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Behaviour of multivariate tail dependence
coefficients

GAIDA PETTERE, IRINA VORONOVA, AND ILZE ZARINA

ABSTRACT. In applications tail dependence is an important property of
a copula. Bivariate tail dependence is investigated in many papers, but
multivariate tail dependence has not been studied widely. We define
multivariate upper and lower tail dependence coefficients as limits of the
probability that values of one marginal will be large if at least one of
other marginals will be as large also. Further we derive some relations
between introduced tail dependence and bivariate tail dependence coeffi-
cients. Applications have shown that the multivariate ¢-copula has been
successfully used in practice because of it’s tail dependence property.
Therefore, t-copula can be used as an alternative method for risk assess-
ment under Solvency II for insurance models. We have paid attention to
the properties of the introduced multivariate tail dependence coefficient
for t-copula and examine it in the simulation experiment.

1. Introduction

In applications an important property of a copula is tail dependence.
Tail dependence coefficients characterize the degree of dependence between
marginals in the tail area. It becomes very important in risk measuring.
Bivariate tail dependence is investigated in many papers because of its im-
portance in applications. It gives an answer to the question: will large values
of one variable increase the probability that another variable will be as large
either. Bivariate tail dependence refers to the degree of dependence in the
corner of the lower-left quadrant or upper-right quadrant of a bivariate dis-
tribution. An answer to this question is characterized mathematically by the
limit of the conditional probability P(Y > z|X > x) when = tends to infin-
ity. This limit is the characteristic of upper tail dependence. In applications
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very important are multivariate copulas constructed from multivariate dis-
tributions. The Gaussian copula does not have the upper tail dependence as
the described above limit equals to zero when the Pearson correlation coeffi-
cient is smaller than one, Cherubini et al. [5]. This property makes Gaussian
copula not suitable for many applications. The same time t-copula takes into
account tail dependence when using it as a data model, Cherubini et al. [5].
In applications usually calculation of tail dependence coefficients is realised
using copulas. At the same time there are only few skewed copulas in use.
Archimedian copulas are axial symmetric by construction, the copulas built
via elliptical multivariate distributions are also symmetric (Gaussian and ¢-
copula, for instance). It seems natural to join into a multivariate distribution
skewed marginals by a skewed copula density. Skew elliptical families give
a good possibility for that. In Demarta and McNeil [7] a skew t-copula is
introduced which is based on the multivariate generalized hyperbolic distri-
bution. In Kollo and Pettere [18] the skew t-copula was defined on the basis
of multivariate skew t-distribution following Azzalini and Capitanio [1]. In
this paper we study tail dependence for n-dimensional t-copula and leave
investigation of skew-elliptical copulas for future.

In problems of financial mathematics multivariate tail dependence is even
more important than bivariate tail dependence. The main reason is that
in financial problems a variable of interest usually depends on behaviour of
several other random variables. And it is not possible to describe multi-
variate dependence as a set of bivariate tail dependence coefficients. More
important are the questions: how will behave a random variable of interest
if some other variables are larger than a given value; or more generally, how
will behave a given variable if at least one of other variables is larger than a
certain given value.

2. Tail dependence coefficients

Bivariate lower and upper tail dependence coefficients are defined and
expressed via copulas (see [10, 14, 20]). Let X and Y be random variables.
Then the lower tail dependence coefficient is

AL (X,Y) =1lim P(Fy(Y) <ulFx(X) <u) = lim Clu,u)
u=0 u—0 U

and the upper tail dependence coefficient is

Ao (X,Y) = lim P(Fy (Y) > u|Fx (X) > u) = lim 1—-2u+t C(%U).
u—r

u—1 1—u

Here Fx and Fy are distribution functions of the marginals X and Y, and
C is the copula of X and Y. For notions and results on copula theory an
interested reader is referred to Nelsen [20] or Cherubini et al. [5].
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Because bivariate tail dependence coefficients can be calculated using cop-
ulas most often they have been used for Archimedean copulas. For symmetric
copulas upper and lower tail dependence coefficients are equal, therefore we
shall not use indexes L and U for ¢-copula later on. In Demarta and Mc-
Neil [7] a formula for tail dependence coefficient for t-copula is given in the
bivariate case:

A=2T(—Vv+1V1—r/V1+r,v+1), (2.1)

where T'(-, v 4 1) is the distribution function of the univariate t-distribution
with v + 1 degrees of freedom.

