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Second approximation of local functions in ideal
topological spaces

Md. Monirul Islam and Shyamapada Modak

Abstract. This paper gives a new dimension to discuss the local func-
tion in ideal topological spaces. We calculate error operators for various
type of local functions and introduce more perfect approximation of the
local functions for discussing their properties. We have also reached a
topological space with the help of semi-closure.

1. Introduction and preliminaries

For a topological space (X, τ), the closure and the interior of A ⊆ X is
denoted by Cl(A) and Int(A), respectively, and they can be approximated
by intersection of all closed sets containing A and union of all open sets
contained in A, respectively. A subset A of a topological space (X, τ) is
said to be semi-open ([13], [7]) (respectively, preopen [14], β-open [6], regu-
lar open ([23]), [22]) if A ⊆ Cl(Int(A)) (respectively, A ⊆ Int(Cl(A)), A ⊆
Cl(Int(Cl(A))), A = Int(Cl(A))). The collection of all semi-open (respec-
tively, β-open) subsets of X is denoted by SO(X) (respectively, βO(X)).
The complement of a semi-open (respectively, β-open) set is called semi-
closed ([4], [5]) (β-closed [6]). The intersection of all semi-closed (respec-
tively, β-closed) sets of X containing A ⊆ X is called the semi-closure [4]
(respectively, β-closure [6]) of A and is denoted by sCl(A) (respectively,
βCl(A)). The union of all semi-open subsets of A is called the semi-interior
[4] of A and is denoted by sInt(A). Veličko [26] introduced the notion of
θ-open sets: a subset A of a topological space (X, τ) is said to be θ-open
([26], [3]) if every point x of X has an open neighbourhood Ux such that
Cl(Ux) ⊆ A. The complement of a θ-open set is called θ-closed. The collec-
tion of all θ-open subsets of a topological space (X, τ) forms a topology on
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X and it is coarser than τ and this collection is denoted by τθ. A subset A
of a topological space X is said to be δ-open [26] if, for each x ∈ A, there
exists an open set B such that x ∈ B ⊆ Int(Cl(B)) ⊆ A.

The study of ideal in topological spaces has been introduced by Kura-
towski [12] and Vaidyanathswamy ([24], [25]). The authors in [21], [8], [2],
[18], [15], [17] further considered the ideal topological spaces and studied it
in detail for local functions.

An ideal [12] I of a topological space (X, τ) is a nonempty collection of
subsets of X which satisfies the following conditions:

(1) A ∈ I and B ⊆ A implies B ∈ I,
(2) A ∈ I and B ∈ I implies A ∪B ∈ I.
A topological space (X, τ) with an ideal I on X is called an ideal topo-

logical space and is denoted by (X, τ, I).
Let (X, τ) be a topological space. The symbol Ictble denotes the ideal of

countable sets, and Icd is the ideal of closed discrete sets. Further, the family
of all discrete sets does not form an ideal (as it fails additivity). A set S is
said to be scattered if each nonempty subset of S contains an isolated point.
If X is a T1-space (each finite set is closed), then the family of all scattered
sets is the ideal of scattered sets, and it is denoted by Isc. Obviously every
discrete set is scattered. A set A is relatively compact if Cl(A) is compact.
The family of all relatively compact sets forms an ideal and it is denoted
by IK . A set A is nowhere dense if Int(Cl(A)) = ∅. A countable union of
nowhere dense sets is called a meager set. The family of nowhere dense sets
forms the ideal Inwd, and the family of meager sets forms the ideal Img .

Definition 1.1 (see [12], [10]). Let (X, τ, I) be an ideal topological space
and let A be a subset of X. The local function of A with respect to I and
τ is defined by
A∗(I, τ) = {x ∈ X : A ∩ U /∈ I for every open set U containing x }.

If there is no ambiguity, we will simply write A∗ for A∗(I, τ).

