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Simplifying coefficients in a family of nonlinear
ordinary differential equations

Feng Qi

Abstract. By virtue of the Faá di Bruno formula, properties of the
Stirling numbers and the Bell polynomials of the second kind, the bino-
mial inversion formula, and other techniques in combinatorial analysis,
the author finds a simple, meaningful, and significant expression for co-
efficients in a family of nonlinear ordinary differential equations.

1. Motivation and main results

In [6, Theorem 2.1], it was established inductively and recursively that
the function

F (t) =
1

eln(1+t) − 1
(1)

satisfies the family of differential functions

n!Fn+1(t) = (−1)n
n∑

k=0

ak(n)(1 + t)kF (k)(t) (2)

for n ∈ N, where a0(n) = n!, an(n) = 1, and

ak(n) =

n−1∑
n1=k−1

n1−1∑
n2=k−2

· · ·
nk−1−1∑
nk=0

(n + k)!∏k
`=1(n` + k − ` + 2)(n` + k − ` + 1)

(3)

for 0 < k < n. Hereafter, the expression (3) was employed in the whole
paper [6].

In this paper, since

(1) the original proof of [6, Theorem 2.1] is long and tedious,
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(2) the expression (3) is too complex to be remembered, understood,
and computed easily,

we will supply a simple and standard proof for [6, Theorem 2.1] and, more
importantly, find a simple, meaningful, and significant form for the quantities
ak(n).

Our main results can be stated as the following theorem.

Theorem 1. For n ∈ {0} ∪ N, the function F (t) defined by (1) satisfies

F (n)(t) = (−1)n
n!

(1 + t)n

n∑
m=0

(
n

m

)
Fm+1(t) (4)

and

Fn+1(t) = (−1)n
n∑

m=0

(
n

m

)
1

m!
(1 + t)mF (m)(t). (5)

2. Proof of Theorem 1

By virtue of the Faà di Bruno formula

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
for n ≥ 0, where the Bell polynomials of the second kind Bn,k(x1, . . . , xn−k+1)
for n ≥ k ≥ 0 are defined [2, p. 134, Theorem A] and [2, p. 139, Theorem C]
by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
,

we obtain

F (n)(t) =

n∑
k=0

dk

duk

(
1

eu − 1

)
Bn,k

(
1

1 + t
,− 1

(1 + t)2
, . . . ,

(−1)n−k(n− k)!

(1 + t)n−k+1

)
where u = u(t) = ln(1 + t). In view of two identities

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1)

and
Bn,k(0!, 1!, 2!, . . . , (n− k)!) = (−1)n−ks(n, k)

in [2, p. 135], where a and b are any complex numbers and s(n, k) stands for
the Stirling number of the first kind, we have

F (n)(t) =
n∑

k=0

dk

duk

(
1

eu − 1

)(
1

1 + t

)n

(−1)n+k Bn,k(0!, 1!, . . . , (n− k)!)
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=
1

(1 + t)n

n∑
k=0

dk

duk

(
1

eu − 1

)
s(n, k).

From [4, Theorem 2.1], [9, Theorems 3.1 and 3.2], and [10, Lemma 2.1], it
follows that

dk

d tk

(
1

et − 1

)
= (−1)k

k+1∑
m=1

(m− 1)!S(k + 1,m)

(
1

et − 1

)m

, k ≥ 0,

where S(n, k) stands for the Stirling number of the second kind. Therefore,
we acquire

F (n)(t) =
1

(1 + t)n

n∑
k=0

(−1)k

[
k+1∑
m=1

(m− 1)!S(k + 1,m)

(
1

eu − 1

)m
]
s(n, k)

=
1

(1 + t)n

n+1∑
m=1

[
n∑

k=m−1
(−1)ks(n, k)S(k + 1,m)

]
(m− 1)!

(
1

eu − 1

)m

=
1

(1 + t)n

n∑
m=0

[
n∑

k=m

(−1)ks(n, k)S(k + 1,m + 1)

]
m!

(
1

eu − 1

)m+1

=
1

(1 + t)n

n∑
m=0

[
n∑

k=m

(−1)ks(n, k)S(k + 1,m + 1)

]
m!Fm+1(t).

Since

S(n + 1, k) = kS(n, k) + S(n, k − 1), 0 ≤ k − 1 ≤ n,

see [8, p. 114, Eq. (9.1)], we have

n∑
k=m

(−1)ks(n, k)S(k + 1,m + 1)

= (m + 1)
n∑

k=m

(−1)ks(n, k)S(k,m + 1) +
n∑

k=m

(−1)ks(n, k)S(k,m).

Further utilizing the formula

n∑
k=m

(−1)ks(n, k)S(k,m) = (−1)nL(n,m)

in [1, pp. 304–305, Remark 8.6] and simplifying yield

n∑
k=m

(−1)ks(n, k)S(k + 1,m + 1) = (−1)n[(m + 1)L(n,m + 1) + L(n,m)],
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where L(n, k) stands for the Lah number which can be defined [5] by

L(n, k) =
(n− 1)!

(k − 1)!

(
n

k

)
with the conventions L(0, 0) = 1, L(n, 0) = 0 if n ≥ 1, and L(n, k) = 0 if
k > n. Consequently, it follows that

F (n)(t) =
(−1)n

(1 + t)n

n∑
m=0

[(m + 1)L(n,m + 1) + L(n,m)]m!Fm+1(t).

Making use of

L(n, k + 1) =
n− k

k(k + 1)
L(n, k)

reveals

[(m + 1)L(n,m + 1) + L(n,m)]m! = (m− 1)!nL(n,m) = n!

(
n

m

)
.

Accordingly, we obtain the equality (4).
The formula (5.48) in [3, p. 192] reads that

g(k) =
k∑

`=0

(
k

`

)
(−1)`f(`)⇐⇒ f(k) =

k∑
`=0

(
k

`

)
(−1)`g(`).

Applying this binomial inversion formula to (4) results in

(−1)nFn+1(t) =
n∑

m=0

(
n

m

)
(−1)m(−1)m

(1 + t)m

m!
F (m)(t)

which can be rewritten as (5). The proof of Theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely related
things.

Remark 1. It is clear that the function F (t) defined by (1) is 1
t .

Remark 2. Comparing (2) with (5) reveals that

ak(n) =
n!

k!

(
n

k

)
, n ≥ k ≥ 0,

which is simpler, more meaningful, and more significant than the expres-
sion (3).

Remark 3. This paper is a slightly modified version of the preprint [7].
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