Extremal tricyclic, tetracyclic, and pentacyclic graphs with respect to the Narumi-Katayama index

Ali Reza Ashrafi, Mehdi Eliasi, Ali Ghalavand, and Ottorino Ori

Abstract

Let G be an n-vertex graph with the vertex degree sequence $d_{1}, d_{2}, \ldots, d_{n}$. The Narumi-Katayama index of G is defined as $N K(G)=\prod_{i=1}^{n} d_{i}$. We determine eight classes of n-vertex tricyclic graphs with the first through the eighth maximal $N K$ index, $n \geq 10$. We also identify ten classes of n-vertex tetracyclic graphs with the first through the ninth maximal $N K$ index, $n \geq 10$, and thirteen classes of n-vertex pentacyclic graphs with the first through the twelfth maximal $N K$ index, $n \geq 12$.

1. Introduction

In this paper, we consider only finite undirected simple graphs. Let G be such a graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. If G has exactly n vertices, m edges, and k components with $m-n+k=3,4,5$, then the graph G is called tricyclic, tetracyclic and pentacyclic, respectively. Throughout this paper, we use the following notation: $d_{1}, d_{2}, \ldots, d_{n}$ denotes the degree sequence of G, where $d_{i}:=\operatorname{deg}_{G}\left(v_{i}\right)$. We use the symbols $\Delta(G)$ and $n_{i}=n_{i}(G)$ for the maximum degree of vertices in G and the number of vertices of degree i in G, respectively.
It is clear that $\sum_{i=1}^{\Delta(G)} n_{i}=|V(G)|=n$ and $\sum_{i=1}^{\Delta(G)} i n_{i}=\sum_{i=1}^{n} d_{i}=2 m$, where m is the number of edges in G. The following natural question arises: what we can say about $\prod_{i=1}^{n} d_{i}$?

[^0]In the 1980s, Narumi and Katayama [11] used the term simple topological index for this graph invariant, but nowadays researchers prefer the Narumi-Katayama index ($N K$ index). Thus, $N K(G)=\prod_{i=1}^{n} d_{i}$. Klein and Rosenfeld [9] characterized this topological index, first, as the number of "functional" subgraphs of a certain directed graph, and, second, as a suitable weighting over a certain class of ordinary subgraph covers of the graph under consideration. They introduced the $N K$ polynomial [10], by analogy with Hosoya Z-index and matching polynomial.

Suppose that $P H$ is a phenylene and $H S$ is its hexagonal squeeze. Tomović and Gutman [12] proved that the respective Narumi-Katayama indices of these molecular graphs are related as $N K(P H)=9^{h-1} N K(H S)$, where h is the number of hexagons in $P H$ and $H S$. Gutman and Ghorbani [7] obtained the maximal and minimal Narumi-Katayama index among all connected n-vertex trees, unicyclic and bicyclic graphs. Wang and Xia [13] characterized the first and second smallest Narumi-Katayama index among n-vertex unicycic graphs. Zolfi and Ashrafi [16] computed the first, second, third, and forth maximum and minimum of $N K$ index for n-vertex trees and chemical trees. They also calculated the first ten minimum and maximum values of $N K$ index in the classes of unicyclic and unicyclic chemical graphs [17]. In addition, they computed the first fifteen maximum values of the bicyclic graphs. You and Liu [15] determined the extremal $N K$ index of trees and unicyclic graphs with a given diameter and the number of vertices.

Eliasi [4] applied the theory of majorization to order the first through sixth n-vertex trees, unicycic, and bicyclic graphs with respect to the $N K$ index. Jamil et al. [8] characterized the upper and lower bounds of NarumiKatayama index for the graphs with given order, number of pendant vertices, and cyclomatic number, and characterized the corresponding extremal graphs. Wang and Wei [14] identified the upper and lower bounds of NarumiKatayama index for all cactus graphs and characterized the corresponding extremal graphs. Very recently Eliasi and Ghalavand [5] characterized the first through eighth maximal $N K$ index among n-vertex trees by the theory of majorization.

Suppose that $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ and k are positive integers. By the symbol $C^{k}\left(x_{1}^{\left(y_{1}\right)}, \ldots, x_{m}^{\left(y_{m}\right)}\right)$ we denote the class of all graphs with cyclomatic number k, where y_{i} are vertices of degree $x_{i}, 1 \leq i \leq m$. The set of all connected graphs with exactly n vertices and cyclomatic number i is denoted by $C^{i}(n)$.

Lemma 1.1. Let $x_{3}, x_{4}, \ldots, x_{m}$ be nonnegative integers. Then,

$$
\frac{\prod_{i=3}^{m} i^{x_{i}}}{2^{\sum_{i=3}^{m} x_{i}(i-1)}} \leq 1
$$

Equality holds if and only if $x_{i}=0$ for $i=3,4, \ldots, m$.

Proof. Note that

$$
\begin{aligned}
\ln \frac{\prod_{i=3}^{m} i^{x_{i}}}{2^{\sum_{i=3}^{m} x_{i}(i-1)}} & =\ln \prod_{i=3}^{m} i^{x_{i}}-\ln 2^{\sum_{i=3}^{m} x_{i}(i-1)} \\
& =\sum_{i=3}^{m} x_{i} \ln i-\sum_{i=3}^{m} x_{i}(i-1) \ln 2 \\
& =\sum_{i=3}^{m} x_{i}(\ln i-(i-1) \ln 2) \\
& =\sum_{i=3}^{m} x_{i}\left(\ln \frac{i}{2^{i-1}}\right) \leq 0 .
\end{aligned}
$$

If $i \geq 3$, then $\frac{i}{2^{2-1}}<1$ and so $\ln \frac{i}{2^{i-1}}<0$. Therefore, the inequality holds its maximum if and only if $x_{i}=0,3 \leq i \leq m$, proving the lemma.

Throughout this paper, the path and complete graphs on n vertices are denoted by P_{n} and K_{n}, respectively. Other notation is standard and can be taken from standard books on graph theory.

2. Narumi-Katayama index of tricyclic graphs

The aim of this section is to determine eight classes of n-vertex tricyclic graphs with the first through the eight maximal $N K$ index, $n \geq 10$.

Lemma 2.1. Let G be a connected tricyclic graph with n vertices. Then, $n_{1}(G)=\sum_{i=3}^{\Delta(G)}(i-2) n_{i}-4$ and $n_{2}(G)=n+4-\sum_{i=3}^{\Delta(G)}(i-1) n_{i}$.

Proof. We note that the number of edges of G is $n+4$. Since $\sum_{i=1}^{\Delta(G)} n_{i}=n$ and $\sum_{i=1}^{\Delta(G)} i n_{i}=2|E(G)|$, we have $n_{1}+n_{2}+\sum_{i=3}^{\Delta(G)} n_{i}=n$ and $n_{1}+2 n_{2}+$ $\sum_{i=3}^{\Delta(G)} i n_{i}=2 n+4$. By solving these equations, we obtain the result.

Lemma 2.2. Let G_{1} and G_{2} be two tricyclic graphs in $C^{3}(n)$. If $n_{i}\left(G_{1}\right) \geq$ $n_{i}\left(G_{2}\right)$ for $i=3, \ldots, n-1$, then $N K\left(G_{1}\right) \leq N K\left(G_{2}\right)$. Equality holds if and only if $n_{i}\left(G_{1}\right)=n_{i}\left(G_{2}\right)$.

Proof. By Lemma 2.1,

$$
\begin{align*}
\frac{N K\left(G_{1}\right)}{N K\left(G_{2}\right)} & =\frac{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{1}\right)}}{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{2}\right)}}=\frac{2^{n+4-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{n+4-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \\
& =\frac{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \tag{1}\\
& =\frac{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}}=\frac{\prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)}}{2^{\sum_{i=3}^{n-1}\left(n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)\right)(i-1)}} .
\end{align*}
$$

We now apply Lemma 1.1 and equalities (1) to prove the result.
Lemma 2.2 implies the following two results.
Corollary 2.1. Let G^{\prime} be an n-vertex tricyclic graph, $n \geq 10, \Delta\left(G^{\prime}\right)=$ 3, and $n_{3}\left(G^{\prime}\right) \geq 8$. Then, for each $G \in C^{3}\left(3^{(7)}, 2^{(n-10)}, 1^{(3)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Corollary 2.2. Let G^{\prime} be an n-vertex tricyclic graph and $\Delta\left(G^{\prime}\right)=4$, where $n \geq 10$. If $n_{4}\left(G^{\prime}\right)=1$ and $n_{3}\left(G^{\prime}\right) \geq 6$, then, for each $G \in C^{3}\left(4^{(1)}, 3^{(5)}\right.$, $\left.2^{(n-9)}, 1^{(3)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Lemma 2.3. Let G^{\prime} be an n-vertex tricyclic graph, $\Delta\left(G^{\prime}\right)=4$ and $n \geq 10$. If $n_{4}\left(G^{\prime}\right) \geq 2$ and
$G^{\prime} \notin C^{3}\left(4^{(2)}, 24^{(n-2)}\right) \cup C^{3}\left(4^{(2)}, 3^{(1)}, 2^{(n-4)}, 1^{(1)}\right) \cup C^{3}\left(4^{(2)}, 3^{(2)}, 2^{(n-6)}, 1^{(2)}\right)$, then, for each $G \in C^{3}\left(4^{(2)}, 3^{(2)}, 2^{(n-6)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{4}\left(G^{\prime}\right) \geq 3$ and $H \in C^{3}\left(4^{(3)}, 2^{(n-5)}, 1^{(2)}\right)$. By Lemma 2.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{4^{2} \times 3^{2} \times 2^{n-6}}{4^{3} \times 2^{n-5}}>1 .
$$