Definition 1.2 (see [1]). Let (X, τ, I) be an ideal topological space and
let A be a subset of X. The local closure function of A with respect to I
and τ is defined by

Γ(A)(I, τ)={x ∈ X : A ∩ Cl(U) /∈I for every open set U containing x}.

If there is no ambiguity, we will simply write Γ(A) for Γ(A)(I, τ).

An approximation of the local function has been done by Al-Omari and
Noiri [1] in 2013 with the help of closure operator of the topological space. In
this paper, we have introduced another approximation of the local function
with the help of semi-closure operator of the topological space and we have
shown that almost all of the properties of local function (see [9], [10], [12],
[24]) and Al-Omari and Noiri’s local function [1] are satisfied. We have also
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shown that our approximation is much closer than the approximation of
Al-Omari and Noiri [1].

2. Semi-closure local functions

Definition 2.1. Let (X, τ, I) be an ideal topological space. For a subset
A of X, we define the following operator:

γ(A)(I, τ) = {x ∈ X : A ∩ sCl(U) /∈ I for every U ∈ τ(x)},
where τ(x) = {U ∈ τ : x ∈ U}. In case there is no confusion, γ(A)(I, τ)
is briefly denoted by γ(A) and is called the semi-closure local function of A
with respect to I and τ .

Lemma 2.2. Let (X, τ, I) be an ideal topological space. Then A∗(I, τ) ⊆
γ(A)(I, τ) ⊆ Γ(A)(I, τ) for every subset A of X.

Proof. If A ∩ U /∈ I for every U ∈ τ(x), then A ∩ sCl(U) /∈ I, since
A ∩ U ⊆ A ∩ sCl(U). Again from similar reason, A ∩ Cl(U) /∈ I. Thus
A∗(I, τ) ⊆ γ(A)(I, τ) ⊆ Γ(A)(I, τ). �

Following examples illustrate the above lemma.

Example 2.3. Let R be the set of reals and let Q be the set of all rational
numbers. Consider X = R, τ = {∅,Q,R}, and I = ℘(Q). Let i ∈ R \Q.
Then (Q ∪ {i})∗ = R \Q and γ(Q ∪ {i}) = R.

Example 2.4. Let X = {a, b, c, d}, τ = {∅, X, {a, c}, {d}, {a, c, d}}, I =
{∅, {c}}, and A = {b, c, d}. Then γ(A) = {b, d} and Γ(A) = X.

Theorem 2.5. Let (X, τ) be a topological space, let I and J be two ideals
on X, and let A and B be two subsets of X. Then the following properties
hold.

(1) If A ⊆ B, then γ(A) ⊆ γ(B).
(2) If I ⊆ J , then γ(A)(I) ⊇ γ(A)(J ).
(3) γ(A) = sCl(γ(A)) ⊆ Clθ(A) and γ(A) is semi-closed.
(4) If A ∈ I, then γ(A) = ∅.

Proof. (1) Suppose that x ∈ γ(A). Then A∩ sCl(U) /∈ I for all U ∈ τ(x).
Then B ∩ sCl(U) /∈ I, otherwise A ∩ sCl(U) ∈ I, a contradiction. Thus
γ(A) ⊆ γ(B).

(2) Let x ∈ γ(A)(J ). Then A ∩ sCl(U) /∈ J and hence A ∩ sCl(U) /∈ I.
(3) It is obvious that γ(A) ⊆ sCl(γ(A)). For reverse inclusion, let x ∈

sCl(γ(A)). Then Ux ∩ γ(A) 6= ∅, for every Ux ∈ τ(x). Let y ∈ Ux and
y ∈ γ(A). Then Ux ∈ τ(y) and sCl(Ux) ∩ A /∈ I and hence x ∈ γ(A) for
every Ux ∈ τ(x). Thus γ(A) = sCl(γ(A)).

