On concircular curvature tensor in a Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection

Abdul Haseeb and Rajendra Prasad

Abstract

In the present paper, some properties of concircular curvature tensor in a Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection have been studied.

1. Introduction

In a Riemannain manifold M, a linear connection $\bar{\nabla}$ is called a quartersymmetric connection [6] if the torsion tensor T of the connection $\bar{\nabla}$,

$$
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y],
$$

satisfies

$$
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y,
$$

where η is a 1 -form and ϕ is a $(1,1)$ tensor field. If, moreover, a quartersymmetric connection $\bar{\nabla}$ satisfies the condition

$$
\left(\bar{\nabla}_{X} g\right)(Y, Z)=-\eta(Y) g(\phi X, Z)-\eta(Z) g(Y, \phi X),
$$

where $X, Y, Z \in \chi(M)$ and $\chi(M)$ is the set of all differentiable vector fields on M, then $\bar{\nabla}$ is said to be a quarter-symmetric non-metric connection. If we change ϕX by X, then the connection reduces to a semi-symmetric nonmetric connection [12]. Thus the notion of quarter-symmetric connection generalizes the notion of semi-symmetric connection.

A relation between the quarter-symmetric non-metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ in an n-dimensional Lorentzian α-Sasakian

[^0]manifold M is given by
\[

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X \tag{1.1}
\end{equation*}
$$

\]

A transformation of an n-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation $[8,11]$. A concircular transformation is always a conformal transformation [8]. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. Thus the geometry of concircular transformations, i.e., the concircular geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than induced by a circle preserving diffeomorphism. An interesting invariant of a concircular transformation is the concircular curvature tensor with respect to the Levi-Civita connection. It is defined by (see [11])

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{1.2}
\end{equation*}
$$

where $X, Y, Z \in \chi(M), R$ and r are, respectively, the curvature tensor and the scalar curvature with respect to the Levi-Civita connection. A Riemannian manifold with vanishing concircular curvature tensor is of constant curvature. Thus, the concircular curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature. Recently, concircular curvature tensor have been studied by various authors such as Acet and Perktas [1], Barman and Ghosh [3], Haseeb [7], Taleshian and Asghari [10], and many others.

In 2005, Yildiz and Murathan [13] studied Lorentzian α-Sasakian manifolds with conformally flat and quasi-conformally flat conditions. In 2009, Yildiz et al. [15], further studied Lorentzian α-Sasakian manifolds and proved that ϕ-conformally flat, ϕ-conharmonically flat, ϕ-projectively flat and ϕ concircularly flat Lorentzian α-Sasakian manifolds are η-Einstein manifolds. Recently, De and Majhi [5] studied ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric generalized Sasakian space-forms.

The paper is organized as follows. In Section 2 we give a brief introduction of Lorentzian α-Sasakian manifolds. In Section 3 we deduce the relation between the curvature tensors of Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection and the Levi-Civita connection. Sections 4, 5, 6, and 7 are devoted to study ξ-concircularly flat, quasi-concircularly flat, pseudoconcircularly flat, and ϕ-concircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection, respectively. In the last Section 8 we study ϕ semisymmetric Lorentzian α-Sasakian manifolds with respect to the quartersymmetric non-metric connection.

2. Preliminaries

A differentiable manifold M of dimension n is called a Lorentzian α Sasakian manifold, if it admits a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant vector field η, and a Lorentzian metric g which satisfy the conditions (see [4])

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi \\
\eta(\xi)=-1, \phi \xi=0, \eta(\phi X)=0, g(X, \xi)=\eta(X) \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), g(\phi X, Y)=g(X, \phi Y) \tag{2.2}
\end{gather*}
$$

for all vector fields X, Y on M.
Also Lorentzian α-Sasakian manifolds satisfy the equations (see [13]-[15])

$$
\begin{gather*}
\nabla_{X} \xi=-\alpha \phi X \\
\Phi(X, Y)=\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y) \tag{2.3}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g, and $\alpha \in R$.

