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Empirical cumulant function based parameter
estimation in stable laws

Annika Krutto

Abstract. Stable distributions are a subclass of infinitely divisible dis-
tributions that form the only family of possible limiting distributions
for sums of independent identically distributed random variables. A
challenging problem is estimating their parameters because many have
densities with no explicit form and infinite moments. To address this
problem, a class of closed-form estimators, called cumulant estimators,
has been introduced. Cumulant estimators are derived from the loga-
rithm of empirical characteristic function at two arbitrary distinct pos-
itive real arguments. This paper extends cumulant estimators in two
directions: (i) it is proved that they are asymptotically normal and (ii) a
sample based rule for selecting the two arguments is proposed. Extensive
simulations show that under the provided selection rule, the closed-form
cumulant estimators generally outperform the well-known algorithmic
methods.

1. Introduction
Stable laws are a subclass of infinitely divisible distributions that form

the only family of possible limiting distributions for sums of independent
identically distributed (i.i.d.) random variables. The theory of stable laws
is amply described in [6], [37], [32], [34], [23], [26].

A general stable distribution on R is described by four parameters: a
characteristic exponent (or index of stability or tail index) α ∈ (0, 2], a
skewness parameter β ∈ [−1, 1], and the scale and location parameters,
denoted by γ > 0 and δ ∈ R, respectively.

The heavy-tailed flexible stable distributions can capture fuzzy dynamics
and large fluctuations in data that result from stochastic processes occurring

Received May 2, 2018.
2010 Mathematics Subject Classification. 60E07; 60E10; 62F10.
Key words and phrases. Asymptotic normality; argument selection; characteristic func-

tion; covariance matrix; cumulant function; general stable law; point estimation; Monte–
Carlo simulation.

http://dx.doi.org/10.12697/ACUTM.2018.22.26
311



312 ANNIKA KRUTTO

in diverse fields of business, science, and engineering (see, e.g., [34, Chapter
II]). In practice, there are several alternatives to stable distributions. How-
ever, when solving applied problems involving limit distributions of sums
with heavy tailed random variables, then general stable laws have the most
appropriate structure. Parameter estimation of stable distributions is often
complicated due to the lack of availability of an explicit form of the density
function and that not all moments exist. For α ∈ (1, 2) the second and
higher order moments are infinite while for α ∈ (0, 1] the first and higher
order moments are infinite (see, e.g., [26]). Two types of methods have been
proposed for estimating all parameters of a general (with no restrictions
on the parameter space): algorithmic methods and closed-form estimators.
The primary algorithmic methods used with general stable laws include: the
quantile based look-up method by [22]; the empirical characteristic function
based methods by [18,19] and [16]; and the (numerical) maximum likelihood
estimation methods (e.g., [24] and [25]). The primary closed-form estima-
tors in general stable laws include empirical characteristic function based
estimators by [29] and [20], and the logarithmic moments, fractional lower
order moments, and extreme value theory based estimators by [21].

Of the aforementioned methods, the maximum likelihood method has high
computational complexity; the quantile method has restrictions in tail in-
dex α and low accuracy; the logarithmic moments, fractional lower order
moments, and extreme value theory based estimators do not provide esti-
mators for the location parameter δ and their asymptotic properties are not
provided.

In this paper we study empirical characteristic function based estimators
of the parameters of stable laws in R. The approach was introduced by [29],
where he derived closed-form estimators based on the logarithm of empiri-
cal characteristic function ϕn(u), given by (10), at four arbitrary different
non-zero arguments uk, k = 1, . . . , 4 along the real line. Unfortunately, [29]
provided no guidance on how to choose these four arguments. This prob-
lem has remained unresolved ever since thus making the method not very
useful in practice. The papers [27], [1] point out that at various values of
uk, k = 1, . . . , 4 the estimates by [29] notably vary and in may cases may yield
estimates outside of the parameter space. To get around the difficulties of se-
lecting uk, k = 1, . . . , 4 , several algorithmic modifications along the real line
have been proposed. For example, [27] provided a projection method that
minimizes (by a gradient projection routine) the integrated squared error of
ϕn(u) for standardized data along the real line, where