The other cases can be obtained directly from Lemma 2.2.
Lemma 2.4. Let G^{\prime} be an n-vertex tricyclic graph with maximum degree five, $n \geq 10$. If $G^{\prime} \notin C^{3}\left(5^{(1)}, 3^{(1)}, 2^{(n-2)}\right) \cup C^{3}\left(5^{(1)}, 3^{(2)}, 2^{(n-4)}, 1^{(1)}\right)$, then, for each $G \in C^{3}\left(5^{(1)}, 3^{(2)}, 2^{(n-4)}, 1^{(1)}\right)$ we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{5}\left(G^{\prime}\right) \geq 2$. Choose a graph H from $C^{3}\left(5^{(2)}, 2^{(n-4)}\right.$, $\left.1^{(2)}\right)$. Then, by Lemma 2.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{5 \times 3^{2} \times 2^{n-4}}{5^{2} \times 2^{n-4}}>1
$$

Thus, it is enough to assume that $n_{5}\left(G^{\prime}\right)=1$. Suppose that $n_{4}\left(G^{\prime}\right) \geq 1$ and $n_{3}\left(G^{\prime}\right) \leq 1$, and choose $H \in C^{3}\left(5^{(1)}, 4^{(1)}, 2^{(n-3)}, 1^{(1)}\right)$. Then, by Lemma 2.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{5 \times 3^{2} \times 2^{n-4}}{5 \times 4 \times 2^{n-3}}>1 .
$$

The other cases can be obtained directly from Lemma 2.2.
Theorem 2.1. Let G^{\prime} be a tricyclic graph with $n \geq 10$ vertices and let $\Delta\left(G^{\prime}\right) \geq 6$. If $G^{\prime} \notin C^{3}\left(6^{(1)}, 2^{(n-1)}\right)$, then, for each $G \in C^{3}\left(6^{(1)}, 2^{(n-1)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. We first assume that $\Delta\left(G^{\prime}\right) \geq 7$. Then, by Lemmas 2.1 and 1.1,

$$
\begin{align*}
\frac{N K(G)}{N K\left(G^{\prime}\right)} & =\frac{6 \times 2^{(n-1)}}{2^{n+4-\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)} \prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \\
& =\frac{6 \times 2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)-5}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \tag{2}\\
& =\frac{6 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-5}}{\Delta\left(G^{\prime}\right)^{n}\left(G^{\prime}\right)} \times \frac{2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)-1} n_{i}\left(G^{\prime}\right)(i-1)}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)-1} i^{n_{i}\left(G^{\prime}\right)}} \\
& \geq \frac{6 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-5}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}} .
\end{align*}
$$

But

$$
\begin{aligned}
& \ln \frac{6}{} \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-5} \\
& \Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)} \\
&=\ln 6+n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2-5 \ln 2-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right) \\
&>n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right)-1.7>0 .
\end{aligned}
$$

Since

$$
n_{\Delta}\left(G^{\prime}\right) \ln \frac{2^{\Delta\left(G^{\prime}\right)-1}}{\Delta\left(G^{\prime}\right)} \geq \ln \frac{2^{6}}{7}>1.7
$$

by (2) one has $\frac{N K(G)}{N K\left(G^{\prime}\right)}>1$. In other cases, the result can be obtained by Lemma 2.2.

In the next theorem, it is assumed that $n \geq 10$,

$$
\begin{array}{ll}
G_{1} \in C^{3}\left(3^{(4)}, 2^{(n-4)}\right), & G_{2} \in C^{3}\left(4^{(1)}, 3^{(2)}, 2^{(n-3)}\right), \\
\left.G_{3} \in C^{3} 4^{(2)}, 2^{(n-2)}\right), & G_{4} \in C^{3}\left(3^{(5)}, 2^{(n-6)}, 1^{(1)}\right), \\
G_{5} \in C^{3}\left(5^{(1)}, 3^{(1)}, 2^{(n-2)}\right), & G_{6} \in C^{3}\left(4^{(1)}, 3^{(3)}, 2^{(n-5)}, 1^{(1)}\right), \\
G_{7} \in C^{3}\left(4^{(2)}, 3^{(1)}, 2^{(n-4)}, 1^{(1)}\right), & G_{8} \in C^{3}\left(6^{(1)}, 2^{(n-1)}\right), \\
G_{9} \in C^{3}\left(3^{(6)}, 2^{(n-8)}, 1^{(2)}\right), & G_{10} \in C^{3}\left(5^{(1)}, 3^{(2)}, 2^{(n-4)}, 1^{(1)}\right), \\
G_{11} \in C^{3}\left(4^{(1)}, 3^{(5)}, 2^{(n-9)}, 1^{(3)}\right), & G_{12} \in C^{3}\left(4^{(2)}, 3^{(2)}, 2^{(n-6)}, 1^{(2)}\right), \\
G_{13} \in C^{3}\left(3^{(7)}, 2^{(n-10)}, 1^{(3)}\right), & G_{14} \in C^{3}\left(4^{(1)}, 3^{(4)}, 2^{(n-7)}, 1^{(2)}\right),
\end{array}
$$

Theorem 2.2. Let G be an n-vertex tricyclic graph outside the set $\left\{G_{1}\right.$, $\left.G_{2}, \ldots, G_{8}\right\}$. Then we have $N K\left(G_{1}\right)>N K\left(G_{2}\right)>N K\left(G_{3}\right)>N K\left(G_{4}\right)>$ $N K\left(G_{5}\right)>N K\left(G_{6}\right)>N K\left(G_{7}\right)=N K\left(G_{8}\right)>N K(G)$.

Proof. By Table 1, NK $\left(G_{1}\right)>N K\left(G_{2}\right)>N K\left(G_{3}\right)>N K\left(G_{4}\right)>$ $N K\left(G_{5}\right)>N K\left(G_{6}\right)>N K\left(G_{7}\right)=N K\left(G_{8}\right)$. If $G \in\left\{G_{9}, \ldots, G_{14}\right\}$, then Table 1 gives us the result. If $\Delta(G)=3$ and $n_{3}(G) \geq 8$, then the result can

Table 1. The tricyclic graphs.

Classes	$N K$ Index
$C^{3}\left(3^{(4)}, 2^{(n-4)}\right)$	$3^{4} \times 2^{(n-4)}$
$C^{3}\left(3^{(5)}, 2^{(n-6)}, 1^{(1)}\right)$	$3^{5} \times 2^{(n-6)}$
$C^{3}\left(3^{(6)}, 2^{(n-8)}, 1^{(2)}\right)$	$3^{6} \times 2^{(n-8)}$
$C^{3}\left(3^{(7)}, 2^{(n-10)},,^{(3)}\right)$	$3^{7} \times 2^{(n-10)}$
$\left.C^{3} 4^{(1)}, 3^{(2)}, 2^{(n-3)}\right)$	$4 \times 3^{2} \times 2^{(n-3)}$
$\left.C^{3} 4^{(1)}, 3^{(3)}, 2^{(n-5)}, 1^{(1)}\right)$	$4 \times 3^{3} \times 2^{(n-5)}$
$C^{3}\left(4^{(1)}, 3^{(4)}, 2^{(n-7)}, 1^{(2)}\right)$	$4 \times 3^{4} \times 2^{(n-7)}$
$C^{3}\left(4^{(1)}, 3^{(5)}, 2^{(n-9)}, 1^{(3)}\right)$	$4 \times 3^{5} \times 2^{(n-9)}$
$C^{3}\left(4^{(2)}, 2^{(n-2)}\right)$	$4^{2} \times 2^{(n-2)}$
$C^{3}\left(4^{(2)}, 3^{(1)}, 2^{(n-4)}, 1^{(1)}\right)$	$4^{2} \times 3 \times 2^{(n-4)}$
$C^{3}\left(4^{(2)}, 3^{(2)}, 2^{(n-6)}, 1^{(2)}\right)$	$4^{2} \times 3^{2} \times 2^{(n-6)}$
$C^{3}\left(5^{(1)}, 3^{(1)}, 2^{(n-2)}\right)$	$5 \times 3 \times 2^{(n-2)}$
$C^{3}\left(5^{(1)}, 3^{(2)}, 2^{(n-4)}, 1^{(1)}\right)$	$5 \times 3^{2} \times 2^{(n-4)}$
$C^{3}\left(6^{(1)}, 2^{(n-1)}\right)$	$6 \times 2^{(n-1)}$

be deduced from Corollary 2.1. Suppose that $\Delta(G)=4$. If $n_{4}(G)=1$ and $n_{3}(G) \geq 6$, then Corollary 2.2 gives us the result. If $n_{4}(G) \geq 2$, then the result follows from Lemma 2.3, and if $\Delta(G)=5$, then the result is a consequence of Lemma 2.4. If $\Delta(G) \geq 6$, then the result follows from Theorem 2.1. In other cases, $G \in\left\{G_{1}, G_{2}, \ldots, G_{8}\right\}$, as desired.

3. Narumi-Katayama index of tetracyclic graphs

The aim of this section is to determine the first through the nine maximal $N K$ index in the class of all n-vertex tetracyclic graphs, $n \geq 10$.