Bortot [2] has studied tail dependence of the bivariate skew normal and
skew t-distributions and derived inequalities for the tail dependence coeffi-
cients of these copulas. In more details tail behavior of the skew t-copula
has been examined by simulation in Kollo et al. [19]. Because of interest to
multivariate distributions and corresponding to them copulas in applications
a question about tail dependence for multivariate distributions has raised.
But this has not been studied widely. We have found several studies on
multivariate tail dependence but they do not give answers to the questions
formulated in the end of Introduction. For example, Frahm [12] has defined
lower and upper tail dependence coefficients for a d-dimensional random
vector with distribution function F' in the following way:

e, =lim P(Frae < t|Fmin <t), ey =1m P(EFpnin > t|Fnee > 1), (2.2)
t—0 t—=0

where F1, Fb, ..., F; are marginal distributions,
sz‘n = min{Fl(Xl), FQ(XQ), e ,Fd<Xd)},
and
Fmax = maX{Fl (Xl), FQ(XQ), ey Fd(Xd)}.
He has expressed the tail dependence coefficients (2.2) through copulas
o= i LX) S, Fa(Xa) S u)
L S 1-P(F(X1) > u, ..., Fa(Xq) > u)
Cuy...,u)

lim
w0t 1 —C(l—u,...,1—u)

and

e — lim P(Fl(Xl) >u,...,Fd(Xd) >’LL)
U 1 - P(R(X) < ..., Fa(Xq) < u)
~ m Cl—u,...,1—u)
u—1- 1—C(’LL,...,’LL)
where C is copula of random vector X and C is the survival copula corre-
sponding to C.

)



302 GAIDA PETTERE, IRINA VORONOVA, AND ILZE ZARINA

Additionally he has found explicit expressions of tail dependence coeffi-
cients for t-distribution and a certain class of elliptically distributed distri-
butions. Later Chan and Li [3] defined extreme dependence index for vector
X in the following way:

v = lim P{X;(X;) >u, je{l,2,...,n}
u—1

(2.3)
Fi(X;) > u for some i€ {1,2,...,n}}.

The authors have found explicit expressions of the index for the multi-
variate t-distributions and have investigated their monotonicity properties.
Kluppelberg et al. [17] have proposed a semi-parametric model for (asymp-
totically dependent) tail dependence functions for an elliptical copula. Under
this model assumption they have created a novel estimator for the tail depen-
dence function, which has been examined both theoretically and empirically.

De Luca and Rivieccio [6] have studied multivariate tail dependence co-
efficient (2.3) in the case of Clayton copula, but estimated tail dependence
coefficient only in three dimensional case. Bernardino [8] has estimated tail
dependence coefficients (2.3) for transformed multivariate Archimedian cop-
ulas. Several important facts about tail dependence and Archimedian copu-
las can be found in Juri and Wuthrich [16], Charpentier and Segers [4], Joe
et al. [15], and Hua and Joe [13]. Flores [11] introduced monotonic copulas.
Embrecht et al. [9] have studied properties of tail dependence coefficients
matrix in multivariate case.

But all these definitions do not give an answer to the question about tail
behaviour of one variable if at least one other variable becomes larger than
some critical value. Therefore the aim of this paper is to introduce a different
measure of tail dependence for n-dimensional copulas. We define multivari-
ate upper and lower tail dependence coefficients as limits of the probability
that values of one marginal will be large if at least one from other marginals
will be as large too. Such approach gives more flexibility for describing tail
behaviour of multivariate distributions.

