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Asymptotics of approximation
of conjugate functions by Poisson integrals

Yu. I. Kharkevych and K. V. Pozharska

Abstract. We obtain a decomposition of the upper bound for the de-
viation of Poisson integrals of conjugate periodic functions. The decom-
position enables one to provide the Kolmogorov–Nikol’skii constants of
an arbitrary order.

1. Introduction

Let C be the space of 2π-periodic continuous functions. The norm in this
space is defined as follows:

‖f‖C = max
t
|f(t)|.

Denote by W r any set of 2π-periodic functions with absolutely continuous
derivatives up to order r − 1 such that ess sup

t

∣∣f (r)(t)∣∣ ≤ 1.

The set of functions that are conjugate to those from the class W r is
denoted by W

r
. That is,

W
r

=

{
f̄ : f̄(x) = − 1

2π

∫ π

−π
f(x+ t) cot

t

2
dt = − 1

2π

∫ π

0
ψx(t) cot

t

2
dt,

ψx(t) = f(x+ t)− f(x− t), f ∈W r

}
.

A function f ∈ C is contained in the class Lip 1 if, for all t1, t2 ∈ R,

|f(t1)− f(t2)| ≤ |t1 − t2|.
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Let us consider a boundary value problem (in the unit circle) for the
equation

∆u = 0, (1)

where ∆ is the Laplace operator in polar coordinates. We can rewrite the
equation (1) as follows:

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂x2
= 0, 0 ≤ ρ < 1, −π ≤ x ≤ π. (2)

The solution of (2) that satisfies the boundary conditions

u(ρ, x)|ρ=1 = f(x), −π ≤ x ≤ π,

where f is a summable 2π-periodic function, is of the form by W
r
. That is

Pρ(f ;x) =
1

π

∫ π

−π
f(x+ t)

{
1

2
+
∞∑
k=1

ρk cos kt

}
dt

=
1− ρ2

2π

∫ π

−π
f(x+ t)

dt

1− 2ρ cos t+ ρ2
.

The quantity Pρ(f ;x) is called the Poisson integral of the function f .

Setting ρ = e−
1
δ , δ > 0, we can rewrite the Poisson integral in the form

Pδ(f ;x) =
1

π

∫ π

−π
f(x+ t)

{
1

2
+
∞∑
k=1

e−
k
δ cos kt

}
dt

=
1

2π

∫ π

−π
f(x+ t)

1− e−
2
δ

1− 2e−
1
δ cos t+ e−

2
δ

dt.

The quantity

P̄ρ(f ;x) = Pρ(f̄ ;x) = − 1

π

∫ π

−π
f(x+ t)

∞∑
k=1

ρk sin kt dt

= − 1

π

∫ π

0
ψx(t)

ρ sin t

1− 2ρ cos t+ ρ2
dt

is called the conjugate Poisson integral of the function f .
Let N ⊆ C be a certain class of functions. According to Stepanets [10],

the problem of establishing asymptotic equalities for the quantity

E
(
N;Pρ

)
C

= sup
f∈N
‖f(x)− Pρ(f ;x)‖C

is called the Kolmogorov–Nikol’skii problem.
If we determine the explicit form of a function ϕ(ρ) such that

E
(
N;Pρ

)
C

= ϕ(ρ) + o(ϕ(ρ)) as ρ→ 1−,
then we say that the Kolmogorov–Nikol’skii problem for the Poisson inte-
gral Pρ is solved on the class N in the metric of the space C.
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Definition 1. A formal series
∞∑
n=0

gn(ρ) is called a complete asymptotic

decomposition of a function f(ρ) as ρ→ 1−, if for every natural number m,
the equation

f(ρ) =
m∑
n=0

gn(ρ) + o (gm(ρ))

holds as ρ→ 1−, and for all n ∈ N ,

|gn+1(ρ)| = o (|gn(ρ)|) .

In what follows, we denote this fact by

f(ρ) ∼=
∞∑
n=0

gn(ρ).

Approximation properties of the method of approximation by Poisson
integrals on classes of differentiable functions have been well studied. The
Kolmogorov–Nikol’skii problem for the Poisson integral on the classes W 1

was solved by Natanson in [8]:

E
(
W 1;Pρ

)
C

=
2

π
(1− ρ)| ln(1− ρ)|+O(1− ρ) as ρ→ 1− .

In [11], Timan obtained the exact values of the approximative character-
istics E

(
W r;Pρ

)
C

.
In the paper [6], Malei determined the complete asymptotic decomposition

of the upper bounds of deviations of Poisson integrals from functions of the
class W 1:

E
(
W 1;Pρ

)
C

=
2

π

∞∑
k=1

{
αk(1− ρ)k ln

1

1− ρ
+ βk(1− ρ)k

}
,

αk =
1

k
, βk =

1

k

{
ln 2 +

1

k
−
k−1∑
i=1

1

i2i

}
, k = 1, 2, . . . .