Lemma 3.1. If G is a connected tetracyclic graph with n vertices, then

$$
n_{1}(G)=\sum_{i=3}^{\Delta(G)}(i-2) n_{i}-6 \text { and } n_{2}(G)=n+6-\sum_{i=3}^{\Delta(G)}(i-1) n_{i} .
$$

Proof. It is easy to see that $\sum_{i=1}^{\Delta(G)} n_{i}=n$ and $\sum_{i=1}^{\Delta(G)} i n_{i}=2|E(G)|$. Since $|E(G)|=n+3$,

$$
n_{1}+n_{2}+\sum_{i=3}^{\Delta(G)} n_{i}=n, \text { and } n_{1}+2 n_{2}+\sum_{i=3}^{\Delta(G)} i n_{i}=2 n+6
$$

proving the lemma.

Lemma 3.2. Let G_{1} and G_{2} be two tetracyclic graphs in $C^{4}(n)$. If $n_{i}\left(G_{1}\right) \geq n_{i}\left(G_{2}\right), 3 \leq i \leq n-1$, then $N K\left(G_{1}\right) \leq N K\left(G_{2}\right)$. The equality holds if and only if $n_{i}\left(G_{1}\right)=n_{i}\left(G_{2}\right)$, where $3 \leq i \leq n-1$.

Proof. By Lemma 3.1, we have

$$
\begin{aligned}
\frac{N K\left(G_{1}\right)}{N K\left(G_{2}\right)} & =\frac{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{1}\right)}}{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{2}\right)}}=\frac{2^{n+6-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{n+6-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \\
& =\frac{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \\
& =\frac{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n i} i_{i}\left(G_{2}\right)}=\frac{\prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)}}{2^{\sum_{i=3}^{n-1}\left(n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)\right)(i-1)}} .
\end{aligned}
$$

Now Lemma 1.1 gives us the result.
Lemma 3.2 implies the following three results.
Corollary 3.1. Let G^{\prime} be a tetracyclic graph with $n \geq 10$ vertices, $\Delta\left(G^{\prime}\right)=$ 3 , and $n_{3}\left(G^{\prime}\right) \geq 9$. Then, for each $G \in C^{4}\left(3^{(8)}, 2^{(n-10)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Corollary 3.2. Let G^{\prime} be a tetracyclic graph with $n \geq 10$ vertices and $\Delta\left(G^{\prime}\right)=4$. If $n_{4}\left(G^{\prime}\right)=1$ and $n_{3}\left(G^{\prime}\right) \geq 7$, then, for each $G \in C^{4}\left(4^{(1)}, 3^{(6)}\right.$, $\left.2^{(n-9)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Corollary 3.3. Let G^{\prime} be an n-vertex tetracyclic graph with $\Delta\left(G^{\prime}\right)=4$ and $n \geq 10$. If $n_{4}\left(G^{\prime}\right)=2$ and $n_{3}\left(G^{\prime}\right) \geq 5$, then, for each $G \in C^{4}\left(4^{(2)}, 3^{(4)}\right.$, $\left.2^{(n-8)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Lemma 3.3. Let G^{\prime} be an n-vertex tetracyclic graph, where $\Delta\left(G^{\prime}\right)=4$ and $n \geq 10$. If $n_{4}\left(G^{\prime}\right) \geq 3$ and

$$
G^{\prime} \notin C^{4}\left(4^{(3)}, 2^{(n-3)}\right) \cup C^{4}\left(4^{(3)}, 3^{(1)}, 2^{(n-5)}, 1^{(1)}\right) \cup C^{4}\left(4^{(3)}, 3^{(2)}, 2^{(n-7)}, 1^{(2)}\right)
$$ then, for each $G \in C^{4}\left(4^{(3)}, 3^{(2)}, 2^{(n-7)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{4}\left(G^{\prime}\right) \geq 4$ and choose a graph H in $C^{4}\left(4^{(4)}, 2^{(n-6)}\right.$, $\left.1^{(2)}\right)$. Then, by Lemma 3.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{4^{3} \times 3^{2} \times 2^{n-7}}{4^{4} \times 2^{n-6}}>1 .
$$

On other cases, the result can be obtained from Lemma 3.2.
Lemma 3.4. Let G^{\prime} be an n-vertex tetracyclic graph, where $\Delta\left(G^{\prime}\right)=$ 5, and $n \geq 10$. If $G^{\prime} \notin C^{4}\left(5^{(1)}, 3^{(3)}, 2^{(n-4)}\right) \cup C^{4}\left(5^{(1)}, 3^{(4)}, 2^{(n-6)}, 1^{(1)}\right) \cup$ $C^{4}\left(5^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-3)}\right)$, then, for each $G \in C^{4}\left(5^{(1)}, 3^{(4)}, 2^{(n-6)}, 1^{(1)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. We first assume that $n_{5}\left(G^{\prime}\right) \geq 2$. Choose an $H \in C^{4}\left(5^{(2)}, 2^{(n-2)}\right)$. Then, by Lemma 3.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{5 \times 3^{4} \times 2^{n-6}}{5^{2} \times 2^{n-2}}>1 .
$$

If $n_{5}\left(G^{\prime}\right)=1$ and $n_{4}\left(G^{\prime}\right)=1$, then

$$
C^{4}\left(5^{(1)}, 4^{(1)}, 3^{(2)}, 2^{(n-5)}, 1^{(1)}\right)
$$

Hence, by Lemma 3.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{5 \times 3^{4} \times 2^{n-6}}{5 \times 4 \times 3^{2} \times 2^{n-5}}>1 .
$$

We now assume that $n_{5}\left(G^{\prime}\right)=1, n_{4}\left(G^{\prime}\right) \geq 2$, and choose a graph H in the set

$$
C^{4}\left(5^{(1)}, 4^{(2)}, 2^{(n-4)}, 1^{(1)}\right)
$$

Then, by Lemma 3.2,

$$
\frac{N K(G)}{N K\left(G^{\prime}\right)} \geq \frac{N K(G)}{N K(H)}=\frac{5 \times 3^{4} \times 2^{n-6}}{5 \times 4^{2} \times 2^{n-4}}>1 .
$$

In other cases, the result can be obtained by Lemma 3.2.
Theorem 3.1. Let G^{\prime} be an n-vertex tetracyclic graph with $n \geq 10$ vertices, and let $\Delta\left(G^{\prime}\right) \geq 6$. If $G^{\prime} \notin C^{4}\left(6^{(1)}, 3^{(2)}, 2^{(n-3)}\right)$, then, for each $G \in C^{4}\left(6^{(1)}, 3^{(2)}, 2^{(n-3)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Our main proof will consider the following three cases.
(1) Suppose that $\Delta\left(G^{\prime}\right) \geq 8$. Then, by Lemma 3.1 and Lemma 1.1,

$$
\begin{align*}
\frac{N K(G)}{N K\left(G^{\prime}\right)} & =\frac{6 \times 3^{2} \times 2^{(n-3)}}{2^{n+6-\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)} \prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \\
& =\frac{54 \times 2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)-9}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \tag{3}\\
& =\frac{54 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-9}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}} \times \frac{2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)-1} n_{i}\left(G^{\prime}\right)(i-1)}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)-1} i^{n_{i}\left(G^{\prime}\right)}} \\
& \geq \frac{54 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-9}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}} .
\end{align*}
$$

On the other hand, since $n_{\Delta}\left(G^{\prime}\right) \ln \frac{2^{\Delta\left(G^{\prime}\right)-1}}{\Delta\left(G^{\prime}\right)} \geq \ln \frac{2^{7}}{8}>2.25$, we get

$$
\begin{aligned}
\ln \frac{54 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-9}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}}= & \ln 54+n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2 \\
& -9 \ln 2-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& >n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2 \\
& \quad-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right)-2.25>0 .
\end{aligned}
$$

We now apply (3) to prove that $\frac{N K(G)}{N K\left(G^{\prime}\right)}>1$.
(2) Let $\Delta\left(G^{\prime}\right)=7$. By Lemma 3.2, there exists a graph H in $C^{4}\left(7^{(1)}, 3^{(1)}\right.$, $\left.2^{(n-2)}\right) \cup C^{4}\left(7^{(1)}, 4^{(1)}, 2^{(n-3)}, 1^{(1)}\right) \cup C^{4}\left(7^{(1)}, 5^{(1)}, 2^{(n-4)}, 1^{(2)}\right) \cup C^{4}\left(7^{(1)}, 6^{(1)}\right.$, $\left.2^{(n-5)}, 1^{(3)}\right) \cup C^{4}\left(7^{(2)}, 2^{(n-6)}, 1^{(4)}\right)$. Hence, $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$ which proves the assertion .
(3) Let $\Delta\left(G^{\prime}\right)=6$. By Lemma 3.2, there exists a graph H such that

$$
\begin{aligned}
H \in & C^{4}\left(6^{(1)}, 3^{(3)}, 2^{(n-5)}, 1^{(1)}\right) \cup C^{4}\left(6^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-4)}, 1^{(1)}\right) \\
& \cup C^{4}\left(6^{(1)}, 4^{(2)}, 2^{(n-5)}, 1^{(2)}\right) \cup C^{4}\left(6^{(1)}, 5^{(1)}, 3^{(1)}, 2^{(n-5)}, 1^{(2)}\right) \\
& \cup C^{4}\left(6^{(1)}, 5^{(1)}, 4^{(1)}, 2^{(n-6)}, 1^{(3)}\right) \cup C^{4}\left(6^{(1)}, 5^{(2)}, 2^{(n-7)}, 1^{(4)}\right) \\
& \cup C^{4}\left(6^{(2)}, 3^{(1)}, 2^{(n-6)}, 1^{(3)}\right) \cup C^{4}\left(6^{(2)}, 4^{(1)}, 2^{(n-7)}, 1^{(4)}\right) \\
& \cup C^{4}\left(6^{(2)}, 5^{(1)}, 2^{(n-8)}, 1^{(5)}\right) \cup C^{4}\left(6^{(3)}, 2^{(n-9)}, 1^{(6)}\right)
\end{aligned}
$$