Again from above sCl(Ux)∩A /∈ I for every Ux ∈ τ(x), then sCl(Ux)∩A 6=
∅ for every Ux ∈ τ(x). Thus Cl(Ux) ∩A 6= ∅ for every Ux ∈ τ(x). Therefore
x ∈ Clθ(A).
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(4) Suppose that x ∈ γ(A). Then for any Ux ∈ τ(x), A ∩ sCl(U) /∈
I. Given that A ∈ I, A ∩ sCl(U) ∈ I for every Ux ∈ τ(x). This is a
contradiction. Hence γ(A) = ∅. �

Lemma 2.6. Let (X, τ, I) be an ideal topological space. If U ∈ τθ, then
U ∩ γ(A) = U ∩ γ(U ∩A) ⊆ γ(U ∩A) for any subset A of X.

Proof. Let x ∈ U ∩ γ(A). Since U ∈ τθ, there exists W ∈ τ such that
x ∈ W ⊆ Cl(W ) ⊆ U and hence x ∈ W ⊆ sCl(W ) ⊆ Cl(W ) ⊆ U . Let V
be any open set containing x. Then V ∩W ∈ τ(x) and sCl(V ∩W ) ∩ A /∈
I, since x ∈ γ(A). Therefore sCl(V ) ∩ (U ∩ A) /∈ I. This shows that
x ∈ γ(U ∩ A). Moreover, U ∩ γ(A) ⊆ U ∩ γ(U ∩ A). Again from Theorem
2.5, γ(U ∩ A) ⊆ γ(A) and U ∩ γ(A ∩ U) ⊆ U ∩ γ(A). Thus we have,
U ∩ γ(A) = U ∩ γ(U ∩A) ⊆ γ(U ∩A) for any subset A of X. �

Theorem 2.7. Let (X, τ, I) be an ideal topological space and let A, B be
subsets of X. Then the following properties hold.

(1) γ(∅) = ∅.
(2) γ(A ∪B) = γ(A) ∪ γ(B).

Proof. (1) The proof is obvious.
(2) It is obvious that from Theorem 2.5 that γ(A)∪ γ(B) ⊆ γ(A∪B). To

prove γ(A) ∪ γ(B) ⊇ γ(A ∪ B), suppose x /∈ γ(A) ∪ γ(B). Then x belongs
neither to γ(A) nor to γ(B). Therefore, there exist Ux, Vx ∈ τ(x) such that
sCl(Ux)∩A ∈ I and sCl(Vx)∩B ∈ I. Then [sCl(Ux)∩A]∪[sCl(Vx)∩B] ∈ I.

Now

sCl(Ux ∩ Vx) ∩ (A ∪B) ⊆ [sCl(Ux) ∩ sCl(Vx)] ∩ (A ∪B)

= [[sCl(Ux) ∩ sCl(Vx)] ∩A]] ∪ [[sCl(Ux) ∩ sCl(Vx)] ∩B]

⊆ [sCl(Ux) ∩A] ∪ [sCl(Vx) ∩B] ∈ I.

Thus x /∈ γ(A ∪B) as Ux ∩ Vx ∈ τ(x).
Therefore γ(A ∪B) = γ(A) ∪ γ(B). �

Theorem 2.8. Let (X, τ, I) be an ideal topological space. Then γCl :
℘(X) → ℘(X), defined by γCl(A) = A ∪ γ(A), is a Kuratowski closure
operator.

Thus we obtain a topological space from the Kuratowski closure operator
γCl.

Lemma 2.9. Let (X, τ, I) be an ideal topological space and let A and B
be subsets of X. Then γ(A) \ γ(B) = γ(A \B) \ γ(B).