Further, on a Lorentzian α-Sasakian manifold M, the following relations hold (see $[2,13,15])$:

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
R(\xi, X) Y=\alpha^{2}[g(X, Y) \xi-\eta(Y) X] \\
R(X, Y) \xi=\alpha^{2}[\eta(Y) X-\eta(X) Y] \\
R(\xi, X) \xi=\alpha^{2}[X+\eta(X) \xi] \\
S(X, \xi)=(n-1) \alpha^{2} \eta(X), S(\xi, \xi)=-(n-1) \alpha^{2} \\
Q \xi=(n-1) \alpha^{2} \xi \\
\left(\nabla_{X} \phi\right) Y=\alpha[g(X, Y) \xi-\eta(Y) X] \tag{2.4}\\
S(\phi Y, \phi Z)=S(Y, Z)+(n-1) \alpha^{2} g(Y, Z) \tag{2.5}
\end{gather*}
$$

for any vector fields X, Y and Z on M.
Example 2.1. We consider the 3-dimensional manifold $M^{3}=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}: z>0\right\}$, where (x, y, z) are standard coordinates of \mathbb{R}^{3}. Let e_{1}, e_{2} and e_{3} be the vector fields on M^{3} given by

$$
e_{1}=z \frac{\partial}{\partial x}, e_{2}=z \frac{\partial}{\partial y}, e_{3}=z \frac{\partial}{\partial z}=\xi
$$

which are linearly independent at each point of M^{3}, and hence form a basis of $T_{p} M^{3}$. Define a Lorentzian metric g on M^{3} as

$$
\begin{aligned}
& g\left(e_{1}, e_{1}\right)=1, g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=-1 \\
& g\left(e_{1}, e_{2}\right)=g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=0
\end{aligned}
$$

Let η be the 1 -form on M^{3} defined as $\eta(X)=g\left(X, e_{3}\right)=g(X, \xi)$ for all $X \in \chi(M)$, and let ϕ be the $(1,1)$ tensor field on M^{3} defined as

$$
\phi e_{1}=-e_{1}, \phi e_{2}=-e_{2}, \phi e_{3}=0
$$

By applying linearity of ϕ and g, we have

$$
\begin{gathered}
\eta(\xi)=g(\xi, \xi)=-1, \phi^{2} X=X+\eta(X) \xi, \eta(\phi X)=0 \\
g(X, \xi)=\eta(X), g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)
\end{gathered}
$$

for all $X, Y \in \chi(M)$.
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then we have

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=0,\left[e_{2}, e_{1}\right]=0,\left[e_{1}, e_{3}\right]=-e_{1}} \\
& {\left[e_{3}, e_{1}\right]=e_{1},\left[e_{2}, e_{3}\right]=-e_{2},\left[e_{3}, e_{2}\right]=e_{2}}
\end{aligned}
$$

The Riemannian connection ∇ of the Lorentzian metric g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z]) \\
& +g(Y,[Z, X])+g(Z,[X, Y])
\end{aligned}
$$

which is known as Koszul's formula (see [4]). Using Koszul's formula, we can easily calculate

$$
\begin{align*}
& \nabla_{e_{1}} e_{1}=-e_{3}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=-e_{1}, \nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=-e_{3}, \\
& \nabla_{e_{2}} e_{3}=-e_{2}, \nabla_{e_{3}} e_{1}=0, \nabla_{e_{3}} e_{2}=0, \nabla_{e_{3}} e_{3}=0 . \tag{2.6}
\end{align*}
$$

Now let

$$
\begin{aligned}
& X=\sum_{i=1}^{3} X^{i} e_{i}=X^{1} e_{1}+X^{2} e_{2}+X^{3} e_{3} \\
& Y=\sum_{j=1}^{3} Y^{j} e_{j}=Y^{1} e_{1}+Y^{2} e_{2}+Y^{3} e_{3} \\
& Z=\sum_{k=1}^{3} Z^{k} e_{k}=Z^{1} e_{1}+Z^{2} e_{2}+Z^{3} e_{3}
\end{aligned}
$$

for all $X, Y, Z \in \chi(M)$. It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.7}
\end{equation*}
$$

