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Extremal tricyclic, tetracyclic, and pentacyclic
graphs with respect to the Narumi–Katayama

index

Ali Reza Ashrafi, Mehdi Eliasi, Ali Ghalavand,
and Ottorino Ori

Abstract. Let G be an n-vertex graph with the vertex degree se-
quence d1, d2, . . . , dn. The Narumi–Katayama index of G is defined
as NK(G) =

∏n
i=1 di. We determine eight classes of n-vertex tricyclic

graphs with the first through the eighth maximal NK index, n ≥ 10.
We also identify ten classes of n-vertex tetracyclic graphs with the first
through the ninth maximal NK index, n ≥ 10, and thirteen classes of
n-vertex pentacyclic graphs with the first through the twelfth maximal
NK index, n ≥ 12.

1. Introduction

In this paper, we consider only finite undirected simple graphs. Let G be
such a graph with vertex set V (G) = {v1, . . . , vn}. If G has exactly n vertices,
m edges, and k components with m−n+k = 3, 4, 5, then the graph G is called
tricyclic, tetracyclic and pentacyclic, respectively. Throughout this paper,
we use the following notation: d1, d2, . . . , dn denotes the degree sequence of
G, where di := degG(vi). We use the symbols ∆(G) and ni = ni(G) for the
maximum degree of vertices in G and the number of vertices of degree i in
G, respectively.

It is clear that
∑∆(G)

i=1 ni = |V (G)| = n and
∑∆(G)

i=1 ini =
∑n

i=1 di = 2m,
where m is the number of edges in G. The following natural question arises:
what we can say about

∏n
i=1 di?

Received October 14, 2017.
2010 Mathematics Subject Classification. Primary 05C07; Secondary 05C75.
Key words and phrases. Narumi–Katayama index; tricyclic graph; tetracyclic graph;

pentacyclic graph.
http://dx.doi.org/10.12697/ACUTM.2018.22.22
Corresponding author: Ali Reza Ashrafi

261



262 ALI REZA ASHRAFI ET AL.

In the 1980s, Narumi and Katayama [11] used the term simple topo-
logical index for this graph invariant, but nowadays researchers prefer the
Narumi–Katayama index (NK index). Thus, NK(G) =

∏n
i=1 di. Klein and

Rosenfeld [9] characterized this topological index, first, as the number of
“functional” subgraphs of a certain directed graph, and, second, as a suit-
able weighting over a certain class of ordinary subgraph covers of the graph
under consideration. They introduced the NK polynomial [10], by analogy
with Hosoya Z-index and matching polynomial.

Suppose that PH is a phenylene and HS is its hexagonal squeeze.
Tomović and Gutman [12] proved that the respective Narumi–Katayama
indices of these molecular graphs are related as NK(PH) = 9h–1NK(HS),
where h is the number of hexagons in PH and HS. Gutman and Ghorbani
[7] obtained the maximal and minimal Narumi–Katayama index among all
connected n-vertex trees, unicyclic and bicyclic graphs. Wang and Xia [13]
characterized the first and second smallest Narumi–Katayama index among
n-vertex unicycic graphs. Zolfi and Ashrafi [16] computed the first, second,
third, and forth maximum and minimum of NK index for n-vertex trees and
chemical trees. They also calculated the first ten minimum and maximum
values of NK index in the classes of unicyclic and unicyclic chemical graphs
[17]. In addition, they computed the first fifteen maximum values of the bi-
cyclic graphs. You and Liu [15] determined the extremal NK index of trees
and unicyclic graphs with a given diameter and the number of vertices.

Eliasi [4] applied the theory of majorization to order the first through
sixth n-vertex trees, unicycic, and bicyclic graphs with respect to the NK
index. Jamil et al. [8] characterized the upper and lower bounds of Narumi–
Katayama index for the graphs with given order, number of pendant ver-
tices, and cyclomatic number, and characterized the corresponding extremal
graphs. Wang and Wei [14] identified the upper and lower bounds of Narumi–
Katayama index for all cactus graphs and characterized the corresponding
extremal graphs. Very recently Eliasi and Ghalavand [5] characterized the
first through eighth maximal NK index among n-vertex trees by the theory
of majorization.

Suppose that x1, . . . , xm, y1, . . . , ym and k are positive integers. By the

symbol Ck(x
(y1)
1 , . . . , x

(ym)
m ) we denote the class of all graphs with cyclomatic

number k, where yi are vertices of degree xi, 1 ≤ i ≤ m. The set of all
connected graphs with exactly n vertices and cyclomatic number i is denoted
by Ci(n).

Lemma 1.1. Let x3, x4, . . . , xm be nonnegative integers. Then,∏m
i=3 i

xi

2
∑m

i=3 xi(i−1)
≤ 1.

Equality holds if and only if xi = 0 for i = 3, 4, . . . ,m.
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Proof. Note that

ln

∏m
i=3 i

xi

2
∑m

i=3 xi(i−1)
= ln

m∏
i=3

ixi − ln 2
∑m

i=3 xi(i−1)

=

m∑
i=3

xi ln i−
m∑
i=3

xi(i− 1) ln 2

=

m∑
i=3

xi(ln i− (i− 1) ln 2)

=
m∑
i=3

xi(ln
i

2i−1
) ≤ 0.

If i ≥ 3, then i
2i−1 < 1 and so ln i

2i−1 < 0. Therefore, the inequality holds
its maximum if and only if xi = 0, 3 ≤ i ≤ m, proving the lemma. �

Throughout this paper, the path and complete graphs on n vertices are
denoted by Pn and Kn, respectively. Other notation is standard and can be
taken from standard books on graph theory.

2. Narumi–Katayama index of tricyclic graphs

The aim of this section is to determine eight classes of n-vertex tricyclic
graphs with the first through the eight maximal NK index, n ≥ 10.

Lemma 2.1. Let G be a connected tricyclic graph with n vertices. Then,

n1(G) =
∑∆(G)

i=3 (i− 2)ni − 4 and n2(G) = n + 4−
∑∆(G)

i=3 (i− 1)ni.