Thus, $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$.
In the following theorem, it is assumed that $n \geq 10$ and

$$
\begin{array}{ll}
H_{1} \in C^{4}\left(3^{(6)}, 2^{(n-6)}\right), & H_{2} \in C^{4}\left(4^{(1)}, 3^{(4)}, 2^{(n-5)}\right), \\
H_{3} \in C^{4}\left(4^{(2)}, 3^{(2)}, 2^{(n-4)}\right), & H_{4} \in C^{4}\left(3^{(7)}, 2^{(n-8)}, 1^{(1)}\right), \\
H_{5} \in C^{4}\left(5^{(1)}, 3^{(3)}, 2^{(n-4)}\right), & H_{6} \in C^{4}\left(4^{(3)}, 2^{(n-3)}\right), \\
H_{7} \in C^{4}\left(4^{(1)}, 3^{(5)}, 2^{(n-7)}, 1^{(1)}\right), & H_{8} \in C^{4}\left(5^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-3)}\right), \\
H_{9} \in C^{4}\left(4^{(2)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right), & H_{10} \in C^{4}\left(6^{(1)}, 3^{(2)}, 2^{(n-3)}\right), \\
H_{11} \in C^{4}\left(3^{(8)}, 2^{(n-10)}, 1^{(2)}\right), & H_{12} \in C^{4}\left(5^{(1)}, 3^{(4)}, 2^{(n-6)}, 1^{(1)}\right), \\
H_{13} \in C^{4}\left(4^{(3)}, 3^{(1)}, 2^{(n-5)}, 1^{(1)}\right), & H_{14} \in C^{4}\left(4^{(1)}, 3^{(6)}, 2^{(n-9)}, 1^{(2)}\right), \\
H_{15} \in C^{4}\left(4^{(2)}, 3^{(4)}, 2^{(n-8)}, 1^{(2)}\right), & H_{16} \in C^{4}\left(4^{(3)}, 3^{(2)}, 2^{(n-7)}, 1^{(2)}\right) .
\end{array}
$$

Theorem 3.2. Let H be a tetracyclic graph with $n \geq 10$ vertices, except from the graphs $H_{1}, H_{2}, \ldots, H_{10}$. Then, $N K\left(H_{1}\right)>N K\left(H_{2}\right)>N K\left(H_{3}\right)$ $>N K\left(H_{4}\right)>N K\left(H_{5}\right)>N K\left(H_{6}\right)>N K\left(H_{7}\right)>N K\left(H_{8}\right)>N K\left(H_{9}\right)=$ $N K\left(H_{10}\right)>N K(H)$.

Proof. From Table 2, $N K\left(H_{1}\right)>N K\left(H_{2}\right)>N K\left(H_{3}\right)>N K\left(H_{4}\right)>$ $N K\left(H_{5}\right)>N K\left(H_{6}\right)>N K\left(H_{7}\right)>N K\left(H_{8}\right)>N K\left(H_{9}\right)=N K\left(H_{10}\right)$. If $H \in\left\{H_{11}, \ldots, H_{16}\right\}$, then Table 2 gives us the result. If $\Delta(H)=3$ and $n_{3}(H) \geq 9$, then the result follows from Corollary 3.1.

Suppose that $\Delta(H)=4$. If $n_{4}(H)=1$ and $n_{3}(H) \geq 7$, then the result follows from Corollary 3.2. If $n_{4}(H)=2$ and $n_{3}(H) \geq 5$, then our result is a consequence of Corollary 3.3. Moreover, if $n_{4}(H) \geq 3$, then Lemma 3.3 completes the proof.

Table 2. The tetracyclic graphs.

Classes	$N K$ Index
$C^{4}\left(3^{(6)}, 2^{(n-6)}\right)$	$3^{6} \times 2^{(n-6)}$
$C^{4}\left(3^{(7)}, 2^{(n-8)}, 1^{(1)}\right)$	$3^{7} \times 2^{(n-8)}$
$C^{4}\left(3^{(8)}, 2^{(n-10)}, 1^{(2)}\right)$	$3^{8} \times 2^{(n-10)}$
$C^{4}\left(4^{(1)}, 3^{(4)}, 2^{(n-5)}\right)$	$4 \times 3^{4} \times 2^{(n-5)}$
$C^{4}\left(4^{(1)}, 3^{(5)}, 2^{(n-7)}, 1^{(1)}\right)$	$4 \times 3^{5} \times 2^{(n-7)}$
$C^{4}\left(4^{(1)}, 3^{(6)}, 2^{(n-9)}, 1^{(2)}\right)$	$4 \times 3^{6} \times 2^{(n-9)}$
$C^{4}\left(4^{(2)}, 3^{(2)}, 2^{(n-4)}\right)$	$4^{2} \times 3^{2} \times 2^{(n-4)}$
$C^{4}\left(4^{(2)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right)$	$4^{2} \times 3^{3} \times 2^{(n-6)}$
$C^{4}\left(4^{(2)}, 3^{(4)}, 2^{(n-8)}, 1^{(2)}\right)$	$4^{2} \times 3^{4} \times 2^{(n-8)}$
$C^{4}\left(4^{(3)}, 2^{(n-3)}\right)$	$4^{3} \times 2^{(n-3)}$
$C^{4}\left(4^{(3)}, 3^{(1)}, 2^{(n-5)}, 1^{(1)}\right)$	$4^{3} \times 3 \times 2^{(n-5)}$
$C^{4}\left(4^{(3)}, 3^{(2)}, 2^{(n-7)}, 1^{(2)}\right)$	$4^{3} \times 3^{2} \times 2^{(n-7)}$
$C^{4}\left(5^{(1)}, 3^{(3)}, 2^{(n-4)}\right)$	$5 \times 3^{3} \times 2^{(n-4)}$
$C^{4}\left(5^{(1)}, 3^{(4)}, 2^{(n-6)}, 1^{(1)}\right)$	$5 \times 3^{4} \times 2^{(n-6)}$
$C^{4}\left(5^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-3)}\right)$	$5 \times 4 \times 3 \times 2^{(n-3)}$
$C^{4}\left(6^{(1)}, 3^{(2)}, 2^{(n-3)}\right)$	$6 \times 3^{2} \times 2^{(n-3)}$

If $\Delta(H)=5$, then Lemma 3.4 gives us the result. For $\Delta(H) \geq 6$, we apply Theorem 3.1. For other cases, we note that H is included in the set $\left\{H_{1}, H_{2}, \ldots, H_{10}\right\}$.

4. Narumi-Katayama index of pentacyclic graphs

The aim of this section is to determine the first through the twelfth maximal $N K$ index in the class of all n-vertex pentacyclic graphs, $n \geq 12$.

Lemma 4.1. Let G be a connected pentacyclic graph with n vertices. Then

$$
n_{1}(G)=\sum_{i=3}^{\Delta(G)}(i-2) n_{i}-8 \text { and } n_{2}(G)=n+8-\sum_{i=3}^{\Delta(G)}(i-1) n_{i}
$$

Proof. It is easy to see that $\sum_{i=1}^{\Delta(G)} n_{i}=n$ and $\sum_{i=1}^{\Delta(G)} i n_{i}=2|E(G)|$. Since G is a pentacyclic graph with n vertices, $|E(G)|=n+4$. Therefore,

$$
n_{1}+n_{2}+\sum_{i=3}^{\Delta(G)} n_{i}=n \text { and } n_{1}+2 n_{2}+\sum_{i=3}^{\Delta(G)} i n_{i}=2 n+8
$$

proving the result.

Lemma 4.2. Let G_{1} and G_{2} be two pentacyclic graphs in $C^{5}(n)$. If $n_{i}\left(G_{1}\right) \geq n_{i}\left(G_{2}\right), 3 \leq i \leq n-1$, then $N K\left(G_{1}\right) \leq N K\left(G_{2}\right)$. Equality holds if and only if $n_{i}\left(G_{1}\right)=n_{i}\left(G_{2}\right)$, where $i=3,4, \ldots, n-1$.