From the equations (2.6) and (2.7), it can be easily verified that

$$
\begin{gather*}
R\left(e_{1}, e_{2}\right) e_{1}=-e_{2}, R\left(e_{1}, e_{3}\right) e_{1}=-e_{3}, R\left(e_{2}, e_{3}\right) e_{1}=0 \\
R\left(e_{1}, e_{2}\right) e_{2}=e_{1}, R\left(e_{1}, e_{3}\right) e_{2}=0, R\left(e_{2}, e_{3}\right) e_{2}=-e_{3} \tag{2.8}\\
R\left(e_{1}, e_{2}\right) e_{3}=0, R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}
\end{gather*}
$$

From (2.8), it follows that

$$
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

Thus, for $e_{3}=\xi$, the manifold M^{3} is a Lorentzian almost contact metric manifold of constant curvature 1 and is locally isometric to the unit sphere $S^{3}(1)$.

Definition 2.2 (see [15]). A Lorentzian α-Sasakian manifold M is said to be an η-Einstein manifold if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a and b are scalar functions on M.
A Lorentzian α-Sasakian manifold M is said to be a generalized η-Einstein manifold if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)+c \Omega(X, Y)
$$

where a, b, c are scalar functions on M and $\Omega(X, Y)=g(\phi X, Y)$. If $c=0$, then it reduces to an η-Einstein manifold.

3. Curvature tensor of Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

The curvature tensor \bar{R} of a Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z \tag{3.1}
\end{equation*}
$$

From the equations (1.1), (2.1), (2.3), (2.4), and (3.1), we get

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\alpha[g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y] \\
& +\alpha[\eta(X) Y-\eta(Y) X] \eta(Z) \tag{3.2}
\end{align*}
$$

where

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

is the Riemannian curvature tensor of the connection ∇. Contracting X in (3.2), we get

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)+\alpha g(\phi Y, Z) \psi-\alpha g(Y, Z)-\alpha n \eta(Y) \eta(Z) \tag{3.3}
\end{equation*}
$$

where S and \bar{S} are the Ricci tensors with respect to the connections ∇ and $\bar{\nabla}$, respectively, on M and $\psi=$ trace ϕ. Contracting again Y and Z in (3.3), we get

$$
\begin{equation*}
\bar{r}=r+\alpha \psi^{2} \tag{3.4}
\end{equation*}
$$

where r and \bar{r} are, respectively, the scalar curvatures with respect to the connections ∇ and $\bar{\nabla}$ on M.

Lemma 3.1. Let M be an n-dimensional Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection. Then we have

$$
\begin{equation*}
\bar{R}(X, Y) \xi=\left(\alpha^{2}+\alpha\right)[\eta(Y) X-\eta(X) Y] \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
\bar{R}(\xi, X) Y= & -\bar{R}(X, \xi) Y \\
= & \alpha^{2} g(X, Y) \xi-\left(\alpha^{2}+\alpha\right) \eta(Y) X-\alpha \eta(X) \eta(Y) \xi, \tag{3.6}\\
& \bar{R}(\xi, X) \xi=\left(\alpha^{2}+\alpha\right)[X+\eta(X) \xi], \\
\bar{S}(X, \xi)= & (n-1)\left(\alpha^{2}+\alpha\right) \eta(X), \bar{S}(\xi, \xi)=-(n-1)\left(\alpha^{2}+\alpha\right), \\
& \bar{Q} \xi=(n-1)\left(\alpha^{2}+\alpha\right) \xi
\end{align*}
$$

for all $X, Y \in \chi(M)$.

4. ξ-Concircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

Analogous to the equation (1.2), the concircular curvature tensor \bar{C} with respect to the quarter-symmetric non-metric connection is given by

$$
\begin{equation*}
\bar{C}(X, Y) Z=\bar{R}(X, Y) Z-\frac{\bar{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{4.1}
\end{equation*}
$$

where \bar{R} and \bar{r} are, respectively, the Riemannian curvature tensor and the scalar curvature with respect to the connection $\bar{\nabla}$.