Proof. Clearly,

γ(A) = γ[(A \B) ∪ (A ∩B)] = γ(A \B) ∪ γ(A ∩B) ⊆ γ(A \B) ∪ γ(B).
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Then γ(A) \ γ(B) ⊆ γ(A \B) \ γ(B). Again from Theorem 2.5, γ(A \B) ⊆
γ(A) and hence γ(A\B)\γ(B) ⊆ γ(A)\γ(B). Consequently, γ(A)\γ(B) =
γ(A \B) \ γ(B). �

Corollary 2.10. Let (X, τ, I) be an ideal topological space and let A and
B be any subsets of X with B ∈ I. Then γ(A ∪B) = γ(A) = γ(A \B).

Proof. Given that γ(B) = ∅. From Lemma 2.9, γ(A) = γ(A \B), and by
Theorem 2.7, γ(A ∪B) = γ(A) ∪ γ(B) = γ(A). �

Theorem 2.11 (see [20]). Let (X, τ, I) be an ideal topological space. Then
each of the following conditions implies that the local function and the local
closure function coincide:

(a) τ has a clopen base B,
(b) τ has a T3-topology on X,
(c) I = Icd,
(d) I = IK ,
(e) Inwd ⊆ I,
(f) I = Img.

Corollary 2.12. Let (X, τ, I) be an ideal topological space. Then each of
the conditions (a)–(f) in Theorem 2.11 implies that the local function, local
closure function and semi-closure local function coincide.

Remark 2.13. We have shown that in Example 2.3 and Example 2.4,
the two operators are different. But there are some situations in which they
are the same and this follows from the next section.

3. Semi-closure compatibility of ideal topological spaces

Definition 3.1 (see [19]). Let (X, τ, I) be an ideal topological space. We
say that τ is compatible with the ideal I, denoted τ ∼ I, if the following
holds for every A ⊆ X: if for every x ∈ A there exists U ∈ τ(x) such that
U ∩A ∈ I, then A ∈ I.

Definition 3.2 (see [11]). Let (X, τ, I) be an ideal topological space.
We say that the topology τ is semi-compatible with the ideal I, denoted
τ ∼∼ I, if the following holds for every A ⊆ X: if for every x ∈ A there
exists a U ∈ SO(X,x) such that U ∩A ∈ I, then A ∈ I, where SO(X,x) =
{U ∈ SO(X) : x ∈ U}.

Definition 3.3 (see [1]). Let (X, τ, I) be an ideal topological space. We
say that τ is closure compatible with the ideal I, denoted τ ∼Γ I, if the
following holds for every A ⊆ X: if for every x ∈ A there exists U ∈ τ(x)
such that Cl(U) ∩A ∈ I, then A ∈ I.

Definition 3.4. Let (X, τ, I) be an ideal topological space. We say that τ
is semi-closure compatible with the ideal I, denoted τ ∼γ I, if the following
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holds for every A ⊆ X: if for every x ∈ A there exists U ∈ τ(x) such that
sCl(U) ∩A ∈ I, then A ∈ I.

Remark 3.5. If τ is semi-compatible with I, then τ is compatible with
I.

Proof. Proof is obvious from the fact that U ∩A ⊆ Cl(U) ∩A. �

Remark 3.6. If τ is semi-closure compatible with I, then τ is closure
compatible with I.

Proof. Proof is obvious from the fact that sCl(U) ∩A ⊆ Cl(U) ∩A. �

Theorem 3.7. For an ideal topological space (X, τ, I), the following prop-
erties are equivalent.

(1) τ ∼γ I.
(2) If a subset A of X has a cover of open sets each of whose semi-closure

intersection with A is in I, then A ∈ I.
(3) For every A ⊆ X, Aγ(A) = ∅ implies that A ∈ I.
(4) For every A ⊆ X, A \ γ(A) ∈ I.
(5) For every A ⊆ X, if A contains no nonempty subset B with B ⊆

γ(B), then A ∈ I.

Proof. (1) =⇒ (2) and (2) =⇒ (3) are obvious.
(3) =⇒ (4). From given condition, for any A ⊆ X, we have A \ γ(A) ⊆ A

and

(A \ γ(A)) ∩ γ(A \ γ(A)) ⊆ (A \ γ(A)) ∩ γ(A) = ∅.