Later, this decomposition was reproved by Stark [9].
The complete asymptotic decomposition of the quantity E

(
W r;Pδ

)
C

in

powers of 1
δ as δ → ∞ was obtained by Baskakov [2] for r = 1, 2, 3. Later,

the Kolmogorov–Nikol’skii problem for the Poisson integral on classes of
differentiable functions was solved in the works [5, 12–15]. On the other
hand, approximation properties of the method of approximation by Poisson
integrals on classes of conjugate functions have not been sufficiently studied.
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The first estimates for E
(
W

1
;Pρ
)
C

were obtained by Nagy [7]. In partic-
ular, he established the equalities

E
(
W

1
;Pρ
)
C

=
4

π

∫ 1

ρ

arctan t

t
dt, 0 ≤ ρ < 1,

E
(
W

1
;Pρ
)
C

= (1− ρ) +O
(
(1− ρ)2

)
as ρ→ 1− .

Later, the general expressions that allow one to get asymptotic decomposi-
tions of the quantity E

(
W

r
;Pδ
)
C

in powers of 1
δ as δ →∞, were determined

by Baskakov [1].
In the present paper, we establish a complete asymptotic decomposition

of the quantity

E
(
Lip 1;P ρ

)
C

= sup
f∈Lip 1

∥∥f(·)− P ρ(f ; ·)
∥∥
C
.

This decomposition allows one to provide the Kolmogorov–Nikol’skii con-
stants of an arbitrary order.

2. The main result

The following theorem is the main result of the paper.

Theorem 1. Let f ∈ Lip 1. Then the following complete asymptotic
decomposition holds as ρ→ 1−:

E
(
Lip 1;P ρ

)
C

=
∞∑
k=1

(1− ρ)k

k2k−1

+
∞∑
m=1

1

m

∞∑
s=0

(1− ρ)2m+s

22m+s

(
2m+ s− 1

s

)
αm,

(3)

where

αm =
4

π

m∑
k=1

(−1)m+k+1

2m− 2k + 1
+ 1. (4)

Proof. It is obvious that

P ρ(f ;x)− f(x) = − 1

π

∫ π

0
ψx(t)

ρ sin t

1− 2ρ cos t+ ρ2
dt+

1

2π

∫ π

0
ψx(t) cot

t

2
dt

=
1

2π

∫ π

0
ψx(t)

(
cot

t

2
− 2ρ sin t

1− 2ρ cos t+ ρ2

)
dt

=
1

2π

∫ π

0
ψx(t) cot

t

2

(
1−

2ρ sin t · tan t
2

1− 2ρ cos t+ ρ2

)
dt

=
1

2π

∫ π

0
ψx(t) cot

t

2
·

1− 2ρ cos t+ ρ2 − 2ρ sin t · tan t
2

1− 2ρ cos t+ ρ2
dt.
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Using double-angle formulas and the main trigonometric identity, we obtain

P ρ(f ;x)− f(x) =
1

2π

∫ π

0
ψx(t) cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt.

In view of the fact that f(x) is 2π-periodic, we have

P ρ(f ;x)− f(x) =
1

2π

∫ π
2

0
ψx(t) cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt

− 1

2π

∫ π

π
2

ψx+π(π − t) cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt.

(5)

Since f ∈ Lip 1, by virtue of the subadditivity of the absolute value, we have

E
(
Lip 1;P ρ

)
C
≤ 1

π

∫ π
2

0
t cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt

+
1

π

∫ π

π
2

(π − t) cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt.

(6)

Let us prove that, in (6), the inequality is, in fact, an equality. To this
end, note that the class Lip 1 is invariant to the shift of an argument, i.e., if
f ∈ Lip 1, then, for any h ∈ R, the function f1(x) = f(x+ h) is also in the
class Lip 1. Hence, from (5) we get

E
(
Lip 1;P ρ

)
C

= sup
f∈Lip 1

∥∥f(x)− P ρ(f ;x)
∥∥
C

= sup
f∈Lip 1

∣∣f(0)− P ρ(f ; 0)
∣∣

= sup
f∈Lip 1

∣∣∣∣ 1

2π

∫ π
2

0
ψ0(t) cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt

− 1

2π

∫ π

π
2

ψπ(π − t) cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt

∣∣∣∣.
Let us denote by g(x) any odd 2π-periodic function from the class Lip 1

which can be defined on the segment [0;π] as follows:

g(x) =

{
x, 0 ≤ x ≤ π

2 ,

π − x, π
2 ≤ x ≤ π.

Then ψx(t) = g(x+ t)− g(x− t). Hence, for t ∈ [0, π2 ], we can write

ψ0(t) = g(t)− g(−t) = 2g(t) = 2t,

and, for t ∈ [π2 , π], we have

ψπ(π − t) = g(2π − t)− g(t) = g(−t)− g(t) = −2g(t) = −2(π − t).
Therefore,∣∣g(0)− P ρ(g; 0)

∣∣ =
1

π

∫ π
2

0
t cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt
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+
1

π

∫ π

π
2

(π − t) cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt.

This completes the proof that, in (6), the inequality can not be strict, i.e.,
the following equality holds:

E
(
Lip 1;P ρ

)
C

=
1

π

∫ π
2

0
t cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt

+

∫ π

π
2

cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt− 1

π

∫ π

π
2

t cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt (7)

= I1 + I2 − I3.