Definition 4.1. A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is said to be ξ-concircularly flat if

$$
\begin{equation*}
\bar{C}(X, Y) \xi=0 \tag{4.2}
\end{equation*}
$$

for all X, Y on M.
Taking $Z=\xi$ in (4.1) and then using (2.1), (3.4), and (3.5), we have

$$
\begin{equation*}
\bar{C}(X, Y) \xi=\left[\left(\alpha^{2}+\alpha\right)-\frac{r+\alpha \psi^{2}}{n(n-1)}\right][\eta(Y) X-\eta(X) Y] . \tag{4.3}
\end{equation*}
$$

From the equations (4.2) and (4.3), it follows that

$$
\begin{equation*}
\left[\left(\alpha^{2}+\alpha\right)-\frac{r+\alpha \psi^{2}}{n(n-1)}\right][\eta(Y) X-\eta(X) Y]=0 . \tag{4.4}
\end{equation*}
$$

Taking $Y=\xi$ in (4.4) and using (2.1), we have

$$
\begin{equation*}
\left[\left(\alpha^{2}+\alpha\right)-\frac{r+\alpha \psi^{2}}{n(n-1)}\right][X+\eta(X) \xi]=0 \tag{4.5}
\end{equation*}
$$

Now taking inner product of (4.5) with U, we find

$$
\begin{equation*}
\left[\left(\alpha^{2}+\alpha\right)-\frac{r+\alpha \psi^{2}}{n(n-1)}\right][g(X, U)+\eta(X) \eta(U)]=0 . \tag{4.6}
\end{equation*}
$$

By replacing X by $Q X$ in (4.6) and using the fact that $S(X, U)=g(Q X, U)$, we obtain

$$
\left[\left(\alpha^{2}+\alpha\right)-\frac{r+\alpha \psi^{2}}{n(n-1)}\right]\left[S(X, U)+\alpha^{2}(n-1) \eta(X) \eta(U)\right]=0 .
$$

This implies that either the scalar curvature of M is $n(n-1)\left(\alpha^{2}+\alpha\right)-\alpha \psi^{2}$ or

$$
S(X, U)=-\alpha^{2}(n-1) \eta(X) \eta(U) .
$$

Hence, we can state the following theorem.
Theorem 4.2. For a ξ-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection, either the scalar curvature is $n(n-1)\left(\alpha^{2}+\alpha\right)-\alpha \psi^{2}$ or the manifold is a special type of η-Einstein manifold with respect to the Levi-Civita connection.

5. Quasi-concircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

Definition 5.1. A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is said to be quasi-concircularly flat if

$$
\begin{equation*}
g[\bar{C}(X, Y) Z, \phi W]=0 \tag{5.1}
\end{equation*}
$$

for all X, Y, Z, W on M.
Let M be an n-dimensional quasi-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection. Therefore, from (4.1) and (5.1), it follows that

$$
g[\bar{R}(X, Y) Z, \phi W]=\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(X, \phi W)-g(X, Z) g(Y, \phi W)],
$$

which by using (3.2) takes the form

$$
\begin{align*}
& g[R(X, Y) Z, \phi W]=-\alpha[g(\phi Y, Z) g(\phi X, \phi W) \\
& \quad-g(\phi X, Z) g(\phi Y, \phi W)] \\
& \quad-\alpha[\eta(X) g(Y, \phi W)-\eta(Y) g(X, \phi W)] \eta(Z) \tag{5.2}\\
& \quad+\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(X, \phi W)-g(X, Z) g(Y, \phi W)] .
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots . ., e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M. Then $\left\{\phi e_{1}, \phi e_{2}, \ldots . ., \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis. If we put
$X=\phi e_{i}$ and $W=e_{i}$ in (5.2) and sum up with respect to i, then we have

$$
\begin{align*}
\sum_{i=1}^{n-1} g & {\left[R\left(\phi e_{i}, Y\right) Z, \phi e_{i}\right]=-\alpha \sum_{i=1}^{n-1}\left[g(\phi Y, Z) g\left(\phi^{2} e_{i}, \phi e_{i}\right)\right.} \\
& \left.\quad-g\left(\phi^{2} e_{i}, Z\right) g\left(\phi Y, \phi e_{i}\right)\right] \\
& -\alpha \sum_{i=1}^{n-1}\left[\eta\left(\phi e_{i}\right) g\left(Y, \phi e_{i}\right)-\eta(Y) g\left(\phi e_{i}, \phi e_{i}\right)\right] \eta(Z) \tag{5.3}\\
& \quad+\frac{\bar{r}}{n(n-1)} \sum_{i=1}^{n-1}\left[g(Y, Z) g\left(\phi e_{i}, \phi e_{i}\right)-g\left(\phi e_{i}, Z\right) g\left(Y, \phi e_{i}\right)\right] .
\end{align*}
$$