Then A \ γ(A) ∈ I (from (3)).
(4) =⇒ (5). Given that A \ γ(A) ∈ I for every A ⊆ X. Put J = A \ γ(A),

then A = J ∪ (A ∩ γ(A)) and γ(A) = γ(J) ∪ γ(A ∩ γ(A)) = γ(A ∩ γ(A)) as
γ(J) = ∅. This implies that A ∩ γ(A) = A ∩ γ(A ∩ γ(A)) ⊆ γ(A ∩ γ(A))
and A ∩ γ(A) ⊆ A. By the given condition, A ∩ γ(A) = ∅ and hence
A = A \ γ(A) ∈ I.

(5) =⇒ (1). Let A ⊆ X and assume that, for every x ∈ A, there exists
U ∈ τ(x) such that sCl(U) ∩ A ∈ I. Then A ∩ γ(A) = ∅. Suppose that
A contains B such that B ⊆ γ(B). Then B = B ∩ γ(B) ⊆ A ∩ γ(B) ⊆
A∩γ(A) = ∅. Therefore, A contains no nonempty subset B with B ⊆ γ(B).
Hence A ∈ I. �

Theorem 3.8. Let (X, τ, I) be an ideal topological space. If τ ∼γ I, then
following equivalent properties hold.

(1) For every A ⊆ X, A ∩ γ(A) = ∅ implies that γ(A) = ∅.
(2) For every A ⊆ X, γ(A \ γ(A)) = ∅.
(3) For every A ⊆ X, γ(A ∩ γ(A)) = γ(A).
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Proof. At first we show that (1) holds when τ ∼γ I. If A ∩ γ(A) = ∅
for any subset A of X, then, from Theorem 3.7 (3), A ∈ I. Since A ∈ I,
γ(A) = ∅.

(1) =⇒ (2). Let B = A \ γ(A), then

B ∩ γ(B)=(A \γ(A)) ∩ γ(A \γ(A))=(A ∩ (X \γ(A))) ∩ γ(A ∩ (X \γ(A)))

⊆ [A ∩ (X \ (X \ γ(A))] ∩ [γ(A) ∩ (γ(X \ γ(A)))] = ∅.

This implies that γ(B) = ∅, and hence γ(A \ γ(A)) = ∅.
(2) =⇒ (3). Assume, for every A ⊆ X, that A = (A \ γ(A))∪ (A∩ γ(A)).

Then

γ(A) = γ[(A \ γ(A)) ∪ (A ∩ γ(A))]

= γ((A \ γ(A))) ∪ γ((A ∩ γ(A))) = γ(A ∩ γ(A))

as γ(A \ γ(A)) = ∅.
(3) =⇒ (1). Suppose A ∩ γ(A) = ∅ and γ(A ∩ γ(A)) = γ(A), for every

A ⊆ X. This implies that ∅ = γ(∅) = γ(A). �

Theorem 3.9. Let (X, τ, I) be an ideal topological space. Then the fol-
lowing properties are equivalent.

(1) sCl(τ) ∩ I = ∅, where sCl(τ) = {sCl(V ) : V ∈ τ}.
(2) If I ∈ I, then Intθ(I) = ∅.
(3) For every clopen subset G, G ⊆ γ(G).
(4) X = γ(X).

Proof. (1) =⇒ (2). Let I ∈ I. Suppose x ∈ Intθ(I). Then there exists
U ∈ τ such that x ∈ U ⊆ sCl(U) ⊆ Cl(U) ⊆ I. Since I ∈ I, and hence
∅ 6= {x} ⊆ sCl(U) ∈ sCl(τ) ∩ I. This is contrary to sCl(τ) ∩ I = ∅.
Therefore, Intθ(I) = ∅.