To calculate the integrals I1, I2, and I3, we first consider the integral∫
cot

t

2
· 1− ρ2

1− 2ρ cos t+ ρ2
dt.

Integrating by parts and using the equality (see [4, formula (2.556.1)])∫
1− a2

1− 2a cos t+ a2
dt = 2 arctan

(1 + a

1− a
tan

t

2

)
+ C, 0 < a < 1, |t| < π,

we obtain∫
cot

t

2
· 1− ρ2

1− 2ρ cos t+ ρ2
dt = 2 arctan

(1 + ρ

1− ρ
tan

t

2

)
· cot

t

2

− 2

∫
arctan

(1 + ρ

1− ρ
tan

t

2

)
d

(
cot

t

2

)
.

Using the equality (see [4, formula (2.854)])∫
1

t2
arctan

t

a
dt = −1

t
arctan

t

a
− 1

2a
ln
a2 + t2

t2
+ C,

we have∫
cot

t

2
· 1− ρ2

1− 2ρ cos t+ ρ2
dt = −1 + ρ

1− ρ
ln

tan2 t
2 +

(
1−ρ
1+ρ

)2
tan2 t

2

+ C. (8)

From (8), it follows that

I2 =

∫ π

π
2

cot
t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt = ln

(
1 +

(
1− ρ
1 + ρ

)2
)
.

Integrating by parts yields

I1 =
1

π

∫ π
2

0
t cot

t

2
· (1− ρ)2

1− 2ρ cos t+ ρ2
dt



ASYMPTOTICS OF APPROXIMATION 241

= −1

2
ln

(
1 +

(
1− ρ
1 + ρ

)2
)

+
1

π

∫ π
2

0
ln

tan2 t
2 +

(
1−ρ
1+ρ

)2
tan2 t

2

,

I3 =
1

π

∫ π

π
2

t cot
t

2
· (1− ρ)2

1− ρ cos t+ ρ2
dt

=
1

2
ln

(
1 +

(
1− ρ
1 + ρ

)2
)

+
1

π

∫ π

π
2

ln
tan2 t

2 +
(
1−ρ
1+ρ

)2
tan2 t

2

.

Substituting the obtained values for I1, I2, and I3 in (7), we get

E
(
Lip 1;P ρ

)
C

=
1

π

∫ π

0
ln

tan2 t
2 +

(
1−ρ
1+ρ

)2
tan2 t

2

dt

− 2

π

∫ π

π
2

ln
tan2 t

2 +
(
1−ρ
1+ρ

)2
tan2 t

2

dt = U1 + U2.

(9)

Using the formulas (4.227.3) and (4.227.17) from [4], i.e.,∫ π
2

0
ln(a tan t) dt =

π

2
ln a, a > 0,∫ π

2

0
ln(a2 + b2 tan2 t) dt = π ln(a+ b), a > 0, b > 0,

we obtain

U1 =
1

π

∫ π

0
ln

tan2 t
2 +

(
1−ρ
1+ρ

)2
tan2 t

2

dt

=
1

π

∫ π

0
ln

(
tan2 t

2
+

(
1− ρ
1 + ρ

)2
)
− 1

π

∫ π

0
ln

(
tan2 t

2

)
dt = 2 ln

2

1 + ρ
.

Let us find the Taylor series of φ(ρ) = 2 ln 2
1+ρ in powers of 1− ρ:

U1 = φ(ρ) =
∞∑
k=1

(1− ρ)k

k · 2k−1
. (10)

We continue the estimate making a substitution in U2 and finding the ex-
pansion in series of the logarithm function. Thus,

U2 = − 2

π

∫ π

π
2

ln
tan2 t

2 +
(
1−ρ
1+ρ

)2
tan2 t

2

dt = − 4

π

∫ 0

−π
4

ln

(
1 +

(
1− ρ
1 + ρ

)2

tan2 t

)
dt
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= − 4

π

∫ 0

−π
4

∞∑
m=1

(−1)m+1

m

(
1− ρ
1 + ρ

)2m

tan2m t dt.

Since the series under the last integral is uniformly convergent, we can use
term-by-term integration. We have

U2 = − 4

π

∞∑
m=1

(−1)m+1

m

(
1− ρ
1 + ρ

)2m ∫ 0

−π
4

tan2m t dt. (11)

To calculate the integral on the right-hand side of (11), we use the equality
(see [3, formula (5.10.2)])∫

tan2n t dt =
n∑
k=1

(−1)k−1
tan2n−2k+1 t

2n− 2k + 1
+ (−1)nt.

We get

U2 =
∞∑
m=1

1

m

(
1− ρ
1 + ρ

)2m

αm,

where αm is defined by (4).

Finding the expansion in series of φ(ρ) =
(

1
1+ρ

)2m
in powers of 1− ρ, we

obtain

U2 =
∞∑
m=1

1

m

∞∑
s=0

(1− ρ)2m+s

22m+s

(
2m+ s− 1

s

)
αm. (12)

Combining (10), (12), and (9), we get (3).
The theorem has been proved. �
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