It can be easily verified that

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left[R\left(\phi e_{i}, Y\right) Z, \phi e_{i}\right]=S(Y, Z)-\alpha^{2}[g(Y, Z)+\eta(Y) \eta(Z)] \\
\sum_{i=1}^{n-1} g\left(\phi^{2} e_{i}, \phi e_{i}\right)=\psi, \sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=(n-1) \tag{5.4}\\
\sum_{i=1}^{n-1} \eta\left(\phi e_{i}\right) g\left(Y, \phi e_{i}\right)=0 \\
\sum_{i=1}^{n-1} g\left(\phi^{2} e_{i}, Z\right) g\left(\phi Y, \phi e_{i}\right)=g(Y, Z)+\eta(Y) \eta(Z) \\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, Z\right) g\left(Y, \phi e_{i}\right)=g(Y, Z)+\eta(Y) \eta(Z)
\end{gather*}
$$

Thus, by virtue of (3.4), the equation (5.3) takes the form

$$
\begin{aligned}
S(Y, Z)= & {\left[\alpha^{2}+\alpha+\frac{\left(r+\alpha \psi^{2}\right)(n-2)}{n(n-1)}\right] g(Y, Z) } \\
& +\left[\alpha^{2}+n \alpha-\frac{r+\alpha \psi^{2}}{n(n-1)}\right] \eta(Y) \eta(Z)-\alpha \psi g(\phi Y, Z)
\end{aligned}
$$

where $\psi=$ trace ϕ. Thus we can state the following theorem.
Theorem 5.2. A quasi-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is a generalized η-Einstein manifold with respect to the Levi-Civita connection.

6. Pseudoconcircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

Definition 6.1. A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is said to be pseudoconcircularly flat if

$$
\begin{equation*}
g[\bar{C}(\phi X, Y) Z, \phi W]=0 \tag{6.1}
\end{equation*}
$$

for all X, Y, Z, W on M.
Let M be an n-dimensional pseudoconcircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection. Therefore, from (4.1) and (6.1), it follows that

$$
g[\bar{R}(\phi X, Y) Z, \phi W]=\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(\phi X, \phi W)-g(\phi X, Z) g(Y, \phi W)]
$$

which in view of (3.2) takes the form

$$
\begin{align*}
& g[R(\phi X, Y) Z, \phi W]=\alpha[g(X, Z) g(\phi Y, \phi W)+\eta(X) \eta(Z) g(\phi Y, \phi W) \\
& \quad-g(\phi Y, Z) g(X, \phi W)+\eta(Y) \eta(Z) g(\phi X, \phi W)] \tag{6.2}\\
& \quad+\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(\phi X, \phi W)-g(\phi X, Z) g(Y, \phi W)]
\end{align*}
$$

In view of (2.2), (6.2) becomes

$$
\begin{align*}
& g[R(\phi X, Y) Z, \phi W]=\alpha[g(X, Z) g(Y, W)+g(X, Z) \eta(Y) \eta(W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+2 \eta(X) \eta(Z) \eta(Y) \eta(W) \\
& \quad-g(\phi Y, Z) g(X, \phi W)+g(X, W) \eta(Y) \eta(Z)] \tag{6.3}\\
& \quad+\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(X, W)+g(Y, Z) \eta(X) \eta(W) \\
& \quad-g(\phi X, Z) g(Y, \phi W)]
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots . ., e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M. Then $\left\{\phi e_{1}, \phi e_{2}, \ldots ., \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis. If we put $X=W=e_{i}$ in (6.3) and sum up with respect to i, then we have