∫
|ϕ(u) − ϕn(u)|2dt

is approximated by a 20-point Hermitian quadrature at specified points uk,
k = 1, . . . , 20. A similar approach is studied in [10]. A method due to
[18] is based on regressing ϕn(u) of standardized data onto ϕ(u) at points
uk = πk/25 for k = 1, 2, . . . ,K where K has values from K = 10 to K = 134,
depending on sample size n and parameter α. A procedure due to [16] is
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based on ordinary least squares regression of ϕn(u) of standardized data
onto ϕ(u) at points uk = k/10 for k = 1, 2, . . . , 10 (see also [14]). In [16] it
was empirically explored that using more than 10 points in [0.1, 1] does not
remarkably improve the estimates. Recently, [20] extended the [29] approach
and provided closed-form estimators, called cumulant (for clarity, the term
cumulant estimators refers to estimators obtained from the logarithm of the
empirical characteristic function, called the cumulant function (e.g., [17]),
estimators, that require only two distinct arguments, uk, k = 1, 2, along the
positive real line to determine the four parameters of a general stable law. In
order to provide some guidance on how to choose these two arguments, [20]
performed an empirical search over various pairs of positive real arguments,
but no formal solution was provided.

This paper extends the [20] work by two contributions:
(i) it is proven that cumulant estimators are asymptotically normal, and
(ii) an Argument-Selection-Rule for selecting the arguments u1, u2 is pro-

posed.
The advantage of cumulant estimators is their computational simplicity and,
to the best of our knowledge, they are the only asymptotically normal closed-
form estimators for four parameters of stable laws with no restrictions in the
parameter space.

The paper is organized as follows: In Section 2 we briefly describe the
cumulant function of stable laws. In Section 3 the empirical cumulant func-
tion based (ECuF) estimators for stable laws are presented. In Section 4 we
establish the asymptotic normality of empirical cumulant function in general
and for ECuF estimators. In Section 5 we introduce a sample based rule for
selecting the two arguments needed for cumulant estimators. In Section 6 we
report on comprehensive Monte–Carlo simulations. Concluding comments
are given in Section 7.

2. Preliminaries: the cumulant function of stable laws
All stable laws are characterized by terms of their characteristic or cumu-

lant functions (see, e.g., [23, Theorem 3.1.2]). A characteristic function of
a random variable X on R, denoted by ϕ(u), is a complex-valued function,
ϕ(u) : R→ C, defined as

ϕ(u) = E exp{iuX} = E cos(uX) + iE sin(uX), u ∈ R. (1)

A cumulant function of a random variable X on R, denoted by ψ(u), is a
complex-valued function, ψ(u) : R→ C, defined as the principal value of the
logarithm of the characteristic function,

ψ(u) ≡ ln |ϕ(u)|+ atan2(=ϕ(u),<ϕ(u)), (2)
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where atan2 denotes the the arctangent function with two arguments, that
is principal value1 of a complex number (see, e.g., [12]).

There are several ways to determine the closed canonic form of the char-
acteristic functions of stable laws (see, e.g., [6, p. 564–565], [33, p. 38–39],
[28, p. 268]). The Lévy–Khintchine form [13], also known as form (A) by
[37] has become a standard (see, e.g., [33, Theorem 14.15], [4, Theorem
2.2.3]). However, in that form the characteristic function of stable laws (as
function of parameters) is not continuous in the whole parameter space. On
real line an alternative represenation is advocated by [6, Theorem 1], [37],
[28, Corollary 4.1, p. 269], and by [26, Definition 1.7]. In that representation
stable laws on R are continuous in all parameters, and it is suggested to
use when exploring the asymptotic convergence of the parameters. In this
paper we follow [26, Definition 1.7], called a 0-parametrization. The cumu-
lant function of a stable distribution in 0-parametrization [26], denoted by
S(α, β, γ, δ; 0), is given by

ψ(u) =
{
−γα|u|α[1 + iβ(sign u) tan πα

2 (|γu|1−α − 1)] + iδu α 6= 1,
−γ|u|[1 + iβ 2

π (sign u) ln(γ|u|)] + iδu α = 1, (3)

where u ∈ R, α ∈ (0, 2] is the characteristic exponent or tail index, β ∈
[−1, 1] is the skewness parameter, γ > 0 is scale parameter and δ ∈ R
is the location parameter. The corresponding characteristic function is
ϕ(u;α, β, γ, δ) = ϕ(u) = exp{ψ(u)} with ψ(u) given by (3).

