for some θ1, θ2 ∈ R+ with 0 < θ1 ≤ θ2 <
+∞ and for all z ∈ Cn, the inequalities θ1L(z) ≤ L∗(z) ≤ θ2L(z) hold.

Theorem 2 (see [4,6]). Let L ∈ Qnb, L � L∗. An entire function F (z) is
of bounded L∗-index in the direction b if and only if F is of bounded L-index
in the direction b.

We consider the partial differential equation (PDE)

g0(z)
∂pw

∂bp
+ g1(z)

∂p−1w

∂bp−1
+ . . .+ gp(z)w = h(z). (4)

Theorem 3 (see [4,6]). Let L ∈ Qnb, let entire functions g0(z), . . . , gp(z),
h(z) be functions of bounded L-index in a direction b, and suppose that, for
every r > 0, there exists T = T (r) > 0 such that, for each z ∈ Cn\Gb

r (g0)
and j = 1, . . . , p,

|gj(z)| ≤ TLj(z)|g0(z)|. (5)

Then an entire function F (z) satisfying (4) has bounded L-index in the di-
rection b.

Recently, an improved version of Theorem 3 was obtained in [8] with
restrictions for the values of r.

By G, we denote the closure of a domain G. The following assertion gives
sufficient conditions for a positive continuous function to belong to Qnb (some
other similar propositions are given in [1]). In a conversation with the au-
thors (2015), S. Yu. Favorov posed a problem to describe functions in Qnb
by their differential characteristics. The next lemma is a proposition of such
type.

Proposition 1. Let L : Cn → C and let ∂L
∂b be continuous functions in a

domain G. If there exist numbers P > 0 and c > 0 such that, for all z ∈ G,

1

c+ |L(z)|

∣∣∣∣∂L(z)

∂b

∣∣∣∣ ≤ P, (6)
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then the inequalities

0 < inf
z∈G

inf
t0∈C,

z+t0b∈G

inf
|t−t0|≤ η

L1(z+t0b)

L1(z + tb)

L1(z + t0b)

≤ sup
z∈G

sup
t0∈C,

z+t0b∈G

sup
|t−t0|≤ η

L1(z+t0b)

L1(z + tb)

L1(z + t0b)
<∞

hold for every η ≥ 0, where L1(z) = c+ |L(z)|. If, in addition, G = Cn, then
L1 ∈ Qnb.

Proof. Clearly, the function L1(z) is positive and continuous. For given
z ∈ Cn and t0 ∈ C, we define an analytic curve

ϕ(τ) = z + t0b + τeiarg(t−t0)b, τ ∈ [0, |t− t0|].

For every continuously differentiable function g of real variable τ , the in-
equality d

dt |g(τ)| ≤ |g′(τ)| holds except for the points where g′(τ) = 0. Using

restrictions of this lemma, we deduce the upper estimate of λb2 (z, t0, η) for
the function L1 :

λb2 (z, t0, η) = sup

{
c+ |L(z + tb)|
c+ |L(z + t0b)|

: |t− t0| ≤
η

c+ |L(z + t0b)|

}
= sup
|t−t0|≤η/(c+|L(z+t0b)|)

{exp {ln(c+ |L(z + tb)|)− ln(c+ |L(z + t0b)|)}}

= sup

{
exp

{∫ |t−t0|
0

d(c+ |L(z + ϕ(τ)b)|)
c+ |L(z + ϕ(τ)b)|

}
: |t− t0| ≤

η

c+ |L(z + t0b)|

}
q

≤ sup
|t−t0|≤ η

c+|L(z+t0b)|

{
exp

{∫ |t−t0|
0

|ϕ′(τ)|
c+ |L(z + ϕ(τ)b)|

∣∣∣∣∂L(z + ϕ(τ)b)

∂b

∣∣∣∣ |dτ |
}}

≤ sup
|t−t0|≤ η

c+|L(z+t0b)|

{
exp

{
P |b|η

c+ |L(z + t0b)|

}}
≤ exp

(
P |b|η
c

)
.

Hence, for all η ≥ 0,

λ2(η) = sup
z∈Cn

sup
t0∈C

λb2 (z, t0, η) ≤ exp

(
P |b|η
c

)
<∞.