$$
\begin{align*}
& \sum_{i=1}^{n-1} g\left[R\left(\phi e_{i}, Y\right) Z, \phi e_{i}\right]=\alpha \sum_{i=1}^{n-1}\left[g\left(e_{i}, Z\right) g\left(Y, e_{i}\right)+g\left(e_{i}, Z\right) \eta(Y) \eta\left(e_{i}\right)\right. \\
& \quad+g\left(Y, e_{i}\right) \eta\left(e_{i}\right) \eta(Z)+2 \eta\left(e_{i}\right) \eta\left(e_{i}\right) \eta(Z) \eta(Y)-g\left(e_{i}, \phi e_{i}\right) g(\phi Y, Z) \\
& \left.\quad+g\left(e_{i}, e_{i}\right) \eta(Y) \eta(Z)\right]+\frac{\bar{r}}{n(n-1)} \sum_{i=1}^{n-1}\left[g(Y, Z) g\left(e_{i}, e_{i}\right)\right. \\
& \left.\quad+g(Y, Z) \eta\left(e_{i}\right) \eta\left(e_{i}\right)-g\left(\phi e_{i}, Z\right) g\left(Y, \phi e_{i}\right)\right] \tag{6.4}
\end{align*}
$$

It can be easily verified that

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left[R\left(\phi e_{i}, Y\right) Z, \phi e_{i}\right]=S(Y, Z)-\alpha^{2}[g(Y, Z)+\eta(Y) \eta(Z)], \tag{6.5}\\
\sum_{i=1}^{n-1} g\left(e_{i}, Z\right) g\left(Y, e_{i}\right)=\sum_{i=1}^{n-1} g\left(\phi e_{i}, Z\right) g\left(Y, \phi e_{i}\right)=g(Y, Z)+\eta(Y) \eta(Z), \tag{6.6}\\
\sum_{i=1}^{n-1} g\left(e_{i}, e_{i}\right)=(n-1) . \tag{6.7}
\end{gather*}
$$

By virtue of (3.4) and (6.5)-(6.7), the equation (6.4) takes the form

$$
\begin{aligned}
S(Y, Z)= & {\left[\alpha^{2}+\alpha+\frac{\left(r+\alpha \psi^{2}\right)(n-2)}{n(n-1)}\right] g(Y, Z) } \\
& +\left[\alpha^{2}+\alpha n-\frac{r+\alpha \psi^{2}}{n(n-1)}\right] \eta(Y) \eta(Z)-\alpha \psi g(\phi Y, Z)
\end{aligned}
$$

where $\psi=$ trace ϕ. Thus we can state the following theorem.
Theorem 6.2. A pseudoconcircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is a generalized η-Einstein manifold with respect to the Levi-Civita connection.

7. ϕ-Concircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

Definition 7.1. A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is said to be ϕ-concircularly flat if (see [9])

$$
\begin{equation*}
\phi^{2} \bar{C}(\phi X, \phi Y) \phi Z=0 \tag{7.1}
\end{equation*}
$$

for all X, Y, Z on M.
Let M be an n-dimensional ϕ-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection. Then from (7.1) it follows that

$$
\begin{equation*}
g(\bar{C}(\phi X, \phi Y) \phi Z, \phi W)=0 \tag{7.2}
\end{equation*}
$$

In view of (4.1), (7.2) becomes

$$
\begin{aligned}
g[\bar{R}(\phi X, \phi Y) \phi Z, \phi W]= & \frac{\bar{r}}{n(n-1)}[g(\phi Y, \phi Z) g(\phi X, \phi W) \\
& -g(\phi X, \phi Z) g(\phi Y, \phi W)]
\end{aligned}
$$

which in view of (3.2) takes the form

$$
\begin{gather*}
g[R(\phi X, \phi Y) \phi Z, \phi W]=\alpha[g(X, \phi Z) g(Y, \phi W)-g(Y, \phi Z) g(X, \phi W)] \\
\quad+\frac{\bar{r}}{n(n-1)}[g(\phi Y, \phi Z) g(\phi X, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)] \tag{7.3}
\end{gather*}
$$