The parameters of different representations of stable laws are uniquely
related (see, e.g., [34, Section 3.6], [26, Equation (1.7)]). Moreover, the
cumulant estimators given by [20, Definition 2] are easily adaptable in all
representations of stable laws.

Tail index α and skewness parameter β can be introduced through the
generalized central limit theorem on R (see, e.g., [34, p. 62–63] ). For i.i.d.
random variables X1, . . . , Xn with the distribution function F (x) satisfying
the conditions 1− F (x) ∼ ax−k as x → ∞, and F (x) ∼ c|x|−k as x → −∞
with a, c ≥ 0, a + c > 0, and k > 0, there exist sequences an ∈ R and
bn > 0 such that the centred and normalized sum (X1 + · · ·+Xn − an)/bn
converges in distribution to a stable random variable with α = k for k < 2,
α = 2 for k ≥ 2, and β = (a− c)/(a+ c) as n → ∞. The tail index α
characterises the rate of the decay of the tails with smaller values of α in
the case of heavier tails and α = 2 corresponding to the light-tailed normal
distribution. The skewness parameter β illustrates the degree of asymmetry
with β = 0 (i.e., a = c) denoting symmetric stable distributions and β = ±1
(i.e., c = 0 or a = 0) denoting maximally asymmetric distributions that are
often called totally skewed stable laws.

1In a variety of computer languages the principal value of complex number, the arct-
angent function with two arguments, is provided under the function name of atan2 (e.g.,
R [30], that is, Arg ϕ(u) = atan2(=ϕ(u), <ϕ(u)).
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For simulations of stable laws (see, e.g., [3]) a R-package stable (part of
the STABLE® software by [31]) is used.

3. Cumulant estimators for stable laws on R
Let < and = denote the real and imaginary operators, respectively, i.e.,

given a complex number z = x + iy then <z = x, =z = y, <2z = x2,
and =2z = y2. From (3) the real part of the cumulant function of stable
distribution is

<ψ(u) = −γα|u|α, (4)

and the imaginary part of the cumulant function is

=ψ(u) =
{
u[βγ tan πα

2 (|γu|α−1 − 1) + δ] α 6= 1
u[−βγ 2

π ln(γ|u|) + δ] α = 1.
We draw your attention to the fact that, unlike the case of the characteristic
function, the parameters β and δ have no influence on the real part of the cu-
mulant function of stable laws. This forms the basis of [20, Theorem 1] which
states that for two fixed real values u1 > 0, u2 > 0, u1 6= u2 the parameters α,
γ, β, δ of stable laws (in [26] 1-parametrization (i.e., the Lévy–Khintchine
form) can be expressed via real and imaginary part of the corresponding
cumulant function. The method [20, Theorem 1] is easily adaptable for
any representation of stable laws. We present a slightly modified version of
[20, Theorem 1] for the stable laws in [26] 0-parametrization.

Theorem 1. Let X ∼ S(α, β, γ, δ; 0) with cumulant function be given by
(3), and let, for every fixed real u1 > 0, u2 > 0, u1 6= u2,

b = b(u1, u2;X) =


b1
b2
b3
b4

 =


exp{<ψ(u1)} cos=ψ(u1)
exp{<ψ(u2)} cos=ψ(u2)
exp{<ψ(u1)} sin=ψ(u1)
exp{<ψ(u2)} sin=ψ(u2)