Using the inequality d
dt |g(t)| ≥ −|g′(t)|, it can be proved that λ1(η) ≥

exp
(
−P |b|η

c

)
> 0. for every η ≥ 0. Therefore, L1 ∈ Qnb. �

Note that the assertion of Proposition 1 is new also in the case n = 1.
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Lemma 1. Let ε > 0, b = (b1, b2) ∈ C2 \ {0}, and

Lε,b(z1, z2) :=


|b1z2+b2z1|√
|z1z2|

+ 1, |z1z2| > ε2,

|b1z2+b2z1|
ε + 1, |z1z2| ≤ ε2.

Then Lε,b ∈ Q2
b.

Proof. At first, we show that Lε,b ∈ Qnb. Let b1 6= 0, b2 6= 0, |z1z2| > ε2.
Then

λb2 (z, t0, η)

=sup

{(
|b1(z2 + tb2)+b2(z1 + tb1)|√
|(z1 + tb1)(z2 + tb2)|

+1

)/(
|b1(z2+t0b2)+b2(z1 + t0b1)|√
|(z1 + t0b1)(z2 + t0b2)|

+1

)
,

|t− t0|≤
η

|b1(z2+t0b2)+b2(z1+t0b1)|√
|(z1+t0b1)(z2+t0b2)|

+ 1

}

≤ sup
|t−t0|≤η

{(
|b1(z2+tb2)+b2(z1+tb1)|√
|(z1 + tb1)(z2 + tb2)|

+1

)/(
|b1(z2+t0b2)+b2(z1+t0b1)|√
|(z1+t0b1)(z2+t0b2)|

+1

)}
.

Since ||zj + bjt| − |zj + bjt0|| ≤ |zj + bjt0− (zj + bjt0)| = |bj | · |t− t0| ≤ |bj |η,
it follows that |zj + bjt0| − |bj |η ≤ |zj + bjt| ≤ |zj + bjt0|+ |bj |η. Hence,

λb2 (z, t0, η)

≤ sup
|t−t0|≤η

{
|b1(z2 + tb2)+b2(z1 + tb1)|+

√
|(z2 + tb2)(z1 + tb1)|

|b1(z2 + t0b2)+b2(z1 + t0b1)|+
√
|(z1 + t0b1)(z2 + t0b2)|

×
√
|(z1+ t0b1)(z2+ t0b2)|√
|(z2+ tb2)(z1+ tb1)|

}
≤ sup

t0∈C

{(
|b1(z2 + t0b2)|+ |b2(z1 + t0b1)|+ 2|b1b2|η

+
√

(|z1 + t0b1|+ |b1|η)(|z2 + t0b2|+ |b2|η)
)/(
|b1(z2 + t0b2) + b2(z1 + t0b1)|

+
√
|(z1+t0b1)(z2+t0b2)|

)}
× sup
t0∈C

{ √
|(z1+t0b1)(z2+t0b2)|√

(|z2+t0b2|−|b2|η)(|z1+t0b1|−|b1|η)|

}
≤ C2(η, b1, b2) < +∞.

Similarly, λb1 (z, t0, η) ≥ C1(η, b1, b2) > 0.

Let b1 6= 0, b2 6= 0, |z1z2| ≤ ε2, and L1(z1, z2) = b1z2+b2z1
ε . Then

1

1 + |L1(z1, z2)|

∣∣∣∣∂L1(z1, z2)

∂b

∣∣∣∣ =
2|b1b2|

|b1z2+b2z1|
ε + 1

≤ 2|b1b2|.

Hence, Lε,b ∈ Qnb by Proposition 1. The cases b1 = 0, b2 6= 0 or b1 6= 0, and
b2 = 0, can be considered analogously. �
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4. Main results

We consider the following partial differential equations related to a direc-
tion b = (b1, b2):

z1z2(b1z2 + b2z1)
∂2F

∂b2
+

(b1z2 − b2z1)2

2

∂F

∂b

+
(b1z2 + b2z1)

3

4
F (z1, z2) = 0,

(7)

for b1 6= 0, b2 6= 0, and

4z1
∂2F

∂b2
+ 2b1

∂F

∂b
+ b21z2F (z1, z2) = 0, (8)

for b1 6= 0, b2 = 0. For b1 = 0, b2 6= 0, one can consider a PDE which
matches to (8) up to permutations of the variables z1 and z2.