Proof. By Lemma 4.1,

$$
\begin{aligned}
\frac{N K\left(G_{1}\right)}{N K\left(G_{2}\right)} & =\frac{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{1}\right)}}{\prod_{i=1}^{n-1} i^{n_{i}\left(G_{2}\right)}}=\frac{2^{n+8-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{n+8-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \\
& =\frac{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{-\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}} \\
& =\frac{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{2}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)}}{2^{\sum_{i=3}^{n-1} n_{i}\left(G_{1}\right)(i-1)} \prod_{i=3}^{n-1} i^{n_{i}\left(G_{2}\right)}}=\frac{\prod_{i=3}^{n-1} i^{n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)}}{2^{\sum_{i=3}^{n-1}\left(n_{i}\left(G_{1}\right)-n_{i}\left(G_{2}\right)\right)(i-1)}} .
\end{aligned}
$$

Now Lemma 1.1 gives us the result.
Lemma 4.2 implies the following three results.
Corollary 4.1. Let G^{\prime} be an n-vertex pentacyclic graph. Assume that $n \geq$ $14, \Delta\left(G^{\prime}\right)=3$, and $n_{3}\left(G^{\prime}\right) \geq 12$. Then, for each $G \in C^{5}\left(3^{(11)}, 2^{(n-14)}, 1^{(3)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Corollary 4.2. Let G^{\prime} be an n-vertex pentacyclic graph, where $\Delta\left(G^{\prime}\right)=$ 4 , and let $n \geq 12$. If $n_{4}\left(G^{\prime}\right)=1$ and $n_{3}\left(G^{\prime}\right) \geq 9$, then, for each $G \in$ $C^{5}\left(4^{(1)}, 3^{(8)}, 2^{(n-11)}, 1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Corollary 4.3. Let G^{\prime} be a pentacyclic graph, where $\Delta\left(G^{\prime}\right)=4$, and let $n \geq 12$. If $n_{4}\left(G^{\prime}\right)=2$ and $n_{3}\left(G^{\prime}\right) \geq 7$, then, for each $G \in C^{5}\left(4^{(2)}, 3^{(6)}, 2^{(n-10)}\right.$, $\left.1^{(2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.
Lemma 4.3. Let G^{\prime} be a pentacyclic graph, where $\Delta\left(G^{\prime}\right)=4$, and let $n \geq 12$. If $n_{4}\left(G^{\prime}\right) \geq 3$ and $G^{\prime} \notin C^{5}\left(4^{(3)}, 3^{(2)}, 2^{(n-5)}\right) \cup C^{5}\left(4^{(4)}, 2^{(n-4)}\right) \cup$ $C^{5}\left(4^{(3)}, 3^{(3)}, 2^{(n-7)}, 1^{(1)}\right)$, then, for each $G \in C^{5}\left(4^{(3)}, 3^{(3)}, 2^{(n-7)}, 1^{(1)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{4}\left(G^{\prime}\right) \geq 4$. Then, by Lemma 4.2, there exists a graph H in $C^{5}\left(4^{(4)}, 3^{(1)}, 2^{(n-6)}, 1^{(1)}\right) \cup C^{5}\left(4^{(5)}, 2^{(n-7)}, 1^{(2)}\right)$. Thus, $N K\left(G^{\prime}\right) \leq$ $N K(H)<N K(G)$, as desired. In other cases, the result follows from Lemma 4.2.

Lemma 4.4. Let G^{\prime} be a pentacyclic graph, where $\Delta\left(G^{\prime}\right)=5$, and let $n \geq$ 12. If $n_{5}\left(G^{\prime}\right)=1$ and $G^{\prime} \notin C^{5}\left(5^{(1)}, 3^{(5)}, 2^{(n-6)}\right) \cup C^{5}\left(5^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-5)}\right) \cup$ $C^{5}\left(5^{(1)}, 3^{(6)}, 2^{(n-8)}, 1^{(1)}\right)$, then, for each $G \in C^{5}\left(5^{(1)}, 3^{(6)}, 2^{(n-8)}, 1^{(1)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{3}\left(G^{\prime}\right)<6$. By Lemma 4.2, there exists a graph H such that

$$
H \in C^{5}\left(5^{(1)}, 4^{(2)}, 3^{(3)}, 2^{(n-8)}, 1^{(2)}\right) \cup C^{5}\left(5^{(1)}, 4^{(3)}, 3^{(2)}, 2^{(n-9)}, 1^{(3)}\right)
$$

$$
\cup C^{5}\left(5^{(1)}, 4^{(4)}, 3^{(1)}, 2^{(n-10)}, 1^{(4)}\right) \cup C^{5}\left(5^{(1)}, 4^{(5)}, 2^{(n-11)}, 1^{(5)}\right)
$$

So, $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$, as desired. In other cases, the result follows from Lemma 4.2.

Lemma 4.5. Let G^{\prime} be an n-vertex pentacyclic graph, where $\Delta\left(G^{\prime}\right)=5$, and $n \geq 12$. If $n_{5}\left(G^{\prime}\right) \geq 2$ and $G^{\prime} \notin C^{5}\left(5^{(2)}, 3^{(2)}, 2^{(n-4)}\right) \cup C^{5}\left(5^{(2)}, 4^{(1)}\right.$, $\left.2^{(n-3)}\right) \cup C^{5}\left(5^{(2)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right)$, then, for each $G \in C^{5}\left(5^{(2)}, 3^{(3)}, 2^{(n-6)}\right.$, $\left.1^{(1)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.

Proof. Suppose that $n_{5}\left(G^{\prime}\right) \geq 3$. If H is a graph in $C^{5}\left(5^{(3)}, 3^{(1)}, 2^{(n-6)}\right.$, $\left.1^{(2)}\right) \cup C^{5}\left(5^{(3)}, 4^{(1)}, 2^{(n-7)}, 1^{(3)}\right) \cup C^{5}\left(5^{(4)}, 2^{(n-8)}, 1^{(4)}\right)$, then, by Lemma 4.2, $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$. In the case when $n_{5}\left(G^{\prime}\right)=2$ and $n_{3}\left(G^{\prime}\right)<3$, we choose the graph H in $C^{5}\left(5^{(2)}, 4^{(1)}, 3^{(1)}, 2^{(n-5)}, 1^{(1)}\right) \cup C^{5}\left(5^{(2)}, 4^{(2)}, 2^{(n-6)}\right.$, $\left.1^{(2)}\right)$. Then, by Lemma $4.2, N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$. Finally, in other cases, we apply Lemma 4.2 to complete our argument.

Theorem 4.1. Let G^{\prime} be an n-vertex pentacyclic graph with $n \geq 12$ vertices and $\Delta\left(G^{\prime}\right) \geq 6$. If

$$
\begin{aligned}
G^{\prime} \notin & C^{5}\left(8^{(1)}, 3^{(2)}, 2^{(n-3)}\right) \cup C^{5}\left(7^{(1)}, 3^{(3)}, 2^{(n-4)}\right) \cup C^{5}\left(6^{(1)}, 3^{(4)}, 2^{(n-5)}\right) \\
& \cup C^{5}\left(6^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right) \cup C^{5}\left(6^{(2)}, 2^{(n-2)}\right)
\end{aligned}
$$

then, for each $G \in C^{5}\left(6^{(2)}, 2^{(n-2)}\right)$, we have $N K\left(G^{\prime}\right)<N K(G)$.
Proof. We consider five cases as follows.
(1) $\Delta\left(G^{\prime}\right) \geq 10$. By Lemmas 4.1 and 1.1,

$$
\begin{align*}
\frac{N K(G)}{N K\left(G^{\prime}\right)} & =\frac{6^{2} \times 2^{(n-2)}}{2^{n+8-\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)} \prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \\
& =\frac{36 \times 2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)} n_{i}\left(G^{\prime}\right)(i-1)-10}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)} i^{n_{i}\left(G^{\prime}\right)}} \tag{4}\\
& =\frac{36 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-10}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}} \times \frac{2^{\sum_{i=3}^{\Delta\left(G^{\prime}\right)-1} n_{i}\left(G^{\prime}\right)(i-1)}}{\prod_{i=3}^{\Delta\left(G^{\prime}\right)-1} i^{n_{i}\left(G^{\prime}\right)}} \\
& \geq \frac{36 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-10}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}}
\end{align*}
$$

On the other hand, since $n_{\Delta}\left(G^{\prime}\right) \ln \frac{2^{\Delta\left(G^{\prime}\right)-1}}{\Delta\left(G^{\prime}\right)} \geq \ln \frac{2^{9}}{10}>3.35$,

$$
\begin{aligned}
\ln \frac{36 \times 2^{n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right)-10}}{\Delta\left(G^{\prime}\right)^{n_{\Delta}\left(G^{\prime}\right)}}= & \ln 36+n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2 \\
& -10 \ln 2-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right) \\
> & n_{\Delta}\left(G^{\prime}\right)\left(\Delta\left(G^{\prime}\right)-1\right) \ln 2
\end{aligned}
$$

$$
-n_{\Delta}\left(G^{\prime}\right) \ln \Delta\left(G^{\prime}\right)-3.35>0
$$