Proof. We note that the number of edges of G is n+4. Since
∑∆(G)

i=1 ni = n

and
∑∆(G)

i=1 ini = 2|E(G)|, we have n1 + n2 +
∑∆(G)

i=3 ni = n and n1 + 2n2 +∑∆(G)
i=3 ini = 2n + 4. By solving these equations, we obtain the result. �

Lemma 2.2. Let G1 and G2 be two tricyclic graphs in C3(n). If ni(G1) ≥
ni(G2) for i = 3, . . . , n− 1, then NK(G1) ≤ NK(G2). Equality holds if and
only if ni(G1) = ni(G2).

Proof. By Lemma 2.1,

NK(G1)

NK(G2)
=

∏n−1
i=1 ini(G1)∏n−1
i=1 ini(G2)

=
2n+4−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2n+4−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G1)

2
∑n−1

i=3 ni(G1)(i−1)
∏n−1

i=3 ini(G2)
=

∏n−1
i=3 ini(G1)−ni(G2)

2
∑n−1

i=3 (ni(G1)−ni(G2))(i−1)
.

(1)
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We now apply Lemma 1.1 and equalities (1) to prove the result. �

Lemma 2.2 implies the following two results.

Corollary 2.1. Let G′ be an n-vertex tricyclic graph, n ≥ 10, ∆(G′) =

3, and n3(G′) ≥ 8. Then, for each G ∈ C3(3(7), 2(n−10), 1(3)), we have
NK(G′) < NK(G).

Corollary 2.2. Let G′ be an n-vertex tricyclic graph and ∆(G′) = 4,

where n ≥ 10. If n4(G′) = 1 and n3(G′) ≥ 6, then, for each G ∈ C3(4(1), 3(5),

2(n−9), 1(3)), we have NK(G′) < NK(G).

Lemma 2.3. Let G′ be an n-vertex tricyclic graph, ∆(G′) = 4 and n ≥ 10.
If n4(G′) ≥ 2 and

G′ /∈ C3(4(2), 24(n−2)) ∪ C3(4(2), 3(1), 2(n−4), 1(1)) ∪ C3(4(2), 3(2), 2(n−6), 1(2)),

then, for each G ∈ C3(4(2), 3(2), 2(n−6), 1(2)), we have NK(G′) < NK(G).

Proof. Suppose that n4(G′) ≥ 3 and H ∈ C3(4(3), 2(n−5), 1(2)). By Lemma
2.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

42 × 32 × 2n−6

43 × 2n−5
> 1.

The other cases can be obtained directly from Lemma 2.2. �

Lemma 2.4. Let G′ be an n-vertex tricyclic graph with maximum degree
five, n ≥ 10. If G′ /∈ C3(5(1), 3(1), 2(n−2)) ∪ C3(5(1), 3(2), 2(n−4), 1(1)),

then, for each G ∈ C3(5(1), 3(2), 2(n−4), 1(1)) we have NK(G′) < NK(G).

Proof. Suppose that n5(G′) ≥ 2. Choose a graph H from C3(5(2), 2(n−4),

1(2)). Then, by Lemma 2.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

5× 32 × 2n−4

52 × 2n−4
> 1.

Thus, it is enough to assume that n5(G′) = 1. Suppose that n4(G′) ≥ 1 and

n3(G′) ≤ 1, and choose H ∈ C3(5(1), 4(1), 2(n−3), 1(1)). Then, by Lemma 2.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

5× 32 × 2n−4

5× 4× 2n−3
> 1.

The other cases can be obtained directly from Lemma 2.2. �

Theorem 2.1. Let G′ be a tricyclic graph with n ≥ 10 vertices and let
∆(G′) ≥ 6. If G′ /∈ C3(6(1), 2(n−1)), then, for each G ∈ C3(6(1), 2(n−1)), we
have NK(G′) < NK(G).
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Proof. We first assume that ∆(G′) ≥ 7. Then, by Lemmas 2.1 and 1.1,

NK(G)

NK(G′)
=

6× 2(n−1)

2n+4−
∑∆(G′)

i=3 ni(G′)(i−1)
∏∆(G′)

i=3 ini(G′)

=
6× 2

∑∆(G′)
i=3 ni(G

′)(i−1)−5∏∆(G′)
i=3 ini(G′)

=
6× 2n∆(G′)(∆(G′)−1)−5

∆(G′)n∆(G′)
× 2

∑∆(G′)−1
i=3 ni(G

′)(i−1)∏∆(G′)−1
i=3 ini(G′)

≥ 6× 2n∆(G′)(∆(G′)−1)−5

∆(G′)n∆(G′)
.

(2)

But

ln
6× 2n∆(G′)(∆(G′)−1)−5

∆(G′)n∆(G′)

= ln 6 + n∆(G′)(∆(G′)− 1) ln 2− 5 ln 2− n∆(G′) ln ∆(G′)

> n∆(G′)(∆(G′)− 1) ln 2− n∆(G′) ln ∆(G′)− 1.7 > 0.

Since

n∆(G′) ln
2∆(G′)−1

∆(G′)
≥ ln

26

7
> 1.7,

by (2) one has NK(G)
NK(G′) > 1. In other cases, the result can be obtained by

Lemma 2.2. �

In the next theorem, it is assumed that n ≥ 10,

G1 ∈ C3(3(4), 2(n−4)), G2 ∈ C3(4(1), 3(2), 2(n−3)),

G3 ∈ C3(4(2), 2(n−2)), G4 ∈ C3(3(5), 2(n−6), 1(1)),

G5 ∈ C3(5(1), 3(1), 2(n−2)), G6 ∈ C3(4(1), 3(3), 2(n−5), 1(1)),

G7 ∈ C3(4(2), 3(1), 2(n−4), 1(1)), G8 ∈ C3(6(1), 2(n−1)),

G9 ∈ C3(3(6), 2(n−8), 1(2)), G10 ∈ C3(5(1), 3(2), 2(n−4), 1(1)),

G11 ∈ C3(4(1), 3(5), 2(n−9), 1(3)), G12 ∈ C3(4(2), 3(2), 2(n−6), 1(2)),

G13 ∈ C3(3(7), 2(n−10), 1(3)), G14 ∈ C3(4(1), 3(4), 2(n−7), 1(2)),

Theorem 2.2. Let G be an n-vertex tricyclic graph outside the set {G1,
G2, . . . , G8}. Then we have NK(G1) > NK(G2) > NK(G3) > NK(G4) >
NK(G5) > NK(G6) > NK(G7) = NK(G8) > NK(G).