 (5)

be a 4-dimensional real valued vector. The parameters of X are expressed as
α = g1(b), γ = exp{g2(b)}, β = g3(b), δ = g4(b), where

g1(b) =
ln
(
− ln

√
b2

1 + b2
3
)
− ln

(
− ln

√
b2

2 + b2
4
)

ln u1 − ln u2
, (6)

g2(b) =
ln u1 ln

(
− ln

√
b2

2 + b2
4
)
− ln u2 ln

(
− ln

√
b2

1 + b2
3
)

ln
(
− ln

√
b2

1 + b2
3
)
− ln

(
− ln

√
b2

2 + b2
4
) , (7)

if α 6= 1, then

g3(b) = u2 atan2 (b3, b1)− u1 atan2 (b4, b2)
exp{g1(b)g2(b)}

(
u2u

g1(b)
1 − u1u

g1(b)
2

)
tan (πg1(b)/2)

(8a)
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while if α = 1, then

g3(b) = π

2
u2 atan2 (b3, b1)− u1 atan2 (b4, b2)

exp{g2(b)}u1u2(ln u2 − ln u1) , (8b)

if α 6= 1, then

g4(b) = u
g1(b)
2 atan2 (b3, b1) (exp{g2(b)}u1)1−g1(b) − 1)

u2u
g1(b)
1 − u1u

g1(b)
2

− u
g1(b)
1 atan2 (b4, b2) (exp{g2(b)}u2)1−g1(b) − 1)

u2u
g1(b)
1 − u1u

g1(b)
2

(9a)

while if α = 1, then

g4(b) = u2 atan2 (b3, b1) g2(b) ln u2 − u1 atan2 (b4, b2) g2(b) ln u1
u1u2(ln u2 − ln u1) . (9b)

Proof. From elementary complex analysis

b = (<ϕ(u1),<ϕ(u2),=ϕ(u1),=ϕ(u2))′,

where ϕ(u) = exp{ψ(u)}. Then (6) to (9b) easily follow from in [20, The-
orem 1] by replacing the cumulant function of 1-parametrization [26] with
the cumulant function of 0-parametrization [26]. �

The key to cumulant estimators [20, Definition 2] is the substitution prin-
ciple (see, e.g., [15]): the values of theoretical cumulant function, ψ(u), are
replaced by those of the empirical cumulant function. The empirical cu-
mulant function, denoted by ψn, is defined as the principal value of the
logarithm of the empiricial characteristic function. Empiricial characteristic
function, denoted by ϕn(u), is a complex valued function (e.g., [35]),

ϕn(u) = ϕn(u|Y1, . . . , Yn) = 1
n

n∑
j=1

exp{iuYj}

= 1
n

n∑
j=1

cos(uYj) + i
1
n

n∑
j=1

sin(uYj), (10)

where Y1, . . . , Yn form a real valued random sample of i.i.d. variables, u ∈ R,
i2 = −1. Hereby, the empirical cumulant function is

ψn(u) = lnϕn(u), (11)

where ln is the principal value of the logarithm.
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Definition 1. Let Y1, . . . , Yn form a real valued random sample of i.i.d.
variables, and let, for every fixed real u1 > 0, u2 > 0, u1 6= u2,

bn = bn(u1, u2;Y1, . . . , Yn) =


exp{<ψn(u1)} cos=ψn(u1)
exp{<ψn(u2)} cos=ψn(u2)
exp{<ψn(u1)} sin=ψn(u1)
exp{<ψn(u2)} sin=ψn(u2)

 (12)

be a 4-dimensional real valued vector where ψn(u) is the empirical cumulant
function given by (11). Empirical cumulant function (ECuF) based estima-
tors of the parameters of S(α, β, γ, δ; 0), denoted by αn, βn, γn, δn, are given
by

αn = αn(u1, u2;Y1, . . . , Yn) = g1(bn),
γn = γn(u1, u2;Y1, . . . , Yn) = exp{g2(bn)},
βn = βn(u1, u2;Y1, . . . , Yn) = g3(bn),
δn = δn(u1, u2;Y1, . . . , Yn) = g4(bn),

where the gj ’s are given in Theorem 1 by (6) through (9b).