We now apply (4) to prove $\frac{N K(G)}{N K\left(G^{\prime}\right)}>1$.
(2) $\Delta\left(G^{\prime}\right)=9$. By Lemma 4.2, there exists a graph H in the set $C^{5}\left(9^{(1)}, 3^{(1)}, 2^{(n-2)}\right) \cup C^{5}\left(9^{(1)}, 4^{(1)}, 2^{(n-3)}, 1^{(1)}\right) \cup C^{5}\left(9^{(1)}, 5^{(1)}, 2^{(n-4)}, 1^{(2)}\right) \cup$ $C^{5}\left(9^{(1)}, 6^{(1)}, 2^{(n-5)}, 1^{(3)}\right) \cup C^{5}\left(9^{(1)}, 7^{(1)}, 2^{(n-6)}, 1^{(4)}\right) \cup C^{5}\left(9^{(1)}, 8^{(1)}, 2^{(n-7)}\right.$, $\left.1^{(5)}\right) \cup C^{5}\left(9^{(2)}, 2^{(n-8)}, 1^{(6)}\right)$ such that $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$, as desired.
(3) $\Delta\left(G^{\prime}\right)=8$. Again by Lemma 4.2, there exists a graph H in the set

$$
\begin{aligned}
& C^{5}\left(8^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-4)}, 1^{(1)}\right) \cup C^{5}\left(8^{(1)}, 5^{(1)}, 3^{(1)}, 2^{(n-5)}, 1^{(2)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 6^{(1)}, 3^{(1)}, 2^{(n-6)}, 1^{(3)}\right) \cup C^{5}\left(8^{(1)}, 7^{(1)}, 3^{(1)}, 2^{(n-7)}, 1^{(4)}\right) \\
& \quad \cup C^{5}\left(8^{(2)}, 3^{(1)}, 2^{(n-8)}, 1^{(5)}\right) \cup C^{5}\left(8^{(1)}, 4^{(2)}, 2^{(n-5)}, 1^{(2)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 5^{(1)}, 4^{(1)}, 2^{(n-6)}, 1^{(3)}\right) \cup C^{5}\left(8^{(1)}, 6^{(1)}, 4^{(1)}, 2^{(n-7)}, 1^{(4)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 7^{(1)}, 4^{(1)}, 2^{(n-8)}, 1^{(5)}\right) \cup C^{5}\left(8^{(2)}, 4^{(1)}, 2^{(n-9)}, 1^{(6)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 5^{(2)}, 2^{(n-7)}, 1^{(4)}\right) \cup C^{5}\left(8^{(1)}, 6^{(1)}, 5^{(1)}, 2^{(n-8)}, 1^{(5)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 7^{(1)}, 5^{(1)}, 2^{(n-9)}, 1^{(6)}\right) \cup C^{5}\left(8^{(2)}, 5^{(1)}, 2^{(n-10)}, 1^{(7)}\right) \\
& \quad \cup C^{5}\left(8^{(1)}, 6^{(2)}, 2^{(n-9)}, 1^{(6)}\right) \cup C^{5}\left(8^{(1)}, 7^{(1)}, 6^{(1)}, 2^{(n-10)}, 1^{(7)}\right) \\
& \quad \cup C^{5}\left(8^{(2)}, 6^{(1)}, 2^{(n-11)}, 1^{(8)}\right) \cup C^{5}\left(8^{(1)}, 7^{(2)}, 2^{(n-11)}, 1^{(8)}\right) \\
& \quad \cup C^{5}\left(8^{(2)}, 7^{(1)}, 2^{(n-12)}, 1^{(9)}\right) \cup C^{5}\left(8^{(3)}, 2^{(n-13)}, 1^{(10)}\right),
\end{aligned}
$$

such that $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$, which completes the proof of this part.
(4) $\Delta\left(G^{\prime}\right)=7$. Apply Lemma 4.2 to prove that there exists a graph H such that

$$
\begin{aligned}
H \in & C^{5}\left(7^{(1)}, 4^{(1)}, 3^{(2)}, 2^{(n-5)}, 1^{(1)}\right) \cup C^{5}\left(7^{(1)}, 5^{(1)}, 3^{(2)}, 2^{(n-6)}, 1^{(2)}\right) \\
& \cup C^{5}\left(7^{(1)}, 6^{(1)}, 3^{(2)}, 2^{(n-7)}, 1^{(3)}\right) \cup C^{5}\left(7^{(2)}, 3^{(2)}, 2^{(n-8)}, 1^{(4)}\right) \\
& \cup C^{5}\left(7^{(1)}, 4^{(2)}, 3^{(1)}, 2^{(n-6)}, 1^{(2)}\right) \cup C^{5}\left(7^{(1)}, 5^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-7)}, 1^{(3)}\right) \\
& \cup C^{5}\left(7^{(1)}, 6^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-8)}, 1^{(4)}\right) \cup C^{5}\left(7^{(2)}, 4^{(1)}, 3^{(1)}, 2^{(n-9)}, 1^{(5)}\right) \\
& \cup C^{5}\left(7^{(1)}, 5^{(2)}, 3^{(1)}, 2^{(n-8)}, 1^{(4)}\right) \cup C^{5}\left(7^{(1)}, 6^{(1)}, 5^{(1)}, 3^{(1)}, 2^{(n-9)}, 1^{(5)}\right) \\
& \cup C^{5}\left(7^{(2)}, 5^{(1)}, 3^{(1)}, 2^{(n-10)}, 1^{(6)}\right) \cup C^{5}\left(7^{(1)}, 6^{(2)}, 3^{(1)}, 2^{(n-10)}, 1^{(6)}\right) \\
& \cup C^{5}\left(7^{(2)}, 6^{(1)}, 3^{(1)}, 2^{(n-11)}, 1^{(7)}\right) \cup C^{5}\left(7^{(3)}, 3^{(1)}, 2^{(n-12)}, 1^{(8)}\right) \\
& \cup C^{5}\left(7^{(1)}, 4^{(3)}, 2^{(n-7)}, 1^{(3)}\right) \cup C^{5}\left(7^{(1)}, 5^{(1)}, 4^{(2)}, 2^{(n-8)}, 1^{(4)}\right) \\
& \cup C^{5}\left(7^{(1)}, 6^{(1)}, 4^{(2)}, 2^{(n-9)}, 1^{(5)}\right) \cup C^{5}\left(7^{(2)}, 4^{(2)}, 2^{(n-10)}, 1^{(6)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cup C^{5}\left(7^{(1)}, 5^{(2)}, 4^{(1)}, 2^{(n-9)}, 1^{(5)}\right) \cup C^{5}\left(7^{(1)}, 6^{(1)}, 5^{(1)}, 4^{(1)}, 2^{(n-10)}, 1^{(6)}\right) \\
& \cup C^{5}\left(7^{(2)}, 5^{(1)}, 4^{(1)}, 2^{(n-11)}, 1^{(7)}\right) \cup C^{5}\left(7^{(1)}, 6^{(2)}, 4^{(1)}, 2^{(n-11)}, 1^{(7)}\right) \\
& \cup C^{5}\left(7^{(2)}, 6^{(1)}, 4^{(1)}, 2^{(n-12)}, 1^{(8)}\right) \cup C^{5}\left(7^{(3)}, 4^{(1)}, 2^{(n-13)}, 1^{(9)}\right) \\
& \cup C^{5}\left(7^{(1)}, 5^{(3)}, 2^{(n-10)}, 1^{(6)}\right) \cup C^{5}\left(7^{(1)}, 6^{(1)}, 5^{(2)}, 2^{(n-11)}, 1^{(7)}\right) \\
& \cup C^{5}\left(7^{(2)}, 5^{(2)}, 2^{(n-12)}, 1^{(8)}\right) \cup C^{5}\left(7^{(1)}, 6^{(2)}, 5^{(1)}, 2^{(n-12)}, 1^{(8)}\right) \\
& \cup C^{5}\left(7^{(2)}, 6^{(1)}, 5^{(1)}, 2^{(n-13)}, 1^{(9)}\right) \cup C^{5}\left(7^{(3)}, 5^{(1)}, 2^{(n-14)}, 1^{(10)}\right) \\
& \cup C^{5}\left(7^{(1)}, 6^{(3)}, 2^{(n-13)}, 1^{(9)}\right) \cup C^{5}\left(7^{(2)}, 6^{(2)}, 2^{(n-14)}, 1^{(10)}\right) \\
& \cup C^{5}\left(7^{(3)}, 6^{(1)}, 2^{(n-15)}, 1^{(11)}\right) \cup C^{5}\left(7^{(4)}, 2^{(n-16)}, 1^{(12)}\right)
\end{aligned}
$$

and $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$.
(5) $\Delta\left(G^{\prime}\right)=6$. If $n_{6}\left(G^{\prime}\right) \geq 2$, then the result follows from Lemma 4.2. If $n_{6}\left(G^{\prime}\right)=1$, then, by Lemma 4.2, there exists a graph H such that