Proof. By Table 1, NK(G1) > NK(G2) > NK(G3) > NK(G4) >
NK(G5) > NK(G6) > NK(G7) = NK(G8). If G ∈ {G9, . . . , G14}, then
Table 1 gives us the result. If ∆(G) = 3 and n3(G) ≥ 8, then the result can
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Table 1. The tricyclic graphs.

Classes NK Index

C3(3(4), 2(n−4)) 34 × 2(n−4)

C3(3(5), 2(n−6), 1(1)) 35 × 2(n−6)

C3(3(6), 2(n−8), 1(2)) 36 × 2(n−8)

C3(3(7), 2(n−10), 1(3)) 37 × 2(n−10)

C3(4(1), 3(2), 2(n−3)) 4× 32 × 2(n−3)

C3(4(1), 3(3), 2(n−5), 1(1)) 4× 33 × 2(n−5)

C3(4(1), 3(4), 2(n−7), 1(2)) 4× 34 × 2(n−7)

C3(4(1), 3(5), 2(n−9), 1(3)) 4× 35 × 2(n−9)

C3(4(2), 2(n−2)) 42 × 2(n−2)

C3(4(2), 3(1), 2(n−4), 1(1)) 42 × 3× 2(n−4)

C3(4(2), 3(2), 2(n−6), 1(2)) 42 × 32 × 2(n−6)

C3(5(1), 3(1), 2(n−2)) 5× 3× 2(n−2)

C3(5(1), 3(2), 2(n−4), 1(1)) 5× 32 × 2(n−4)

C3(6(1), 2(n−1)) 6× 2(n−1)

be deduced from Corollary 2.1. Suppose that ∆(G) = 4. If n4(G) = 1 and
n3(G) ≥ 6, then Corollary 2.2 gives us the result. If n4(G) ≥ 2, then the
result follows from Lemma 2.3, and if ∆(G) = 5, then the result is a conse-
quence of Lemma 2.4. If ∆(G) ≥ 6, then the result follows from Theorem
2.1. In other cases, G ∈ {G1, G2, . . . , G8}, as desired. �

3. Narumi–Katayama index of tetracyclic graphs

The aim of this section is to determine the first through the nine maximal
NK index in the class of all n-vertex tetracyclic graphs, n ≥ 10.

Lemma 3.1. If G is a connected tetracyclic graph with n vertices, then

n1(G) =

∆(G)∑
i=3

(i− 2)ni − 6 and n2(G) = n + 6−
∆(G)∑
i=3

(i− 1)ni.

Proof. It is easy to see that
∑∆(G)

i=1 ni = n and
∑∆(G)

i=1 ini = 2|E(G)|.
Since |E(G)| = n + 3,

n1 + n2 +

∆(G)∑
i=3

ni = n, and n1 + 2n2 +

∆(G)∑
i=3

ini = 2n + 6,

proving the lemma. �
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Lemma 3.2. Let G1 and G2 be two tetracyclic graphs in C4(n). If
ni(G1) ≥ ni(G2), 3 ≤ i ≤ n − 1, then NK(G1) ≤ NK(G2). The equal-
ity holds if and only if ni(G1) = ni(G2), where 3 ≤ i ≤ n− 1.

Proof. By Lemma 3.1, we have

NK(G1)

NK(G2)
=

∏n−1
i=1 ini(G1)∏n−1
i=1 ini(G2)

=
2n+6−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2n+6−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G1)

2
∑n−1

i=3 ni(G1)(i−1)
∏n−1

i=3 ini(G2)
=

∏n−1
i=3 ini(G1)−ni(G2)

2
∑n−1

i=3 (ni(G1)−ni(G2))(i−1)
.

Now Lemma 1.1 gives us the result. �

Lemma 3.2 implies the following three results.

Corollary 3.1. Let G′ be a tetracyclic graph with n ≥ 10 vertices, ∆(G′) =

3, and n3(G′) ≥ 9. Then, for each G ∈ C4(3(8), 2(n−10), 1(2)), we have
NK(G′) < NK(G).

Corollary 3.2. Let G′ be a tetracyclic graph with n ≥ 10 vertices and
∆(G′) = 4. If n4(G′) = 1 and n3(G′) ≥ 7, then, for each G ∈ C4(4(1), 3(6),

2(n−9), 1(2)), we have NK(G′) < NK(G).

Corollary 3.3. Let G′ be an n-vertex tetracyclic graph with ∆(G′) = 4

and n ≥ 10. If n4(G′) = 2 and n3(G′) ≥ 5, then, for each G ∈ C4(4(2), 3(4),

2(n−8), 1(2)), we have NK(G′) < NK(G).

Lemma 3.3. Let G′ be an n-vertex tetracyclic graph, where ∆(G′) = 4
and n ≥ 10. If n4(G′) ≥ 3 and

G′ /∈ C4(4(3), 2(n−3)) ∪ C4(4(3), 3(1), 2(n−5), 1(1)) ∪ C4(4(3), 3(2), 2(n−7), 1(2)),

then, for each G ∈ C4(4(3), 3(2), 2(n−7), 1(2)), we have NK(G′) < NK(G).

Proof. Suppose that n4(G′) ≥ 4 and choose a graph H in C4(4(4), 2(n−6),

1(2)). Then, by Lemma 3.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

43 × 32 × 2n−7

44 × 2n−6
> 1.

On other cases, the result can be obtained from Lemma 3.2. �

Lemma 3.4. Let G′ be an n-vertex tetracyclic graph, where ∆(G′) =

5, and n ≥ 10. If G′ /∈ C4(5(1), 3(3), 2(n−4)) ∪ C4(5(1), 3(4), 2(n−6), 1(1)) ∪
C4(5(1), 4(1), 3(1), 2(n−3)), then, for each G ∈ C4(5(1), 3(4), 2(n−6), 1(1)), we
have NK(G′) < NK(G).
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Proof. We first assume that n5(G′) ≥ 2. Choose an H ∈ C4(5(2), 2(n−2)).
Then, by Lemma 3.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

5× 34 × 2n−6

52 × 2n−2
> 1.