(2) =⇒ (3). Obvious from [1].
(3) =⇒ (4). Obvious as X is clopen.
(4) =⇒ (1). Given that X = γ(X) = {x ∈ X : sCl(U) ∩X = sCl(U) /∈

I, U ∈ τ(x)}. Hence sCl(τ) ∩ I = ∅. �

Theorem 3.10. Let (X, τ, I) be an ideal topological space and let τ be
semi-closure compatible with I. Then for every G ∈ τθ and every subset A
of X,

sCl(γ(G ∩A)) = γ(G ∩A) ⊆ γ(G ∩ γ(A)) ⊆ Clθ(G ∩ γ(A)).

Proof. We know, from Theorem 3.8 (3), that γ(G ∩ A) = γ((G ∩ A) ∩
γ(G ∩A)) ⊆ γ(G ∩ γ(A)) ⊆ Clθ(G ∩ γ(A)) (from Theorem 2.5). �
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4. Ψγ-operator

Definition 4.1. Let (X, τ, I) be an ideal topological space. An operator
Ψγ : ℘(X)→ SO(X) is defined as follows: for every A ⊆ X,

Ψγ(A) = {x ∈ X : there exists U ∈ τ(x) such that sCl(U) \A ∈ I}.
Observe that Ψγ(A) = X \ γ(X \A).

Theorem 4.2. Let (X, τ, I) be an ideal topological space. Then the fol-
lowing properties hold.

(1) If A ⊆ B, then Ψγ(A) is semi-open.
(2) If A ⊆ B, then Ψγ(A) ⊆ Ψγ(B).
(3) If A, B ⊆ X, then Ψγ(A ∩B) = Ψγ(A) ∩Ψγ(B).
(4) If A ⊆ X, then Ψγ(A) = Ψγ(Ψγ(A)) if and only if γ(X \ A) =

γ(γ(X \A)).
(5) If A ∈ I, then Ψγ(A) = X \ γ(A).
(6) If A ⊆ X, I ∈ I, then Ψγ(A \ I) = Ψγ(A).
(7) If A ⊆ X, I ∈ I, then Ψγ(A ∪ I) = Ψγ(A).
(8) If (A \B) ∪ (B \A) ∈ I, then Ψγ(A) = Ψγ(B).

Proof. (1) This follows from Theorem 2.5(3).
(2) This follows from Theorem 2.5(1).
(3) One has Ψγ(A∩B) = X \γ(X \ (A∩B)) = X \γ[(X \A)∪ (X \B)] =

X \ [γ(X \A)∪ (X \B)] = [X \ γ(X \A)∩ [X \ γ(X \B)] = Ψγ(A)∩Ψγ(B).
(4) We have Ψγ(A) = Ψγ(Ψγ(A)) if and only if X \ γ(X \ A) = Ψγ [X \

γ(X \ A)] if and only if X \ γ(X \ A) = X \ γ(γ(X \ A)) if and only if
γ(X \A) = γ(γ(X \A)).

(5) Obvious from Corollary 2.10.
(6) Obvious from (5).
(7) Obvious from (5).
(8) Given that (A \ B) ∪ (B \ A) ∈ I. Then from hereditary property,

(A \ B) ∈ I and (B \ A) ∈ I. Note that B = [A \ (A \ (A \ B))] ∪ (B \ A).
Then Ψγ(A) = Ψγ(A \ (A \B)) = Ψγ [(A \ (A \B))∪ (B \A)] = Ψγ(B). �

Corollary 4.3. Let (X, τ, I) be an ideal topological space. Then U ⊆
Ψγ(U), for every θ-open set U ⊆ X.

Proof. We have Ψγ(U) = X \ γ(X \A). As we know, γ(X \U) ⊆ Clθ(X \
U) = (X \U) ((X \U) is θ-closed). Then U = X \ (X \U) ⊆ X \γ(X \U) =
Ψγ(U). �

However, Modak and Bandyopadhyay [16] have shown that the above rela-
tion is true for the open set when the local function is defined in Kuratowski’s
sense.