$$
\begin{aligned}
H \in & C^{5}\left(6^{(1)}, 5^{(1)}, 3^{(3)}, 2^{(n-7)}, 1^{(2)}\right) \cup C^{5}\left(6^{(2)}, 3^{(3)}, 2^{(n-8)}, 1^{(3)}\right) \\
& \cup C^{5}\left(6^{(1)}, 4^{(2)}, 3^{(2)}, 2^{(n-7)}, 1^{(2)}\right) \cup C^{5}\left(6^{(1)}, 5^{(1)}, 4^{(1)}, 3^{(2)}, 2^{(n-8)}, 1^{(3)}\right) \\
& \cup C^{5}\left(6^{(2)}, 4^{(1)}, 3^{(2)}, 2^{(n-9)}, 1^{(4)}\right) \cup C^{5}\left(6^{(1)}, 5^{(2)}, 3^{(2)}, 2^{(n-9)}, 1^{(4)}\right) \\
& \cup C^{5}\left(6^{(2)}, 5^{(1)}, 3^{(2)}, 2^{(n-10)}, 1^{(5)}\right) \cup C^{5}\left(6^{(3)}, 3^{(2)}, 2^{(n-11)}, 1^{(6)}\right) \\
& \cup C^{5}\left(6^{(1)}, 4^{(3)}, 3^{(1)}, 2^{(n-8)}, 1^{(3)}\right) \cup C^{5}\left(6^{(1)}, 5^{(1)}, 4^{(2)}, 3^{(1)}, 2^{(n-9)}, 1^{(4)}\right) \\
& \cup C^{5}\left(6^{(2)}, 4^{(2)}, 3^{(1)}, 2^{(n-10)}, 1^{(5)}\right) \cup C^{5}\left(6^{(1)}, 5^{(2)}, 4^{(1)}, 3^{(1)}, 2^{(n-10)}, 1^{(5)}\right) \\
& \cup C^{5}\left(6^{(2)}, 5^{(1)}, 4^{(1)}, 3^{(1)}, 2^{(n-11)}, 1^{(6)}\right) \cup C^{5}\left(6^{(3)}, 4^{(1)}, 3^{(1)}, 2^{(n-12)}, 1^{(7)}\right) \\
& \cup C^{5}\left(6^{(1)}, 5^{(3)}, 3^{(1)}, 2^{(n-11)}, 1^{(6)}\right) \cup C^{5}\left(6^{(2)}, 5^{(2)}, 3^{(1)}, 2^{(n-12)}, 1^{(7)}\right) \\
& \cup C^{5}\left(6^{(3)}, 5^{(1)}, 3^{(1)}, 2^{(n-13)}, 1^{(8)}\right) \cup C^{5}\left(6^{(4)}, 3^{(1)}, 2^{(n-14)}, 1^{(9)}\right) \\
& \cup C^{5}\left(6^{(1)}, 4^{(4)}, 2^{(n-9)}, 1^{(4)}\right) \cup C^{5}\left(6^{(1)}, 5^{(1)}, 4^{(3)}, 2^{(n-10)}, 1^{(5)}\right) \\
& \cup C^{5}\left(6^{(2)}, 4^{(3)}, 2^{(n-11)}, 1^{(6)}\right) \cup C^{5}\left(6^{(1)}, 5^{(2)}, 4^{(2)}, 2^{(n-11)}, 1^{(6)}\right) \\
& \cup C^{5}\left(6^{(2)}, 5^{(1)}, 4^{(2)}, 2^{(n-12)}, 1^{(7)}\right) \cup C^{5}\left(6^{(3)}, 4^{(2)}, 2^{(n-13)}, 1^{(8)}\right) \\
& \cup C^{5}\left(6^{(1)}, 5^{(3)}, 4^{(1)}, 2^{(n-12)}, 1^{(7)}\right) \cup C^{5}\left(6^{(2)}, 5^{(2)}, 4^{(1)}, 2^{(n-13)}, 1^{(8)}\right) \\
& \cup C^{5}\left(6^{(3)}, 5^{(1)}, 4^{(1)}, 2^{(n-14)}, 1^{(9)}\right) \cup C^{5}\left(6^{(4)}, 4^{(1)}, 2^{(n-15)}, 1^{(10)}\right) \\
& \cup C^{5}\left(6^{(1)}, 5^{(4)}, 2^{(n-13)}, 1^{(8)}\right) \cup C^{5}\left(6^{(2)}, 5^{(3)}, 2^{(n-14)}, 1^{(9)}\right) \\
& \cup C^{5}\left(6^{(3)}, 5^{(2)}, 2^{(n-15)}, 1^{(10)}\right) \cup C^{5}\left(6^{(4)}, 5^{(1)}, 2^{(n-16)}, 1^{(11)}\right) \\
& \cup C^{5}\left(6^{(5)}, 2^{(n-17)}, 1^{(12)}\right),
\end{aligned}
$$

and $N K\left(G^{\prime}\right) \leq N K(H)<N K(G)$. This completes the proof.

Table 3. The pentacyclic graphs.

Classes	$N K$ Index
$C^{5}\left(3^{(8)}, 2^{(n-8)}\right)$	$3^{8} \times 2^{(n-8)}$
$C^{5}\left(3^{(9)}, 2^{(n-10)}, 1^{(1)}\right)$	$3^{9} \times 2^{(n-10)}$
$C^{5}\left(3^{(10)}, 2^{(n-12)}, 1^{(2)}\right)$	$3^{10} \times 2^{(n-12)}$
$C^{5}\left(3^{(11)}, 2^{(n-14)}, 1^{(3)}\right)$	$3^{11} \times 2^{(n-14)}$
$C^{5}\left(4^{(1)}, 3^{(6)}, 2^{(n-7)}\right)$	$4 \times 3^{6} \times 2^{(n-7)}$
$C^{5}\left(4^{(1)}, 3^{(7)}, 2^{(n-9)}, 1^{(1)}\right)$	$4 \times 3^{7} \times 2^{(n-9)}$
$C^{5}\left(4^{(1)}, 3^{(8)}, 2^{(n-11)}, 1^{(2)}\right)$	$4 \times 3^{8} \times 2^{(n-11)}$
$C^{5}\left(4^{(2)}, 3^{(4)}, 2^{(n-6)}\right)$	$4^{2} \times 3^{4} \times 2^{(n-6)}$
$C^{5}\left(4^{(2)}, 3^{(5)}, 2^{(n-8)}, 1^{(1)}\right)$	$4^{2} \times 3^{5} \times 2^{(n-8)}$
$C^{5}\left(4^{(2)}, 3^{(6)}, 2^{(n-10)}, 1^{(2)}\right)$	$4^{2} \times 3^{6} \times 2^{(n-10)}$
$C^{5}\left(4^{(3)}, 3^{(2)}, 2^{(n-5)}\right)$	$4^{3} \times 3^{2} \times 2^{(n-5)}$
$C^{5}\left(4^{(4)}, 2^{(n-4)}\right)$	$4^{4} \times 2^{(n-4)}$
$C^{5}\left(4^{(3)}, 3^{(3)}, 2^{(n-7)}, 1^{(1)}\right)$	$4^{3} \times 3^{3} \times 2^{(n-7)}$
$C^{5}\left(5^{(1)}, 3^{(5)}, 2^{(n-6)}\right)$	$5 \times 3^{5} \times 2^{(n-6)}$
$C^{5}\left(5^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-5)}\right)$	$5 \times 4 \times 3^{3} \times 2^{(n-5)}$
$C^{5}\left(5^{(1)}, 3^{(6)}, 2^{(n-8)}, 1^{(1)}\right)$	$5 \times 3^{6} \times 2^{(n-8)}$
$C^{5}\left(5^{(2)}, 3^{(2)}, 2^{(n-4)}\right)$	$5^{2} \times 3^{2} \times 2^{(n-4)}$
$C^{5}\left(5^{(2)}, 4^{(1)}, 2^{(n-3)}\right)$	$5^{2} \times 4 \times 2^{(n-3)}$
$C^{5}\left(5^{(2)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right)$	$5^{2} \times 3^{3} \times 2^{(n-6)}$
$C^{5}\left(6^{(2)}, 2^{(n-2)}\right)$	$6^{2} \times 2^{(n-2)}$
$C^{5}\left(8^{(1)}, 3^{(2)}, 2^{(n-3)}\right)$	$8 \times 3^{2} \times 2^{(n-3)}$
$C^{5}\left(7^{(1)}, 3^{(3)}, 2^{(n-4)}\right)$	$7 \times 3^{3} \times 2^{(n-4)}$
$C^{5}\left(6^{(1)}, 3^{(4)}, 2^{(n-5)}\right)$	$6 \times 3^{4} \times 2^{(n-5)}$
$C^{5}\left(6^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right)$	$6 \times 4 \times 3^{3} \times 2^{(n-6)}$

Suppose $n \geq 14$ and choose the graphs F_{1}, \ldots, F_{24} such that

$$
\begin{array}{ll}
F_{1} \in C^{5}\left(3^{(8)}, 2^{(n-8)}\right), & F_{2} \in C^{5}\left(4^{(1)}, 3^{(6)}, 2^{(n-7)}\right), \\
F_{3} \in C^{5}\left(4^{(2)}, 3^{(4)}, 2^{(n-6)}\right), & F_{4} \in C^{5}\left(3^{(9)}, 2^{(n-10)}, 1^{(1)}\right), \\
F_{5} \in C^{5}\left(5^{(1)}, 3^{(5)}, 2^{(n-6)}\right), & F_{6} \in C^{5}\left(4^{(3)}, 3^{(2)}, 2^{(n-5)}\right), \\
F_{7} \in C^{5}\left(4^{(1)}, 3^{(7)}, 2^{(n-9)}, 1^{(1)}\right), & F_{8} \in C^{5}\left(5^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-5)}\right), \\
F_{9} \in C^{5}\left(4^{(4)}, 2^{(n-4)}\right), & F_{10} \in C^{5}\left(4^{(2)}, 3^{(5)}, 2^{(n-8)}, 1^{(1)}\right), \\
F_{11} \in C^{5}\left(6^{(1)}, 3^{(4)}, 2^{(n-5)}\right), & F_{12} \in C^{5}\left(3^{(10)}, 2^{(n-12)}, 1^{(2)}\right), \\
F_{13} \in C^{5}\left(5^{(1)}, 3^{(6)}, 2^{(n-8)}, 1^{(1)}\right), & F_{14} \in C^{5}\left(3^{(11)}, 2^{(n-14)}, 1^{(3)}\right), \\
F_{15} \in C^{5}\left(4^{(1)}, 3^{(8)}, 2^{(n-11)}, 1^{(2)}\right), & F_{16} \in C^{5}\left(4^{(2)}, 3^{(6)}, 2^{(n-10)}, 1^{(2)}\right), \\
F_{17} \in C^{5}\left(4^{(3)}, 3^{(3)}, 2^{(n-7)}, 1^{(1)}\right), & F_{18} \in C^{5}\left(5^{(2)}, 3^{(2)}, 2^{(n-4)}\right), \\
F_{19} \in C^{5}\left(5^{(2)}, 4^{(1)}, 2^{(n-3)}\right), & F_{20} \in C^{5}\left(5^{(2)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right),
\end{array}
$$

$$
\begin{array}{ll}
F_{21} \in C^{5}\left(6^{(2)}, 2^{(n-2)}\right), & F_{22} \in C^{5}\left(8^{(1)}, 3^{(2)}, 2^{(n-3)}\right) \\
F_{23} \in C^{5}\left(7^{(1)}, 3^{(3)}, 2^{(n-4)}\right), & F_{24} \in C^{5}\left(6^{(1)}, 4^{(1)}, 3^{(3)}, 2^{(n-6)}, 1^{(1)}\right)
\end{array}
$$