If n5(G′) = 1 and n4(G′) = 1, then

C4(5(1), 4(1), 3(2), 2(n−5), 1(1)).

Hence, by Lemma 3.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

5× 34 × 2n−6

5× 4× 32 × 2n−5
> 1.

We now assume that n5(G′) = 1, n4(G′) ≥ 2, and choose a graph H in the
set

C4(5(1), 4(2), 2(n−4), 1(1)).

Then, by Lemma 3.2,

NK(G)

NK(G′)
≥ NK(G)

NK(H)
=

5× 34 × 2n−6

5× 42 × 2n−4
> 1.

In other cases, the result can be obtained by Lemma 3.2. �

Theorem 3.1. Let G′ be an n-vertex tetracyclic graph with n ≥ 10
vertices, and let ∆(G′) ≥ 6. If G′ /∈ C4(6(1), 3(2), 2(n−3)), then, for each

G ∈ C4(6(1), 3(2), 2(n−3)), we have NK(G′) < NK(G).

Proof. Our main proof will consider the following three cases.
(1) Suppose that ∆(G′) ≥ 8. Then, by Lemma 3.1 and Lemma 1.1,

NK(G)

NK(G′)
=

6× 32 × 2(n−3)

2n+6−
∑∆(G′)

i=3 ni(G′)(i−1)
∏∆(G′)

i=3 ini(G′)

=
54× 2

∑∆(G′)
i=3 ni(G

′)(i−1)−9∏∆(G′)
i=3 ini(G′)

=
54× 2n∆(G′)(∆(G′)−1)−9

∆(G′)n∆(G′)
× 2

∑∆(G′)−1
i=3 ni(G

′)(i−1)∏∆(G′)−1
i=3 ini(G′)

≥ 54× 2n∆(G′)(∆(G′)−1)−9

∆(G′)n∆(G′)
.

(3)

On the other hand, since n∆(G′) ln 2∆(G′)−1

∆(G′) ≥ ln 27

8 > 2.25, we get

ln
54× 2n∆(G′)(∆(G′)−1)−9

∆(G′)n∆(G′)
= ln 54 + n∆(G′)(∆(G′)− 1) ln 2

− 9 ln 2− n∆(G′) ln ∆(G′)
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> n∆(G′)(∆(G′)− 1) ln 2

− n∆(G′) ln ∆(G′)− 2.25 > 0.

We now apply (3) to prove that NK(G)
NK(G′) > 1.

(2) Let ∆(G′) = 7. By Lemma 3.2, there exists a graph H in C4(7(1), 3(1),

2(n−2)) ∪ C4(7(1), 4(1), 2(n−3), 1(1)) ∪ C4(7(1), 5(1), 2(n−4), 1(2)) ∪ C4(7(1), 6(1),

2(n−5), 1(3)) ∪ C4(7(2), 2(n−6), 1(4)). Hence, NK(G′) ≤ NK(H) < NK(G)
which proves the assertion .

(3) Let ∆(G′) = 6. By Lemma 3.2, there exists a graph H such that

H ∈ C4(6(1), 3(3), 2(n−5), 1(1)) ∪ C4(6(1), 4(1), 3(1), 2(n−4), 1(1))

∪ C4(6(1), 4(2), 2(n−5), 1(2)) ∪ C4(6(1), 5(1), 3(1), 2(n−5), 1(2))

∪ C4(6(1), 5(1), 4(1), 2(n−6), 1(3)) ∪ C4(6(1), 5(2), 2(n−7), 1(4))

∪ C4(6(2), 3(1), 2(n−6), 1(3)) ∪ C4(6(2), 4(1), 2(n−7), 1(4))

∪ C4(6(2), 5(1), 2(n−8), 1(5)) ∪ C4(6(3), 2(n−9), 1(6)).

Thus, NK(G′) ≤ NK(H) < NK(G). �

In the following theorem, it is assumed that n ≥ 10 and

H1 ∈ C4(3(6), 2(n−6)), H2 ∈ C4(4(1), 3(4), 2(n−5)),

H3 ∈ C4(4(2), 3(2), 2(n−4)), H4 ∈ C4(3(7), 2(n−8), 1(1)),

H5 ∈ C4(5(1), 3(3), 2(n−4)), H6 ∈ C4(4(3), 2(n−3)),

H7 ∈ C4(4(1), 3(5), 2(n−7), 1(1)), H8 ∈ C4(5(1), 4(1), 3(1), 2(n−3)),

H9 ∈ C4(4(2), 3(3), 2(n−6), 1(1)), H10 ∈ C4(6(1), 3(2), 2(n−3)),

H11 ∈ C4(3(8), 2(n−10), 1(2)), H12 ∈ C4(5(1), 3(4), 2(n−6), 1(1)),

H13 ∈ C4(4(3), 3(1), 2(n−5), 1(1)), H14 ∈ C4(4(1), 3(6), 2(n−9), 1(2)),

H15 ∈ C4(4(2), 3(4), 2(n−8), 1(2)), H16 ∈ C4(4(3), 3(2), 2(n−7), 1(2)).

Theorem 3.2. Let H be a tetracyclic graph with n ≥ 10 vertices, except
from the graphs H1, H2, . . . ,H10. Then, NK(H1) > NK(H2) > NK(H3)
> NK(H4) > NK(H5) > NK(H6) > NK(H7) > NK(H8) > NK(H9) =
NK(H10) > NK(H).

Proof. From Table 2, NK(H1) > NK(H2) > NK(H3) > NK(H4) >
NK(H5) > NK(H6) > NK(H7) > NK(H8) > NK(H9) = NK(H10). If
H ∈ {H11, . . . ,H16}, then Table 2 gives us the result. If ∆(H) = 3 and
n3(H) ≥ 9, then the result follows from Corollary 3.1.

Suppose that ∆(H) = 4. If n4(H) = 1 and n3(H) ≥ 7, then the result
follows from Corollary 3.2. If n4(H) = 2 and n3(H) ≥ 5, then our result is
a consequence of Corollary 3.3. Moreover, if n4(H) ≥ 3, then Lemma 3.3
completes the proof.
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Table 2. The tetracyclic graphs.