Theorem 4. Let b = (b1, b2) ∈ C2 \ {0}. If an entire bivariate function
F (z1, z2) satisfies either equation (7) or (8), then, for each ε > 0, the func-
tion F has bounded Lε,b-index in the direction b, where Lε,b is the function
from Lemma 1.

Proof. We will verify the conditions of Theorem 3 for the partial differential
equation (7). The functions

g0(z1, z2) = z1z2(b1z2 + b2z1), g1(z1, z2) = (b1z2 − b2z1)2/2

and

g2(z1, z2) = (b1z2 + b2z1)
3/4

are polynomials. Therefore, they have bounded L-index in the direction b
for every positive continuous function L(z1, z2).

We assume that b1 6= 0, b2 6= 0. For z1 = z01 + b1t, z2 = z02 + b2t, the
function

g0(z
0 + tb) = (z01 + b1t)(z

0
2 + b2t)(b1z

0
2 + b2z

0
1 + 2b1b2t)

has three zeros

t1 = −z
0
1

b1
, t2 = −z

0
2

b2
, t3 = −b1z

0
2 + b2z

0
1

2b1b2
.

The condition (z1, z2) ∈ C2 \Gb
r (g0) means that

|t− tj | >
r

Lε,b(z0 + tjb)
for any tj , j ∈ {1, 2, 3}.

Hence,

|z0k + bkt− (z0k + bktj)| > r|bk|/Lε,b(z0 + tjb), k ∈ {1, 2}.
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In particular,

|z1| = |z01 + b1t| = |z01 + b1t− (z01 + b1t1)|

>
r|b1|

Lε,b

(
0, z02 −

b2
b1
z01

) =
εr|b1|

ε+ |b1(z02 −
b2
b1
z01)|

=
εr|b1|

ε+ |b1z02 + b1b2t− b2z01 − b1b2t|
=

r|b1|
1+|b1z2 − b2z1|/ε

,

(9)

|z2| = |z02 + b2t| = |z02 + b2t− (z02 + b2t2)|

>
r|b2|

Lε,b(z01 −
b1
b2
z02 , 0)

=
εr|b2|

ε+ |b2(z01 −
b1
b2
z02)|

=
εr|b2|

ε+ |b2z01 + b2b1t− b1z02 − b1b2t|
=

εr|b2|
ε+|b1z2 − b2z1|/ε

,

(10)

|t− t3| = |t+
b1z

0
2 + b2z

0
1

2b1b2
| < r

Lε,b(z0 + t3b)
= r ⇔

|2b1b2t+ b1z
0
2 + b2z

0
1 | > 2|b1b2|r ⇔

|b1(z02 + b2t) + b2(z
0
1 + b1t)| > 2|b1b2|r ⇔ |b1z2 + b2z1| > 2|b1b2|r. (11)

From (11), for |z1z2| > ε2 and (z1, z2) ∈ C2 \Gb
r (g0), we obtain

|g2(z1, z2)| =
1

4
|b1z2 + b2z1|3 =

1

4

|b1z2 + b2z1|2

|z1z2|
|z1z2(b1z2 + b2z1)|

=
1

4

(
|b1z2 + b2z1|√
|z1z2|

)2

|g0(z)| ≤
1

4
L2
ε,b(z1, z2)|g0(z1, z2)|,

|g1(z1, z2)|
|g0(z1, z2)|Lε,b(z1, z2)

=
|b1z2 − b2z1|2√

|z1z2||b1z2 + b2z1|(|b1z2 + b2z1|+
√
|z1z2|)

=
|b1 z2z1 − b2|

2√
|z1z2||b1 z2z1 + b2|(|b1 z2z1 + b2|+

√
| z2z1 |)