3. Definitions of multivariate tail dependence coefficients

First we introduce lower and upper tail dependence coefficients in multi-
variate case in the following intuitive way:

)\U(XZ) = lim )\U(U,XZ'),
u—1
where Ay (u, X;) is a sum of all possible conditional probabilities that given

variable will be larger than given percentile if at least one other variable is
larger too, ¢ € {1,2,...,n}, and

)\L(XZ) = hHl )\L(U,Xi),
u—0



BEHAVIOUR OF MULTIVARIATE TAIL DEPENDENCE COEFFICIENTS 303

where Ar(u, X;) is a sum of all possible conditional probabilities when given
variable will be smaller than given percentile if at least one other variable is
smaller, too.

Such coefficient shows how sensitive is given variable to increases or de-
creases of some other variables.

Before we introduce the main notion we define necessary additional co-
efficients. Let X = {X1, Xo,...,X,,} be n-dimensional multivariate vector
with marginals distribution functions Fj;.

Definition 1. The one-variable upper tail dependence coefficient is de-
fined by

n n
1 _ : )
A(X) = ) ‘ilﬁmlp Fi(x) > u|Fpn(x) >u, [ 'Fk(m) <u
m=1,m##i k=1,k#m#i

or

n

n
(X)) = > lim
m=1,mzi P <Fm(ﬂ§) > u,

P (F,(m) > u, Frp(x) > u, Fi(x) < u)

k=1,k#m=#i

Fi(x) < u)

9
n

k=1,k#m#i;
iyk,me {1,2,...,n}.
(3.1)

This coefficient expresses the probability that one variable is greater than
a constant, if one other variable is greater than the constant and all other
variables are less than this constant.

Definition 2. The [-variables upper tail dependence coefficient is

1 n n n )
INCONE S SRS zmp(mmu\
m;=1, mo=1, mi=1,

myF#i,...,m1 %t moFi,m17£1T mi#£i

Fo, () >u, ..., Fp(z) > u, ﬂ Fi(x) < u)
k=1,k+i
k#my,....k#£my
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or
1 n n n
! ) — = .. i .
(X)) =5 > > lim P(E(fﬂ) > ul
m;=1, mo=1, mi=1,

myAi,..,m1AL maFimiAl myAi
n

Foy () > u, ..., Fy,(z) > u, ﬂ Fi(z) < u)
k=1,k#i
k?émlz"':k;éml

/P(le(az) >, Fp(z)>u, (] Fi@) < u>]

k=1,ki
k?émla"'vk#ml

2<1<n—-2, mj,k,ie{l,2,....,n}, je{l,2,...,1—1}.

These coefficients are describing tail behaviour of a given variable X; if
directly [ variables, [ € {2,3,...,n—2}, are larger than the given percentile.

Definition 3. The multivariate upper overall tail dependence coefficient
for X; is
n
MNH(X) = L1L1_>nc11P Fi(x) > ul ﬂ Fo(z) >u

m=1,m%#1i

or

m=1,m##i

P (Fz-(ac) Su, () Fnlz) > u>
)=y ——
P < N EFn(z)> u)

)

(3.3)
m=1,m%#1
i,m € {1,2,...,n}.

This coefficient describes behaviour of a given variable if all other vari-
ables become larger than the given percentile. Finally we can define the
multivariate upper tail dependence coefficient.

Definition 4. The multivariate upper tail dependence coefficient of Xj; is
n—1

M (X)) = A(X0) + D MAp(X) + 25X, ief{l2,....n}.  (3.4)
=2

Proposition 1. Tail dependence coefficients are invariant under ordering
of marginals.

Proof. 1t is obvious because of invariance of intersection of sets. O
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Remark 1. Because of Proposition 1 it is possible to use only one ordering
of marginals and the coefficient before sum in formula (3.2) is not needed.