Classes NK Index

C4(3(6), 2(n−6)) 36 × 2(n−6)

C4(3(7), 2(n−8), 1(1)) 37 × 2(n−8)

C4(3(8), 2(n−10), 1(2)) 38 × 2(n−10)

C4(4(1), 3(4), 2(n−5)) 4× 34 × 2(n−5)

C4(4(1), 3(5), 2(n−7), 1(1)) 4× 35 × 2(n−7)

C4(4(1), 3(6), 2(n−9), 1(2)) 4× 36 × 2(n−9)

C4(4(2), 3(2), 2(n−4)) 42 × 32 × 2(n−4)

C4(4(2), 3(3), 2(n−6), 1(1)) 42 × 33 × 2(n−6)

C4(4(2), 3(4), 2(n−8), 1(2)) 42 × 34 × 2(n−8)

C4(4(3), 2(n−3)) 43 × 2(n−3)

C4(4(3), 3(1), 2(n−5), 1(1)) 43 × 3× 2(n−5)

C4(4(3), 3(2), 2(n−7), 1(2)) 43 × 32 × 2(n−7)

C4(5(1), 3(3), 2(n−4)) 5× 33 × 2(n−4)

C4(5(1), 3(4), 2(n−6), 1(1)) 5× 34 × 2(n−6)

C4(5(1), 4(1), 3(1), 2(n−3)) 5× 4× 3× 2(n−3)

C4(6(1), 3(2), 2(n−3)) 6× 32 × 2(n−3)

If ∆(H) = 5, then Lemma 3.4 gives us the result. For ∆(H) ≥ 6, we
apply Theorem 3.1. For other cases, we note that H is included in the set
{H1, H2, . . . ,H10}. �

4. Narumi–Katayama index of pentacyclic graphs

The aim of this section is to determine the first through the twelfth max-
imal NK index in the class of all n-vertex pentacyclic graphs, n ≥ 12.

Lemma 4.1. Let G be a connected pentacyclic graph with n vertices.
Then

n1(G) =

∆(G)∑
i=3

(i− 2)ni − 8 and n2(G) = n + 8−
∆(G)∑
i=3

(i− 1)ni.

Proof. It is easy to see that
∑∆(G)

i=1 ni = n and
∑∆(G)

i=1 ini = 2|E(G)|.
Since G is a pentacyclic graph with n vertices, |E(G)| = n + 4. Therefore,

n1 + n2 +

∆(G)∑
i=3

ni = n and n1 + 2n2 +

∆(G)∑
i=3

ini = 2n + 8,

proving the result. �
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Lemma 4.2. Let G1 and G2 be two pentacyclic graphs in C5(n). If
ni(G1) ≥ ni(G2), 3 ≤ i ≤ n − 1, then NK(G1) ≤ NK(G2). Equality
holds if and only if ni(G1) = ni(G2), where i = 3, 4, . . . , n− 1.

Proof. By Lemma 4.1,

NK(G1)

NK(G2)
=

∏n−1
i=1 ini(G1)∏n−1
i=1 ini(G2)

=
2n+8−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2n+8−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2−

∑n−1
i=3 ni(G1)(i−1)

∏n−1
i=3 ini(G1)

2−
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G2)

=
2
∑n−1

i=3 ni(G2)(i−1)
∏n−1

i=3 ini(G1)

2
∑n−1

i=3 ni(G1)(i−1)
∏n−1

i=3 ini(G2)
=

∏n−1
i=3 ini(G1)−ni(G2)

2
∑n−1

i=3 (ni(G1)−ni(G2))(i−1)
.

Now Lemma 1.1 gives us the result. �

Lemma 4.2 implies the following three results.

Corollary 4.1. Let G′ be an n-vertex pentacyclic graph. Assume that n ≥
14, ∆(G′) = 3, and n3(G′) ≥ 12. Then, for each G ∈ C5(3(11), 2(n−14), 1(3)),
we have NK(G′) < NK(G).

Corollary 4.2. Let G′ be an n-vertex pentacyclic graph, where ∆(G′) =
4, and let n ≥ 12. If n4(G′) = 1 and n3(G′) ≥ 9, then, for each G ∈
C5(4(1), 3(8), 2(n−11), 1(2)), we have NK(G′) < NK(G).

Corollary 4.3. Let G′ be a pentacyclic graph, where ∆(G′) = 4, and let

n ≥ 12. If n4(G′) = 2 and n3(G′) ≥ 7, then, for each G ∈ C5(4(2), 3(6), 2(n−10),

1(2)), we have NK(G′) < NK(G).

Lemma 4.3. Let G′ be a pentacyclic graph, where ∆(G′) = 4, and let

n ≥ 12. If n4(G′) ≥ 3 and G′ /∈ C5(4(3), 3(2), 2(n−5)) ∪ C5(4(4), 2(n−4)) ∪
C5(4(3), 3(3), 2(n−7), 1(1)), then, for each G ∈ C5(4(3), 3(3), 2(n−7), 1(1)),
we have NK(G′) < NK(G).

Proof. Suppose that n4(G′) ≥ 4. Then, by Lemma 4.2, there exists a

graph H in C5(4(4), 3(1), 2(n−6), 1(1))∪C5(4(5), 2(n−7), 1(2)). Thus, NK(G′)≤
NK(H) < NK(G), as desired. In other cases, the result follows from Lemma
4.2. �

Lemma 4.4. Let G′ be a pentacyclic graph, where ∆(G′) = 5, and let n ≥
12. If n5(G′) = 1 and G′ /∈ C5(5(1), 3(5), 2(n−6))∪C5(5(1), 4(1), 3(3), 2(n−5))∪
C5(5(1), 3(6), 2(n−8), 1(1)), then, for each G ∈ C5(5(1), 3(6), 2(n−8), 1(1)), we
have NK(G′) < NK(G).

Proof. Suppose that n3(G′) < 6. By Lemma 4.2, there exists a graph H
such that

H ∈ C5(5(1), 4(2), 3(3), 2(n−8), 1(2)) ∪ C5(5(1), 4(3), 3(2), 2(n−9), 1(3))
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∪ C5(5(1), 4(4), 3(1), 2(n−10), 1(4)) ∪ C5(5(1), 4(5), 2(n−11), 1(5)).