Now we shall give an example of a set A which is not θ-open set but
satisfies A ⊆ Ψγ(A).
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Example 4.4. Let X = {a, b, c, d}, τ = {∅, X, {a, c}, {d}, {a, c, d}},
and let I = {∅, {b}, {c}, {b, c}}. Then

SO(X) = {∅, X, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}}
and semi-closed sets are {∅, X, {a, b, c}, {b, d}, {a, c}, {d}, {b}}. Let A =
{a}. Then Ψγ({a}) = X \ γ({b, c, d}) = X \ {b, d} = {a, c}. Therefore,
{a} ⊆ Ψγ({a}), but A is not θ-open.

Theorem 4.5. Let (X, τ, I) be an ideal topological space. For A ⊆ X,
the following properties hold.

(1) Ψγ(A) =
⋃
{U ∈ τ : sCl(U) \A ∈ I}.

(2) Ψγ(A) ⊇
⋃
{U ∈ τ : [(sCl(U) \A) ∪ (A \ sCl(U))] ∈ I}.

Proof. (1) This follows from the definition of Ψγ-operator.
(2) One has⋃

{U ∈ τ : [(sCl(U) \A) ∪ (A \ sCl(U))] ∈ I}

⊆
⋃
{U ∈ τ : sCl(U) \A ∈ I} = Ψγ(A)

for every A ⊆ X. �

Theorem 4.6. Let (X, τ, I) be an ideal topological space. If
∑

= {A ⊆
X : A ⊆ Ψγ(A)}, then

∑
is a topology on X.

Proof. We have Ψγ(X) = X \γ(X \X) = X, since ∅ ∈ I implies γ(∅) = ∅.
Again Ψγ(∅) = X \ γ(X \ ∅) = X \ X = ∅. Since A ∩ B ⊆ Ψγ(A) and
A ∩ B ⊆ Ψγ(B), A ∩ B ⊆ Ψγ(A) ∩ Ψγ(B). Suppose {Aα : α ∈ Λ} ⊆

∑
,

then Aα ⊆ Ψγ(Aα) ⊆ Ψγ(∪Aα) for every α, and hence ∪Aα ⊆ Ψγ(∪Aα).
This shows that

∑
is a topology. �

5. Error operators

Definition 5.1. Let (X, τ, I) be an ideal topological space. We define
two operators E1, E2 : ℘(X)→ ℘(X) as follows: for every A ⊆ X,

E1(A) = {x ∈ X : [(Cl(U) ∩A) \ (sCl(U) ∩A)] /∈ I, U ∈ τ(x)},
E2(A) = {x ∈ X : [(Cl(U) ∩A) \ (U ∩A)] /∈ I, U ∈ τ(x)}.

These two operators are called error operators.

Theorem 5.2. For an ideal topological space (X, τ, I), the following prop-
erties hold.

(1) E1(A) ⊆ Γ(A), for any subset A of X.
(2) E2(A) ⊆ Γ(A), for any subset A of X.
(3) E1(A) ⊆ E2(A), for any subset A of X.
(4) E1(A) \ E2(A) = ∅, for any subset A of X.
(5) E2(A) \ E1(A) 6= ∅, for any subset A of X.
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Proof. (1) Proof is obvious from the fact that [(Cl(U)∩A)\(sCl(U)∩A)] /∈
I implies Cl(U) ∩A /∈ I.

(2) Proof is obvious from the fact that [(Cl(U)∩A)\ (U ∩A)] /∈ I implies
Cl(U) ∩A /∈ I.

(3) Suppose x ∈ E1(A). Then for all U ∈ τ(x), [(Cl(U)∩A)\(U ∩A)] /∈ I
otherwise [(Cl(U) ∩A) \ (sCl(U) ∩A)] ∈ I. Thus x ∈ E2(A). �

We have from the above that the error E1(A) is smaller than the error
E2(A), for a subset A of X. Thus γ(A) is a better approximation of Γ(A)
than the approximation of A∗ by Γ(A).