In the similar way it is possible to define lower tail dependence coefficient.
The formulas (3.1)-(3.4) have, for n = 4, the form

Ao (Xi) = A0 (X0) + M5 (X)) + M H(Xy), ie{1,2,3,4}, (3.5)
where
4 P F:L(:B) >’LL,Fm(fE) > u, ﬂ Fk(:l:) <u
1 k=1,k#m=#i
Ap(Xi) = lim )
— u—1 4 (3.6)
"mati P|Fy(x)>u, [ Frlz)<u
k=1,k#m#i
i,k,me {1,2 H
M (X)) =

B l i "~ lim P(Fi(z) > u, Fpy () > u, Fpp, () > u, Fi(z) < u)
N e P(Fp, (x) > u, Frpy(x) > u, Fi(x) < u) ’

moF#Em1#i mi17£i
=2, mj,k,i € {1,2,3,4}, jE {1,2}, k # mj,

(3.7)
P | Fi(z) > u, [4] ;éFm(x) > u)
T T m=1m=1
Av(Xs) = lim 4 ’ (3.8)
P < N Fn(z) < u)
m=1m##i

i,yme{1,2,...,n}.

Take ¢ = 1, then because of invariance of probability of intersection, for-
mulas (3.6)—(3.8) have the following form:

P(Fi(x) > u, Fy(x) > u, F3(z) < u, Fy(r) < u)
M) = I P (Faa) > u Fa(o) < w, ) <
P(Fi(x) > u, F3(x) > u, Fy(x) < u, Fy(z) < u)
+ ilinl P(F5(z) > u, Fo(z) < u, Fy(x) < u) (39)

P(Fi(x) > u, Fy(x) > u, Fy(x) < u, F3(x) < u)
u—1 P(Fy(x) > u, Fo(z) < u, F3(z) < u) ’
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P(Fi(z) > u, Fa(z) > u, F3(x) > u, Fy(x) < u)
P(Fy(z) > u, F3(z) > u, Fy(x) < u)
(

A (X)) = lim

P(Fi(x) > u, Fy(x) > u, Fy(z) > u, F3(z) < u)
* i;nﬁ P(Fy(z) > u, Fy(x) > u, F3(x) < u) (3.10)
lim P(Fy(x) > u, F3(x) > u, Fy(z) > u, Fo(z) < u)
u—1 P(F3(x) > u, Fy(x) > u, Fa(z) < u) ’
and
(X)) = lim P(Fi(x) > u, Fy(x) > u, F3(z) > u, Fy(z) > u) (3.11)

u—1 P(Fy(x) > u, F5(z) > u, Fy(x) > u)

Finally, formula (3.5) of the multivariate upper tail dependence coefficient
for variable X is

Au(X1) = A (X1) + A5 (X1) + A (X). (3.12)

4. Simulation

4.1. Estimation of tail dependence coefficients for different margi-
nals. We will investigate the behaviour of the defined multivariate tail de-
pendence coefficients for ¢-distribution using t-copula. Upper and lower tail
dependence coefficients in this case are equal. Therefore, we shall exam-
ine only upper tail dependence coefficient. The simulation experiment in
the four-dimensional case has been carried out using R software and the
following simulation algorithm:

(1) Take i = 1.

(2) Generate four random values from ¢-distribution with the number of

degrees of freedom 2 and the correlation matrix:

1 08 05 02
0.8 1 07 04
05 07 1 02
02 04 02 1

(3) Repeat step two 10° times.

(4) Take ¢ = 1.

(5) Calculate tail dependence coefficients for X;, using (3.9)—(3.11) and
add them together.

(6) i:=1+1.

(7) If i < 4, repeat steps 2-5.

Results of calculated conditional probabilities are presented in Table 1.
Simulation results show that coefficients are stable and they are different for
each marginal if correlation is not the same. The largest tail dependence
coeflicient is for the second marginal with correlations 0.8, 0.7 and 0.4. The
smallest tail dependence coefficient has the fourth marginal with correlations
0.2, 0.4 and 0.2.
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Coefficients for probabilities P(U; > u|Uz > u,Us < u,Usy < u) and
P(Us > u|Uy > u,Us < u,Uy < u) are not equal (1st and 9th row). This is
due to different correlations: conditional marginals in the first probability
expression have correlations 0.7, 0.4 and 0.2, but in the second probability
expression we have correlations 0.5, 0.2 and 0.2.