So, NK(G′) ≤ NK(H) < NK(G), as desired. In other cases, the result
follows from Lemma 4.2. �

Lemma 4.5. Let G′ be an n-vertex pentacyclic graph, where ∆(G′) = 5,

and n ≥ 12. If n5(G′) ≥ 2 and G′ /∈ C5(5(2), 3(2), 2(n−4)) ∪ C5(5(2), 4(1),

2(n−3)) ∪ C5(5(2), 3(3), 2(n−6), 1(1)), then, for each G ∈ C5(5(2), 3(3), 2(n−6),

1(1)), we have NK(G′) < NK(G).

Proof. Suppose that n5(G′) ≥ 3. If H is a graph in C5(5(3), 3(1), 2(n−6),

1(2)) ∪ C5(5(3), 4(1), 2(n−7), 1(3)) ∪ C5(5(4), 2(n−8), 1(4)), then, by Lemma 4.2,
NK(G′) ≤ NK(H) < NK(G). In the case when n5(G′) = 2 and n3(G′) < 3,

we choose the graph H in C5(5(2), 4(1), 3(1), 2(n−5), 1(1))∪C5(5(2), 4(2), 2(n−6),

1(2)). Then, by Lemma 4.2, NK(G′) ≤ NK(H) < NK(G). Finally, in other
cases, we apply Lemma 4.2 to complete our argument. �

Theorem 4.1. Let G′ be an n-vertex pentacyclic graph with n ≥ 12 ver-
tices and ∆(G′) ≥ 6. If

G′ /∈ C5(8(1), 3(2), 2(n−3)) ∪ C5(7(1), 3(3), 2(n−4)) ∪ C5(6(1), 3(4), 2(n−5))

∪ C5(6(1), 4(1), 3(3), 2(n−6), 1(1)) ∪ C5(6(2), 2(n−2)),

then, for each G ∈ C5(6(2), 2(n−2)), we have NK(G′) < NK(G).

Proof. We consider five cases as follows.

(1) ∆(G′) ≥ 10. By Lemmas 4.1 and 1.1,

NK(G)

NK(G′)
=

62 × 2(n−2)

2n+8−
∑∆(G′)

i=3 ni(G′)(i−1)
∏∆(G′)

i=3 ini(G′)

=
36× 2

∑∆(G′)
i=3 ni(G

′)(i−1)−10∏∆(G′)
i=3 ini(G′)

=
36× 2n∆(G′)(∆(G′)−1)−10

∆(G′)n∆(G′)
× 2

∑∆(G′)−1
i=3 ni(G

′)(i−1)∏∆(G′)−1
i=3 ini(G′)

≥ 36× 2n∆(G′)(∆(G′)−1)−10

∆(G′)n∆(G′)
.

(4)

On the other hand, since n∆(G′) ln 2∆(G′)−1

∆(G′) ≥ ln 29

10 > 3.35,

ln
36× 2n∆(G′)(∆(G′)−1)−10

∆(G′)n∆(G′)
= ln 36 + n∆(G′)(∆(G′)− 1) ln 2

− 10 ln 2− n∆(G′) ln ∆(G′)

> n∆(G′)(∆(G′)− 1) ln 2



GRAPHS WITH RESPECT TO THE NARUMI–KATAYAMA INDEX 273

− n∆(G′) ln ∆(G′)− 3.35 > 0.

We now apply (4) to prove NK(G)
NK(G′) > 1.

(2) ∆(G′) = 9. By Lemma 4.2, there exists a graph H in the set

C5(9(1), 3(1), 2(n−2)) ∪ C5(9(1), 4(1), 2(n−3), 1(1)) ∪ C5(9(1), 5(1), 2(n−4), 1(2)) ∪
C5(9(1), 6(1), 2(n−5), 1(3)) ∪ C5(9(1), 7(1), 2(n−6), 1(4)) ∪ C5(9(1), 8(1), 2(n−7),

1(5)) ∪ C5(9(2), 2(n−8), 1(6)) such that NK(G′) ≤ NK(H) < NK(G), as
desired.

(3) ∆(G′) = 8. Again by Lemma 4.2, there exists a graph H in the set

C5(8(1), 4(1), 3(1), 2(n−4), 1(1)) ∪ C5(8(1), 5(1), 3(1), 2(n−5), 1(2))

∪ C5(8(1), 6(1), 3(1), 2(n−6), 1(3)) ∪ C5(8(1), 7(1), 3(1), 2(n−7), 1(4))

∪ C5(8(2), 3(1), 2(n−8), 1(5)) ∪ C5(8(1), 4(2), 2(n−5), 1(2))

∪ C5(8(1), 5(1), 4(1), 2(n−6), 1(3)) ∪ C5(8(1), 6(1), 4(1), 2(n−7), 1(4))

∪ C5(8(1), 7(1), 4(1), 2(n−8), 1(5)) ∪ C5(8(2), 4(1), 2(n−9), 1(6))

∪ C5(8(1), 5(2), 2(n−7), 1(4)) ∪ C5(8(1), 6(1), 5(1), 2(n−8), 1(5))

∪ C5(8(1), 7(1), 5(1), 2(n−9), 1(6)) ∪ C5(8(2), 5(1), 2(n−10), 1(7))

∪ C5(8(1), 6(2), 2(n−9), 1(6)) ∪ C5(8(1), 7(1), 6(1), 2(n−10), 1(7))

∪ C5(8(2), 6(1), 2(n−11), 1(8)) ∪ C5(8(1), 7(2), 2(n−11), 1(8))

∪ C5(8(2), 7(1), 2(n−12), 1(9)) ∪ C5(8(3), 2(n−13), 1(10)),

such that NK(G′) ≤ NK(H) < NK(G), which completes the proof of this
part.