≤ C1(r, ε),

where C1(r, ε) is some positive constant independent of z1 and z2. The last
inequality is valid because |z1z2| > ε2, the degree of the numerator of the
fraction z2

z1
is not greater than the degree of the denominator and, in view of

(11), the modulus of the denominator is greater than some positive constant.
For |z1z2| ≤ ε2 and (z1, z2) ∈ C2 \Gb

r (g0), we consider the following three
cases:

a) |z1| ≤ ε, |z2| ≤ ε. In view of (9) and (10), the following inequalities are
valid:

|g2(z1, z2)| =
1

4
|b1z2 + b2z1|3 =

1

4

|b1z2 + b2z1|2

ε2
ε2|b1z2 + b2z1|
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≤ 1

4
L2
ε,b(z1, z2)|g0(z1, z2)|

ε2

|z1z2|
<

1

4
L2
ε,b(z1, z2)|g0(z1, z2)|

(ε+|b1z2 − b2z1|)2

r2|b1b2|

≤ ε2(1 + |b1|+ |b2|)2

4r2|b1b2|
L2
ε,b(z1, z2)|g0(z1, z2)|,

|g1(z1, z2)|
|g0(z1, z2)|Lε,b(z1, z2)

=
|b1z2 − b2z1|2

2|z1z2(b1z2 + b2z1)|
(
|b1z2−b2z1|

ε + 1
)

≤
|b1z2 − b2z1|2

(
|b1z2−b2z1|

ε +1
)

2r2|b1b2(b1z2 + b2z1)|
≤ ε

2(|b1|+ |b2|)2(|b1|+ |b2|+ 1)

4r3|b1b2|
.

b) |z1| > ε, |z2| ≤ ε. In view of (10) and (11), the following inequalities hold:

|g2(z1, z2)| =
1

4
|b1z2 + b2z1|3 =

1

4

|b1z2 + b2z1|2

ε2
ε2|b1z2 + b2z1|

≤ 1

4
L2
ε,b(z1, z2)|g0(z1, z2)|

ε2

|z1z2|
<

1

4
L2
ε,b(z1, z2)|g0(z1, z2)|

ε(ε+ |b1z2−b2z1|)
|z1b2|r

≤ ε(1 + |b1|+ |b2|)
4r|b2|

L2
ε,b(z1, z2)|g0(z1, z2)|,

|g1(z1, z2)|
|g0(z1, z2)|Lε,b(z1, z2)

=
|b1z2 − b2z1|2

2|z1z2(b1z2 + b2z1)|
(
|b1z2−b2z1|

ε + 1
)

≤ |b1z2 − b2z1|2

2r|z1b2(b1z2 + b2z1)|
≤ |z1|(|b1|+ |b2|)2

2r|b2| · |b1z2 + b2z1|
≤ C2(r, ε),

where C2(r, ε) is a positive constant independent of z1 and z2.
c) |z1| ≤ ε, |z2| > ε. Using (9) and (11), this case can be considered as the

previous case.
By Theorem 3, the function F (z1, z2) has bounded Lε,b-index in the di-

rection b = (b1, b2), where b1 6= 0, b2 6= 0.
Let b = (b1, 0), where b1 6= 0.Now we will verify the conditions of Theorem

3 for the partial differential equation (8). The functions g0(z1, z2) = z1,

g1(z1, z2) = b1
2 , g2(z1, z2) =

b21z2
4 are polynomials or constants. Hence, they

have bounded L-index in any direction and for every positive continuous
function L.

Let r > 0. For z1 = z01 + tb1, the function g0(z
0
1 + tb1, z2) = z01 + tb1 has

one zero t0 = − z01
b1
. The condition (z1, z2) ∈ C2 \Gb

r (g0) means that

|t− t0| >
r

Lε,b(z01 + t0b1, z2)
=

r

Lε,b(0, z2)
=

r
|b1z2|
ε,b + 1

.
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Hence,

|z1| = |z01 + b1t− (z01 + b1t0)| = |b1(r − t0)| >
|b1|r

|b1z2|
ε + 1

. (12)

For |z1z2| > ε2 and (z1, z2) ∈ C2 \Gb
r (g0), we have

|g1(z)|
|g0(z)|Lε,b(z)

=
|b1|

2(|b1
√
z1z2|+ |z1|)

<
|b1|

2(|b1ε|+ |z1|)
<

1

2ε
,

|g2(z)|
|g0(z)|L2

ε,b(z)
=

|b21z2|

4|z1|(|b1|
√
|z2|
|z1| + 1)2

=
|b21z2|

4(|b21z2|+ 2|b1
√
z2z1|+ |z1|)

<
1

4
.