TABLE 1. Estimates of tail dependence coeflicients.

No. of Percentiles
Calculated probabilities rows 0.900 | 0.950 | 0.990 | 0.995
P(Uy > u|Us > u,Us <u,Ug <u) |1 0.5944 | 0.5499 | 0.5022 | 0.4828
P(Uy > u|Us > u,Us < u, Uy <u) |2 0.1219 | 0.1037 | 0.0853 | 0.0753
P(U; > u|Uy > u, Uy < u,Us <u) |3 0.0614 | 0.0501 | 0.0369 | 0.0325
PU; > u|Us > u,Us > u,Uy < u) |4 0.6285 | 0.5976 | 0.5575 | 0.5673
PU; > u|Us > u, Uy >u,Us <u) |5 0.5410 | 0.5142 | 0.4947 | 0.4969
P(Uy > u|Us > u, Uy >u,Us <u) |6 0.0924 | 0.0864 | 0.0833 | 0.0497
P(Uy > u|Us > u,Us >u,Ug >u) | 7 0.6318 | 0.6006 | 0.5788 | 0.6190
Sum 8 2.6713| 2.5025| 2.3387| 2.3235
P(Us > u|Uy > u,Us <u,Ug<u) |9 0.3942 | 0.3791 | 0.3623 | 0.3524
P(Uy > u|Us > u, Uy <u,Uy <u) |10 0.2575 | 0.2402 | 0.2229 | 0.2035
P(Us > u|Uy > u, Uy <u,Us <u) |11 0.1095 | 0.1000 | 0.0828 | 0.0848
P(Us > u|Uy > u,Us > u, Uy < u) | 12 0.8088 | 0.8023 | 0.7950 | 0.8045
P(Us > u|Uy > u, Uy > u,Us <u) | 13 0.6888 | 0.6901 | 0.6978 | 0.7312
P(Us > u|Us > u, Uy >u,U; <u) | 14 0.5251 | 0.5265 | 0.5391 | 0.5474
P(Uy > u|U; > u,Us >u, Uy <u) | 15 0.9491 | 0.9465 | 0.9465 | 0.9741
Sum 16 3.7329| 3.6847| 3.6464 | 3.6978
PUs > u|Us > u, Uy <u,Uy <u) | 17 0.4886 | 0.4362 | 0.3828 | 0.3545
P(Us > u|Uy > u,Us <u,Uy <u) | 18 0.1451 | 0.1239 | 0.1019 | 0.0925
P(Us > u|Uy > u, Uy <u,Us <u) | 19 0.0915 | 0.0749 | 0.0555 | 0.0467
P(Us > u|Us > u, Uy > u, Uy <u) | 20 0.5245 | 0.4846 | 0.4365 | 0.4354
P(Us > u|Us > u,Us > u, Uy <u) |21 0.4753 | 0.4476 | 0.4323 | 0.3902
P(Us > u|Uy > u,Us > u,Us < u) | 22 0.1354 | 0.1267 | 0.1225 | 0.0709
P(Us > u|Us > u, Uy > u, Uy >u) | 23 0.5687 | 0.5351 | 0.5166 | 0.5129
Sum 24 2.4292| 2.2291 | 2.0482| 1.9032
P(Uy > u|Us > u,Us < u, Uy <u) | 25 0.3449 | 0.2874 | 0.2183 | 0.2147
P(Uy > u|Us > u, Uy < u, Uy < u) | 26 0.1354 | 0.1072 | 0.0776 | 0.0630
PUy > u|Uy > u, Uy <u,Us <u) |27 0.1107 | 0.0874 | 0.0625 | 0.0547
P(Uy > u|Us > u,Us > u, Uy <u) | 28 0.3329 | 0.2970 | 0.2554 | 0.2416
PUy > u|Us > u, Uy > u,Us < u) |29 0.2974 | 0.2589 | 0.2132 | 0.2243
P(Uy > u|Us > u, Uy >u,Us <u) | 30 0.1030 | 0.0895 | 0.0758 | 0.0415
P(Uy > u|Us > u,Us > u,U; > u) | 31 0.3360 | 0.2996 | 0.2722 | 0.2831
Sum 32 1.6604| 1.4270| 1.1750| 1.1228
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4.2. Comparison of bivariate tail dependence coefficients with mul-
tivariate tail dependence coefficients. Secondly, we have calculated,
using formula (2.1), matrix of bivariate tail dependence coefficients:

1 0.6042 0.3910 0.2522
0.6042 1 0.5195 0.3393
0.3910 0.5195 1 0.2522
0.2522 0.3393 0.2522 1

If we compare bivariate tail dependence coefficient between the first and
the second marginal 0.6042 with coefficients in Table 1 on lines from 1 and 7,
then it is possible to see that it is larger than the first one and smaller than
the last one. Similar situation occurs when we compare coefficient 0.3910
between the first and the third variable with coefficients on lines 9 and 15.
More detailed study shows that all other correlation coefficients are playing
essential role. For example, if we compare probabilities P(U; > u|Uy >
u,Us > u,Us < u) and P(Uy > u|Us > u,Us > u,Us < u) (rows 4 and 6 in
Table 1), then we can see that correlations between marginals 1 and 2 and 1
and 3 in row 4 are 0.8 and 0.5, respectively, while between marginals 1 and
3 and 1 and 4 in row 6 correlations are 0.5 and 0.2, respectively.

4.3. Tail dependence in the case of equal correlations. We have in-
vestigated how large is total tail dependence coefficient in different situations.
Finally, we have simulated four-dimensional ¢-copula with equal correlations
and one 5-dimensional copula. Results are presented in Table 2.

TABLE 2. Comparison of tail dependence coeflicients for cop-
ulas with different equal correlations and different number of
coordinates.

100000 | 50000 | 10000 | 5000 1000 100

Percentile 0.9 0.95 0.99 0.995 0.999 0.9999
n=4,7r=085v=2 |3.4359 |3.3837 | 3.3337 | 3.2852 | 3.2972 | 3.2235
n=4,r=050,vr=2 |2.7866 |2.7083 |2.6340 | 2.6177 | 2.6225 | 2.6655
n=4,r=020,vr=2 |21795 | 2.0848 | 1.9819 | 1.9826 | 1.9340 | 2.5082
n=>51r=085vr=2 |53998 | 53998 | 4.6665 | 4.5755 | 5.6500 | 3.5000

We can see from Table 2 that total upper tail dependence coefficient becomes
smaller if correlation coefficient decreases. We can also see that with the
same correlation and degrees of freedom tail dependence coeflicient is larger
for five dimensional copula compared with the four dimensional copula.
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5. Summary

From simulation study we have got some information about behaviour
of the defined tail dependence coefficient. It is very important to know in
practice how each marginal in multivariate distribution depends not only on
all other marginals but how it depends on different combinations of other
marginals. It is interesting to know, are simulated estimates of tail depen-
dence coefficients larger or smaller than calculated tail dependence coefficient
for two-dimensional copula evaluated by formula in Demarta and McNeil [7].
It depends on all other correlation coefficients. Tail dependence coefficients
for different-dimensional copulas are difficult to compare because number of
terms in final expression is growing fast. If terms are obtained in explicit
form like in Table 1 then each coefficient gives us information about the
tail behaviour of a given marginal with the other marginals. Dependence
between different insurance lines of business is mostly described by a mul-
tivariate distribution. Therefore, we are planning to apply t-copula as an
alternative method for risk assessment under Solvency II framework for in-
surance internal models in our future research.
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