Theorem 4.2. Let F be a pentacyclic graph with $n \geq 12$ vertices, except from the graphs $F_{1}, F_{2}, \ldots, F_{13}$. Then, $N K\left(F_{1}\right)>N K\left(F_{2}\right)>N K\left(F_{3}\right)$ $>N K\left(F_{4}\right)>N K\left(F_{5}\right)>N K\left(F_{6}\right)>N K\left(F_{7}\right)>N K\left(F_{8}\right)>N K\left(F_{9}\right)>$ $N K\left(F_{10}\right)=N K\left(F_{11}\right)>N K\left(F_{12}\right)>N K\left(F_{13}\right)>N K(F)$.

Proof. From Table 3, $N K\left(F_{1}\right)>N K\left(F_{2}\right)>N K\left(F_{3}\right)>N K\left(F_{4}\right)>$ $N K\left(F_{5}\right)>N K\left(F_{6}\right)>N K\left(F_{7}\right)>N K\left(F_{8}\right)>N K\left(F_{9}\right)>N K\left(F_{10}\right)=$ $N K\left(F_{11}\right)>N K\left(F_{12}\right)>N K\left(F_{13}\right)$. If $F \in\left\{F_{14}, \ldots, F_{24}\right\}$, then Table 3 gives us the result. If $\Delta(F)=3$ and $n_{3}(F) \geq 12$, then the result follows from Corollary 4.1. Suppose that $\Delta(F)=4$. If $n_{4}(F)=1$ and $n_{3}(F) \geq 9$, then Corollary 4.2 gives us the result. If $n_{4}(F)=2$ and $n_{3}(F) \geq 7$, then the result is a consequence of Corollary 4.3 . If $n_{4}(F) \geq 3$, then it is enough to apply Lemma 4.3. Suppose that $\Delta(F)=5$. If $n_{5}(F)=1$, then Lemma 4.4 proves the result, and if $n_{5}(F) \geq 2$, then we apply Lemma 4.5 . If $\Delta(F) \geq 6$, then the result follows from Theorem 4.1. In other cases, F is a member of the set $\left\{F_{1}, F_{2}, \ldots, F_{13}\right\}$, which completes the proof.

5. Concluding remarks

In this paper, the Narumi-Katayama index of simple graphs was considered. We determined eight classes of n-vertex tricyclic graphs with the first through the eighth maximal $N K$ index, $n \geq 10$, ten classes of n-vertex tetracyclic graphs with the first through the ninth maximal $N K$ index, $n \geq 10$, and thirteen classes of n-vertex pentacyclic graphs with the first through the twelfth maximal $N K$ index, $n \geq 12$.

Let $d_{1}, d_{2}, \ldots, d_{n}$ be the vertex degree sequence of an n-vertex simple graph G. The following inequality (for any n positive numbers) is known:

$$
\frac{1}{n} \sum_{j=1}^{n} d_{j} \geq\left(\prod_{j=1}^{n} d_{i}\right)^{\frac{1}{n}}=[N K(G)]^{\frac{1}{n}}
$$

The equality holds if and only if $d_{1}=d_{2}=\ldots=d_{n}$, that is, when G is a regular graph. Hence, one can derive another index, evaluating the degree of regularity of an arbitrary simple graph:

$$
\operatorname{reg}(G):=\frac{n^{n} N K(G)}{(2 m)^{n}} \leq 1
$$

Since for two simple graphs G_{1} and G_{2}, with the same values of n and m, we have $\operatorname{reg}\left(G_{1}\right) \geq \operatorname{reg}\left(G_{2}\right)$ if and only if $N K\left(G_{1}\right) \geq N K\left(G_{2}\right)$, the $N K(G)$ can itself evaluate the regularity of G. The "regularity" is the antipode of "irregularity", which, in our terms, can be determined as

$$
\begin{equation*}
\operatorname{irr}(G):=1-\operatorname{reg}(G) \tag{5}
\end{equation*}
$$

In the literature, also other irregularity indices are known, where $\operatorname{irr}(G)$ denotes some other parameter than (5). Disregarding what $\operatorname{irr}(G)$ may precisely mean in $[1,2,3,6]$, the role of the irregularity of a graph G (which may also apply to $N K(G)!$) is by now a subject seriously studied in the literature. In particular [1], its relation to the spectra of graphs has been studied, and so on. Thus, it is a good research problem for future to obtain this relationship.

Acknowledgements

The authors are indebted to the referee for his/her useful comments which improved the paper. Most of Section 5 has been taken from the referee's report. The research of the first author was partially supported by the University of Kashan under grant no 364988/139.

References

[1] J. Ananias de Oliveira, C. Silva Oliveira, C. Justel, and N. M. Maia de Abreu, Measures of irregularity of graphs, Pesquisa Operacional 33(3) (2013), 383-398.
[2] N. De, A. Pal, and Sk. Md. Abu Nayeem, The irregularity of some composite graphs, Int. J. Appl. Comput. Math. 2 (2016), 411-420.
[3] D. Dimitrov and R. Škrekovski, Comparing the irregularity and the total irregularity of graphs, Ars Math. Contemp. 9 (2015), 45-50.
[4] M. Eliasi, A simple approach to order the multiplicative Zagreb indices of connected graphs, Trans. Comb. 4 (2012), 17-24.
[5] M. Eliasi and A. Ghalavand, Extremal trees with respect to some versions of Zagreb indices via majorization, Iranian J. Math. Chem. 8 (4) (2017), 391-401.
[6] G. H. Fath-Tabar, I. Gutman, and R. Nasiri, Extremely irregular trees, Bull. Cl. Sci. Math. Nat. Sci. Math. $145(38)$ (2013), 1-8.
[7] I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. 25 (2012), 1435-1438.
[8] M. K. Jamil, I. Tomescu, N. Akhter, and M. K. Jamil, Extremal degree-product indices of graphs with fixed number of pendant vertices and cyclomatic number, Int. Lett. Chem. Phys. Astronomy 59 (2015), 53-61.
[9] D. J. Klein and V. R. Rosenfeld, The degree-product index of Narumi and Katayama, MATCH Commun. Math. Comput. Chem. 26 (2010), 607-618.
[10] D. J. Klein and V. R. Rosenfeld, The Narumi-Katayama degree-product index and the degreeproduct polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications II, University of Kragujevac, Kragujevac, 2010.
[11] H. Narumi and M. Katayama, Simple topological index. a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984), 209-214.
[12] Ž. Tomović and I. Gutman, Narumi-Katayama index of phenylenes, J. Serb. Chem. Soc. 66 (2001), 243-247.
[13] B. Wang and F. Xia, Narumi-Katayama index of fully loaded unicyclic graphs, South Asian J. Math. 2 (4) (2012), 417-422.
[14] S. Wang and B. Wei, Multiplicative Zagreb indices of cacti, Discrete Math. Algorithm. Appl. 8(3) (2016), 1650040 (15 pages).
[15] Z. You and B. Liu, On the extremal Narumi-Katayama index of graphs, Filomat 28 (3) (2014), 531-539.
[16] A. Zolfi and A. R. Ashrafi, Extremal properties of Narumi-Katayama index of chemical trees, Kragujevac J. Sci. 35 (2013), 71-76.
[17] A. Zolfi and A. R. Ashrafi, The top ten minimum and maximum values of NarumiKatayama index in unicyclic, unicyclic chemical and bicyclic graphs, Int. J. Chem. Model. 7(1) (2015), 31-42.

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran

E-mail address: ashrafi@kashanu.ac.ir
Department of Mathematics, Khansar Faculty of Computer and Mathematical Sciences, Khansar, I. R. Iran

E-mail address: Eliasi@math.iut.ac.ir
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran

E-mail address: alighalavand@grad.kashanu.ac.ir
Actinum Chemical Research, Rome, Italy
E-mail address: ottorino.ori@gmail.com

[^0]: Received October 14, 2017.
 2010 Mathematics Subject Classification. Primary 05C07; Secondary 05C75.
 Key words and phrases. Narumi-Katayama index; tricyclic graph; tetracyclic graph; pentacyclic graph.
 http://dx.doi.org/10.12697/ACUTM.2018.22.22
 Corresponding author: Ali Reza Ashrafi