Definition 5.3. Let (X, τ, I) be an ideal topological space. Two oper-
ators Eγ∗, EΓγ : ℘(X) → ℘(X) are defined as follows: for every A ⊆ X,
Eγ∗(A) = γ(A) \A∗ and EΓγ(A) = Γ(A) \ γ(A).

Theorem 5.4. For an ideal topological space (X, τ, I), the following prop-
erties hold.

(1) Eγ∗(A) ⊆ γ(A), for any subset A of X.
(2) EΓγ(A) ⊆ Γ(A), for any subset A of X.
(3) Eγ∗(A) ⊆ EΓγ(A), for any subset A of X.
(4) EΓγ(A) \ Eγ∗(A) = ∅, for any subset A of X.
(5) EΓγ(A) \ Eγ∗(A) 6= ∅, for any subset A of X.

Proof. (3) Let x ∈ Eγ∗(A). Then for all Ux ∈ τ(x), sCl(Ux) ∩ A /∈ I and
there exists Vx ∈ τ(x) such that Vx ∩ A ∈ I. Then (Cl(Ux) ∩ A) /∈ I. Thus
[(Cl(Ux) ∩ A) \ (Vx ∩ A)] /∈ I. (If not, that is [(Cl(Ux) ∩ A) \ (Vx ∩ A)] ∈ I
and hence, [(Cl(Ux)∩A) \ (Vx ∩A)] = I1 ∈ I. Thus Cl(Ux)∩A = I1 ∪ (I1 ∩
(Vx ∩A)) ∈ I, a contradiction.) �

6. Conclusion

One can define a local function in an ideal topological space replacing the
open sets by

{x ∈ X : Ux ∩A /∈ Γ, Ux ∈ τ(x)}. (6.1)

But then the following occurs.

(i) If the open sets Ux of (6.1) are replaced by the base members Bx (such
as regular open sets) then this local function is finer than the original local
function (see [12], [24], [9], [10]) and this new type of local function does
not give a topology, however the collection of regular open sets is a smaller
collection than the topology.

(ii) If the open sets Ux of (6.1) are replaced by sCl(Ux) (respectively,
Cl(Ux)), then this local function is a generalization of the original local func-
tion (see [12], [24], [9], [10]), however Ux ⊆ sCl(Ux) (respectively, Cl(Ux)),
and this induces again a topology.
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(iii) If the open sets Ux of (6.1) are replaced by the semi-open sets, then
the new local function [11] is weaker than the original local function and it
does not induce a topology, although the collection of all semi-open sets is
finer than the topology (see [11]).
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[10] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math.
Monthly 97 (1990), 295–310.

[11] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res.
Pure Math. 2(1) (2012), 36–42.

[12] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.

Monthly 70 (1963), 36–41.
[14] A. S. Mashhour, M. E. Abd. El-Monsef, and S. N. El-Deeb, On precontinuous and

weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47–53.
[15] S. Modak, Some new topologies on ideal topological spaces, Proc. Nat. Acad. Sci. India

Sect. A Phys. Sci. 82(3) (2012), 233–243.
[16] S. Modak and C. Bandyopadhyay, A note on ψ-operator, Bull. Malyas. Math. Sci.

Soc. 30(1) (2007), 43–48.
[17] S. Modak and T. Noiri, Connectedness of ideal topological spaces, Filomat 29(4)

(2015), 661–665.
[18] M. N. Mukherjee, B. Roy, and R. Sen, On extensions of topological spaces in terms of

ideals, Topol. Appl. 154 (2007), 3167–3172.
[19] O. Nj̊astad, Remarks on topologies defined by local properties, Avh. Norske Vid-Akad.

Oslo (N. S.) 8 (1966), 16 pp.
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