(4) ∆(G′) = 7. Apply Lemma 4.2 to prove that there exists a graph H
such that

H ∈ C5(7(1), 4(1), 3(2), 2(n−5), 1(1)) ∪ C5(7(1), 5(1), 3(2), 2(n−6), 1(2))

∪ C5(7(1), 6(1), 3(2), 2(n−7), 1(3)) ∪ C5(7(2), 3(2), 2(n−8), 1(4))

∪ C5(7(1), 4(2), 3(1), 2(n−6), 1(2)) ∪ C5(7(1), 5(1), 4(1), 3(1), 2(n−7), 1(3))

∪ C5(7(1), 6(1), 4(1), 3(1), 2(n−8), 1(4)) ∪ C5(7(2), 4(1), 3(1), 2(n−9), 1(5))

∪ C5(7(1), 5(2), 3(1), 2(n−8), 1(4)) ∪ C5(7(1), 6(1), 5(1), 3(1), 2(n−9), 1(5))

∪ C5(7(2), 5(1), 3(1), 2(n−10), 1(6)) ∪ C5(7(1), 6(2), 3(1), 2(n−10), 1(6))

∪ C5(7(2), 6(1), 3(1), 2(n−11), 1(7)) ∪ C5(7(3), 3(1), 2(n−12), 1(8))

∪ C5(7(1), 4(3), 2(n−7), 1(3)) ∪ C5(7(1), 5(1), 4(2), 2(n−8), 1(4))

∪ C5(7(1), 6(1), 4(2), 2(n−9), 1(5)) ∪ C5(7(2), 4(2), 2(n−10), 1(6))
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∪ C5(7(1), 5(2), 4(1), 2(n−9), 1(5)) ∪ C5(7(1), 6(1), 5(1), 4(1), 2(n−10), 1(6))

∪ C5(7(2), 5(1), 4(1), 2(n−11), 1(7)) ∪ C5(7(1), 6(2), 4(1), 2(n−11), 1(7))

∪ C5(7(2), 6(1), 4(1), 2(n−12), 1(8)) ∪ C5(7(3), 4(1), 2(n−13), 1(9))

∪ C5(7(1), 5(3), 2(n−10), 1(6)) ∪ C5(7(1), 6(1), 5(2), 2(n−11), 1(7))

∪ C5(7(2), 5(2), 2(n−12), 1(8)) ∪ C5(7(1), 6(2), 5(1), 2(n−12), 1(8))

∪ C5(7(2), 6(1), 5(1), 2(n−13), 1(9)) ∪ C5(7(3), 5(1), 2(n−14), 1(10))

∪ C5(7(1), 6(3), 2(n−13), 1(9)) ∪ C5(7(2), 6(2), 2(n−14), 1(10))

∪ C5(7(3), 6(1), 2(n−15), 1(11)) ∪ C5(7(4), 2(n−16), 1(12)),

and NK(G′) ≤ NK(H) < NK(G).

(5) ∆(G′) = 6. If n6(G′) ≥ 2, then the result follows from Lemma 4.2. If
n6(G′) = 1, then, by Lemma 4.2, there exists a graph H such that

H ∈ C5(6(1), 5(1), 3(3), 2(n−7), 1(2)) ∪ C5(6(2), 3(3), 2(n−8), 1(3))

∪ C5(6(1), 4(2), 3(2), 2(n−7), 1(2)) ∪ C5(6(1), 5(1), 4(1), 3(2), 2(n−8), 1(3))

∪ C5(6(2), 4(1), 3(2), 2(n−9), 1(4)) ∪ C5(6(1), 5(2), 3(2), 2(n−9), 1(4))

∪ C5(6(2), 5(1), 3(2), 2(n−10), 1(5)) ∪ C5(6(3), 3(2), 2(n−11), 1(6))

∪ C5(6(1), 4(3), 3(1), 2(n−8), 1(3)) ∪ C5(6(1), 5(1), 4(2), 3(1), 2(n−9), 1(4))

∪ C5(6(2), 4(2), 3(1), 2(n−10), 1(5)) ∪ C5(6(1), 5(2), 4(1), 3(1), 2(n−10), 1(5))

∪ C5(6(2), 5(1), 4(1), 3(1), 2(n−11), 1(6)) ∪ C5(6(3), 4(1), 3(1), 2(n−12), 1(7))

∪ C5(6(1), 5(3), 3(1), 2(n−11), 1(6)) ∪ C5(6(2), 5(2), 3(1), 2(n−12), 1(7))

∪ C5(6(3), 5(1), 3(1), 2(n−13), 1(8)) ∪ C5(6(4), 3(1), 2(n−14), 1(9))

∪ C5(6(1), 4(4), 2(n−9), 1(4)) ∪ C5(6(1), 5(1), 4(3), 2(n−10), 1(5))

∪ C5(6(2), 4(3), 2(n−11), 1(6)) ∪ C5(6(1), 5(2), 4(2), 2(n−11), 1(6))

∪ C5(6(2), 5(1), 4(2), 2(n−12), 1(7)) ∪ C5(6(3), 4(2), 2(n−13), 1(8))

∪ C5(6(1), 5(3), 4(1), 2(n−12), 1(7)) ∪ C5(6(2), 5(2), 4(1), 2(n−13), 1(8))

∪ C5(6(3), 5(1), 4(1), 2(n−14), 1(9)) ∪ C5(6(4), 4(1), 2(n−15), 1(10))

∪ C5(6(1), 5(4), 2(n−13), 1(8)) ∪ C5(6(2), 5(3), 2(n−14), 1(9))

∪ C5(6(3), 5(2), 2(n−15), 1(10)) ∪ C5(6(4), 5(1), 2(n−16), 1(11))

∪ C5(6(5), 2(n−17), 1(12)),

and NK(G′) ≤ NK(H) < NK(G). This completes the proof. �
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Table 3. The pentacyclic graphs.

Classes NK Index

C5(3(8), 2(n−8)) 38 × 2(n−8)

C5(3(9), 2(n−10), 1(1)) 39 × 2(n−10)

C5(3(10), 2(n−12), 1(2)) 310 × 2(n−12)

C5(3(11), 2(n−14), 1(3)) 311 × 2(n−14)

C5(4(1), 3(6), 2(n−7)) 4× 36 × 2(n−7)

C5(4(1), 3(7), 2(n−9), 1(1)) 4× 37 × 2(n−9)

C5(4(1), 3(8), 2(n−11), 1(2)) 4× 38 × 2(n−11)

C5(4(2), 3(4), 2(n−6)) 42 × 34 × 2(n−6)

C5(4(2), 3(5), 2(n−8), 1(1)) 42 × 35 × 2(n−8)

C5(4(2), 3(6), 2(n−10), 1(2)) 42 × 36 × 2(n−10)

C5(4(3), 3(2), 2(n−5)) 43 × 32 × 2(n−5)