Let $\left\{e_{1}, e_{2}, \ldots ., e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M. Then $\left\{\phi e_{1}, \phi e_{2}, \ldots ., \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis. If we put $X=W=e_{i}$ in (7.4) and sum up with respect to i, then we have

$$
\begin{align*}
& \sum_{i=1}^{n-1} g\left[R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right]=\alpha \sum_{i=1}^{n-1}\left[g\left(e_{i}, \phi Z\right) g\left(Y, \phi e_{i}\right)\right. \\
& \left.\quad-g(Y, \phi Z) g\left(e_{i}, \phi e_{i}\right)\right] \tag{7.4}\\
& \quad+\frac{\bar{r}}{n(n-1)} \sum_{i=1}^{n-1}\left[g(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)-g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right]
\end{align*}
$$

It can be easily verified that

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left[R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right]=S(\phi Y, \phi Z)-\alpha^{2} g(\phi Y, \phi Z) \tag{7.5}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=g(\phi Y, \phi Z) \tag{7.6}
\end{gather*}
$$

By virtue of (5.4), (6.6), (7.5), and (7.6), the equation (7.4) gives

$$
\begin{aligned}
S(\phi Y, \phi Z)= & {\left[\frac{\bar{r}(n-2)}{n(n-1)}+\alpha^{2}\right] g(\phi Y, \phi Z)+\alpha g(Y, Z) } \\
& +\alpha \eta(Y) \eta(Z)-\alpha g(Y, \phi Z) \psi
\end{aligned}
$$

which in view of (2.2), (2.5), and (3.4) turns to

$$
\begin{aligned}
S(Y, Z)= & {\left[\frac{\left(r+\alpha \psi^{2}\right)(n-2)}{n(n-1)}-(n-2) \alpha^{2}+\alpha\right] g(Y, Z) } \\
& +\left[\frac{\left(r+\alpha \psi^{2}\right)(n-2)}{n(n-1)}+\alpha^{2}+\alpha\right] \eta(Y) \eta(Z)-\alpha g(Y, \phi Z) \psi
\end{aligned}
$$

where $\psi=$ trace ϕ. Thus we can state the following theorem.
Theorem 7.2. A ϕ-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is a generalized η-Einstein manifold with respect to the Levi-Civita connection.
8. ϕ-Concircularly semisymmetric Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric non-metric connection

Definition 8.1. A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection is said to be ϕ-concircularly semisymmetric if (see [5])

$$
\bar{C}(X, Y) \cdot \phi=0
$$

for all X, Y on M.
Let M be an n-dimensional ϕ-concircularly semisymmetric Lorentzian α Sasakian manifold with respect to the quarter-symmetric non-metric connection. Therefore $\bar{C}(X, Y) \cdot \phi=0$ turns into

$$
(\bar{C}(X, Y) \cdot \phi) Z=\bar{C}(X, Y) \phi Z-\phi \bar{C}(X, Y) Z=0
$$

which, by $X=\xi$, takes the form

$$
\begin{equation*}
(\bar{C}(\xi, Y) \cdot \phi) Z=\bar{C}(\xi, Y) \phi Z-\phi \bar{C}(\xi, Y) Z=0 \tag{8.1}
\end{equation*}
$$

Taking $X=\xi$ in (4.1) and using (2.1), we have

$$
\bar{C}(\xi, Y) Z=\bar{R}(\xi, Y) Z-\frac{\bar{r}}{n(n-1)}[g(Y, Z) \xi-\eta(Z) Y]
$$

In view of (3.6), it becomes

$$
\begin{align*}
\bar{C}(\xi, Y) Z= & {\left[\alpha^{2}-\frac{\bar{r}}{n(n-1)}\right] g(Y, Z) \xi } \\
& -\left[\left(\alpha^{2}+\alpha\right)-\frac{\bar{r}}{n(n-1)}\right] \eta(Z) Y-\alpha \eta(Y) \eta(Z) \xi \tag{8.2}
\end{align*}
$$

from which we get

$$
\begin{equation*}
\phi \bar{C}(\xi, Y) Z=-\left[\left(\alpha^{2}+\alpha\right)-\frac{\bar{r}}{n(n-1)}\right] \eta(Z) \phi Y \tag{8.3}
\end{equation*}
$$