In view of (12), for |z1z2| ≤ ε2 and (z1, z2) ∈ C2 \ Gb
r (g0), the following

estimates are valid:

|g1(z)|
|g0(z)|Lε,b(z)

=
|b1|

2|z1|( |b1z2|ε + 1)
<

1

2r
,

|g2(z)|
|g0(z)|L2

ε,b(z)
=

|b21z2|
4|z1|( |b1z2|ε + 1)2

<
|b1z2|

4r( |b1z2|ε + 1)
<

ε

4r
.

By Theorem 3, the function F (z1, z2) has bounded Lε,b-index in the direction
b = (b1, 0). �

Theorem 5. The entire bivariate function F (z1, z2) = cos
√
z1z2 has

bounded Lε,b-index in the direction b.

Proof. We prove that the partial differential equation (4) has entire solution
F (z1, z2). Let b1 6= 0, b2 6= 0. Formally, the first and second order directional
derivatives of F are

∂F

∂b
= −(b1z2 + b2z1)

sin
√
z1z2

2
√
z1z2

,

∂2F

∂b2
=− 1

22

(
b1

√
z2
z1

+ b2

√
z1
z2

)2

cos
√
z1z2 −

1

2

((
− b1

2

√
z2

z
3/2
1

+
b2
2

1
√
z1z2

)
b1

+
(b1

2

1
√
z1z2

− b2
2

√
z1

z
3/2
2

)
b2

)
sin
√
z1z2 = −(b1z2 + b2z1)

2

4z1z2
F (z1, z2)

+
(b1z2 − b2z1)2

4(z1z2)3/2
sin
√
z1z2 = −(b1z2 + b2z1)

2

4z1z2
F (z1, z2)−

(b1z2 − b2z1)2

4(z1z2)3/2

×
2
√
z1z2

b1z2 + b2z1
· ∂F
∂b

= −(b1z2 + b2z1)
2

4z1z2
F (z1, z2)−

(b1z2 − b2z1)2

2z1z2(b1z2 + b2z1)

∂F

∂b
.

Hence, we obtain

z1z2(b1z2 + b2z1)
∂2F

∂b2
+

(b1z2 − b2z1)2

2

∂F

∂b
+

(b1z2 + b2z1)
3

4
F (z1, z2) = 0,
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i.e., F satisfies equation (7).
If b1 6= 0, b2 = 0, then we calculate the directional derivatives of F and

similarly show that the function satisfies (8). By Theorem 4, the function F
has bounded Lε,b-index in the direction b. �

Theorem 5 implies the following assertion.

Theorem 6. Let

Lε(z1, z2) =

{√
|z2|
|z1| +

√
|z1|
|z2| + 1, |z1z2| > ε2,

|z2|+|z1|
ε + 1, |z1z2| ≤ ε2.

.

Then, for each b ∈ Cn \ {0}, one has Lε ∈ Qnb and the entire bivariate
function F (z1, z2) = cos

√
z1z2 has bounded Lε-index in the direction b.

Proof. The function Lε,b(z1, z2) does not exceed c3 · Lε(z1, z2): indeed,
|b1z2+b2z1|√
|z1z2|

+ 1 ≤ c3
(√

|z2|
|z1| +

√
|z1|
|z2| + 1

)
, |z1z2| > ε2,

|b1z2+b2z1|
ε + 1 ≤ c3

(
|z2|+|z1|

ε + 1
)
, |z1z2| ≤ ε2,

(13)

where c3 = max{|b1|, |b2|, 1}.
In fact, in the proof of Theorem 2 (see the proofs of Theorem 3 in [4] and

Proposition 2.1 in [6, p. 25]), we proved that if G(z) has bounded L1-index
in the direction b ∈ Cn \ {0} and, for all z ∈ Cn one has L1(z) ≤ θ · L2(z),
when L1, L2 ∈ Qnb, then G(z) has bounded L2-index in the direction b.
From (13), it follows that F (z1, z2) is a function of bounded Lε-index in
each direction b. �
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