C5(4(4), 2(n−4)) 44 × 2(n−4)

C5(4(3), 3(3), 2(n−7), 1(1)) 43 × 33 × 2(n−7)

C5(5(1), 3(5), 2(n−6)) 5× 35 × 2(n−6)

C5(5(1), 4(1), 3(3), 2(n−5)) 5× 4× 33 × 2(n−5)

C5(5(1), 3(6), 2(n−8), 1(1)) 5× 36 × 2(n−8)

C5(5(2), 3(2), 2(n−4)) 52 × 32 × 2(n−4)

C5(5(2), 4(1), 2(n−3)) 52 × 4× 2(n−3)

C5(5(2), 3(3), 2(n−6), 1(1)) 52 × 33 × 2(n−6)

C5(6(2), 2(n−2)) 62 × 2(n−2)

C5(8(1), 3(2), 2(n−3)) 8× 32 × 2(n−3)

C5(7(1), 3(3), 2(n−4)) 7× 33 × 2(n−4)

C5(6(1), 3(4), 2(n−5)) 6× 34 × 2(n−5)

C5(6(1), 4(1), 3(3), 2(n−6), 1(1)) 6× 4× 33 × 2(n−6)

Suppose n ≥ 14 and choose the graphs F1, . . . , F24 such that

F1 ∈ C5(3(8), 2(n−8)), F2 ∈ C5(4(1), 3(6), 2(n−7)),

F3 ∈ C5(4(2), 3(4), 2(n−6)), F4 ∈ C5(3(9), 2(n−10), 1(1)),

F5 ∈ C5(5(1), 3(5), 2(n−6)), F6 ∈ C5(4(3), 3(2), 2(n−5)),

F7 ∈ C5(4(1), 3(7), 2(n−9), 1(1)), F8 ∈ C5(5(1), 4(1), 3(3), 2(n−5)),

F9 ∈ C5(4(4), 2(n−4)), F10 ∈ C5(4(2), 3(5), 2(n−8), 1(1)),

F11 ∈ C5(6(1), 3(4), 2(n−5)), F12 ∈ C5(3(10), 2(n−12), 1(2)),

F13 ∈ C5(5(1), 3(6), 2(n−8), 1(1)), F14 ∈ C5(3(11), 2(n−14), 1(3)),

F15 ∈ C5(4(1), 3(8), 2(n−11), 1(2)), F16 ∈ C5(4(2), 3(6), 2(n−10), 1(2)),

F17 ∈ C5(4(3), 3(3), 2(n−7), 1(1)), F18 ∈ C5(5(2), 3(2), 2(n−4)),

F19 ∈ C5(5(2), 4(1), 2(n−3)), F20 ∈ C5(5(2), 3(3), 2(n−6), 1(1)),
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F21 ∈ C5(6(2), 2(n−2)), F22 ∈ C5(8(1), 3(2), 2(n−3)),

F23 ∈ C5(7(1), 3(3), 2(n−4)), F24 ∈ C5(6(1), 4(1), 3(3), 2(n−6), 1(1)).

Theorem 4.2. Let F be a pentacyclic graph with n ≥ 12 vertices, ex-
cept from the graphs F1, F2, . . . , F13. Then, NK(F1) > NK(F2) > NK(F3)
> NK(F4) > NK(F5) > NK(F6) > NK(F7) > NK(F8) > NK(F9) >
NK(F10) = NK(F11) > NK(F12) > NK(F13) > NK(F ).

Proof. From Table 3, NK(F1) > NK(F2) > NK(F3) > NK(F4) >
NK(F5) > NK(F6) > NK(F7) > NK(F8) > NK(F9) > NK(F10) =
NK(F11) > NK(F12) > NK(F13). If F ∈ {F14, . . . , F24}, then Table 3 gives
us the result. If ∆(F ) = 3 and n3(F ) ≥ 12, then the result follows from
Corollary 4.1. Suppose that ∆(F ) = 4. If n4(F ) = 1 and n3(F ) ≥ 9, then
Corollary 4.2 gives us the result. If n4(F ) = 2 and n3(F ) ≥ 7, then the
result is a consequence of Corollary 4.3. If n4(F ) ≥ 3, then it is enough to
apply Lemma 4.3. Suppose that ∆(F ) = 5. If n5(F ) = 1, then Lemma 4.4
proves the result, and if n5(F ) ≥ 2, then we apply Lemma 4.5. If ∆(F ) ≥ 6,
then the result follows from Theorem 4.1. In other cases, F is a member of
the set {F1, F2, . . . , F13}, which completes the proof. �

5. Concluding remarks

In this paper, the Narumi–Katayama index of simple graphs was consid-
ered. We determined eight classes of n-vertex tricyclic graphs with the first
through the eighth maximal NK index, n ≥ 10, ten classes of n-vertex tetra-
cyclic graphs with the first through the ninth maximal NK index, n ≥ 10,
and thirteen classes of n-vertex pentacyclic graphs with the first through the
twelfth maximal NK index, n ≥ 12.

Let d1, d2, . . ., dn be the vertex degree sequence of an n-vertex simple
graph G. The following inequality (for any n positive numbers) is known:

1

n

n∑
j=1

dj ≥
( n∏

j=1

di

) 1
n

= [NK(G)]
1
n .

The equality holds if and only if d1 = d2 = . . . = dn, that is, when G is a
regular graph. Hence, one can derive another index, evaluating the degree
of regularity of an arbitrary simple graph:

reg(G) :=
nnNK(G)

(2m)n
≤ 1.

Since for two simple graphs G1 and G2, with the same values of n and m,
we have reg(G1) ≥ reg(G2) if and only if NK(G1) ≥ NK(G2), the NK(G)
can itself evaluate the regularity of G. The “regularity” is the antipode of
“irregularity”, which, in our terms, can be determined as

irr(G) := 1− reg(G). (5)
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In the literature, also other irregularity indices are known, where irr(G)
denotes some other parameter than (5). Disregarding what irr(G) may
precisely mean in [1, 2, 3, 6], the role of the irregularity of a graph G (which
may also apply to NK(G)!) is by now a subject seriously studied in the
literature. In particular [1], its relation to the spectra of graphs has been
studied, and so on. Thus, it is a good research problem for future to obtain
this relationship.
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