Replacing Z by ϕZ in (8.2) and using (2.1), we get

$$
\begin{equation*}
\bar{C}(\xi, Y) \phi Z=\left[\alpha^{2}-\frac{\bar{r}}{n(n-1)}\right] g(Y, \phi Z) \xi \tag{8.4}
\end{equation*}
$$

Therefore, combining (8.1), (8.3), and (8.4), we have

$$
\begin{equation*}
\left[\alpha^{2}-\frac{\bar{r}}{n(n-1)}\right] g(Y, \phi Z) \xi+\left[\left(\alpha^{2}+\alpha\right)-\frac{\bar{r}}{n(n-1)}\right] \eta(Z) \phi Y=0 \tag{8.5}
\end{equation*}
$$

Taking inner product of (8.5) with ξ and using (2.1), we find

$$
\left[\alpha^{2}-\frac{\bar{r}}{n(n-1)}\right] g(Y, \phi Z)=0
$$

Since $g(X, \phi Z) \neq 0$, we get

$$
\bar{r}=n(n-1) \alpha^{2} \quad \Longrightarrow \quad r=n(n-1) \alpha^{2}-\alpha \psi^{2}
$$

Thus we can state the following theorem.
Theorem 8.2. For an n-dimensional ϕ-concircularly semisymmetric Lorentzian α-Sasakian manifold with respect to the quarter-symmetric nonmetric connection, the scalar curvature with respect to the Levi-Civita connection is $n(n-1) \alpha^{2}-\alpha \psi^{2}$.

Acknowledgement

The authors are grateful to the referees for their valuable suggestions and remarks that definitely improved the paper.

References

[1] B. E. Acet and S. Y. Perktas, On para-Sasakian manifolds with a canonical paracontact connection, New Trends Math. Sci. 4 (2016), 162-173.
[2] A. Barman, On Lorentzian α-Sasakian manifolds admitting a type of semi-symmetric metric connection, Novi Sad J. Math. 44 (2014), 77-88.
[3] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric nonmetric connection on P-Sasakian manifolds, Anal. Univ. Vest Timiş. Ser. Mat.Inform. 54 (2016), 47-58.
[4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin-New York, 1976.
[5] U. C. De and P. Majhi, ϕ-semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci. 21 (2015), 170-178.
[6] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.) 29 (1975), 249-254.
[7] A. Haseeb, On concircular curvature tensor with respect to the semi-symmetric nonmetric connection in a Kenmotsu manifold, Kyungpook Math. J. 56 (2016), 951-964.
[8] W. Kühnel, Conformal transformations between Einstein spaces, in: Conformal geometry (Bonn, 1985/1986), Aspects Math., E12, Friedr. Vieweg, Braunschweig, 1988, pp. 105-146.
[9] C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds, Rad. Mat. 12 (2003), 99-106.
[10] A. Taleshian and N. Asghari, On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, Diff. Geom. Dyn. Syst. 12 (2010), 228-232.
[11] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
[12] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[13] A. Yildiz and C. Murathan, On Lorentzian α-Sasakian manifolds, Kyungpook Math. J. 45 (2005), 95-103.
[14] A. Yildiz, M. Turan, and B. E. Acet, On three dimensional Lorentzian α-Sasakian manifolds, Bull. Math. Anal. Appl. 1 (2009), 90-98.
[15] A. Yildiz, M. Turan, and C. Murathan, A class of Lorentzian α-Sasakian manifolds, Kyungpook Math. J. 49 (2009), 789-799.

Department of Mathematics, Faculty of Science, Jazan University, Jazan2097, Kingdom of Saudi Arabia

E-mail address: malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa
Department of Mathematics and Astronomy, University of Lucknow, Lucknow226007, InDIA

E-mail address: rp.manpur@rediffmail.com

[^0]: Received November 6, 2017.
 2010 Mathematics Subject Classification. 53D15; 53C05; 53C25.
 Key words and phrases. Lorentzian α-Sasakian manifold; concircular curvature tensor; quarter-symmetric non-metric connection.
 http://dx.doi.org/10.12697/ACUTM.2018.22.23