In general, ECuF estimators may give non-admissible values, that is,
one or more estimates may turn out of the parameter space: α ∈ (0, 2],
β ∈ [−1, 1], γ > 0, δ ∈ R. In simulations in Section (6) the values of
estimators are truncated: replace αn with min(max(αn, 0.01), 2), βn with
βn = min(max(βn,−1), 1) and γ with γn = max(0, γn). However, asymp-
totic normality is provided for the non-truncated estimators.

From elementary complex analysis
bn = (<ϕn(u1),<ϕn(u2),=ϕn(u1),=ϕn(u2))′,

with ϕn(u) = exp{ψn(u)} given by (10). Then Definition 1 follows from
Theorem 1 and [20, Definition 2] by replacing the cumulant function in [26]
1-parametrization with its form in the [26] 0-parametrization using gj ’s given
by (6) through (9b).

4. Asymptotic normality of cumulant estimators
Before deriving the asymptotic normality of ECuF estimators the asymp-

totic normality of the real and imaginary parts of the empirical cumulant
function for an arbitrary distribution is established.

Theorem 2. Let X be a real valued random variable (of some distri-
bution) with the characteristic function ϕ(u), given by (1), and cumulant
function ψ = ψ(u), given by (2). Let ψn be the empirical cumulant function
given by (11). For every fixed u ∈ R,

(i) <ψn(u) is a strongly consistent estimator for <ψ(u) and =ψn(u) is a
strongly consistent estimator for =ψ(u);
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(ii) <ψn(u) is asymptotically normal for <ψ(u) and =ψn(u) is asymptoti-
cally normal for <ψ(u),

√
n
(
<ψn(u)−<ψ(u)

) D→ N1
(
0, κ<(u)

)
, as n→∞,

√
n
(
=ψn(u)−=ψ(u)

) D→ N1
(
0, κ=(u)

)
, as n→∞,

with

κ<(u) = 1
2<2ψ(u) (1 + exp{<ψ(2u)} − 2 exp{2<ψ(u)}) , (13)

κ=(u) = 1
2<2ψ(u) (1− exp{<ψ(2u)}) . (14)

Proof. For a real vector x = (x1, x2)′ 6= 0 define h1(x) = ln
√
x2

1 + x2
2 and

h2(x) = atan2(x2, x1). Let
a = (<ϕ(u),=ϕ(u))′

with ϕ(u) given by (1), and
an = (<ϕn(u),=ϕn(u))′

with ϕn(u) given by (10). The real and imaginary parts of cumulant function
in (2) are the functions of the elements of a,

h1(a) = <ψ(u), h2(a) = =ψ(u),
and the real and imaginary parts of the empirical cumulant function in (11)
are the functions of the elements of an,

h1(an) = <ψn(u), h2(an) = =ψn(u).
Clearly, h1 is a continuous function. Function h2(a) has a discontinuity at
<ϕ(u) = 0 and =ϕ(u) = 0, i.e., at |ϕ(u)| = 0. However, the term |ϕ(u)|
tends to 0 as |u| → ∞ (see, e.g. [35]). However, in the theorem assumption it
is said that u ∈ R is fixed, |u| <∞, and h2(a) is continuous on any bounded
interval.

(i) For every fixed u ∈ R,

an
a.s.→ a, as n→∞.

By the continuous mapping theorem (e.g., [36, Theorem 2.3]),

hj(an) a.s.→ hj(a), as n→∞,
and the estimators hj(an) are consistent for hj(a), j = 1, 2.

(ii) The quantities <ϕn(uj), =ϕn(uj), j = 1, 2 are sample means of i.i.d.
random variables with Ean = a and with finite variance. Therefore
(see, e.g., [8, Theorem 3.1]), for every fixed u ∈ R,

√
n(an − a) D→ N2(0,Σ(u)), as n→∞,
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where Σ(u) ≡ Σ = (σkl) is a 2×2 covariance matrix with the structure
following from (16),

2σ11 = 1 + <ϕ(2u)− 2<2ϕ(u),
2σ22 = 1−<ϕ(2u)− 2=2ϕ(u),

2σ12 = 2σ21 = =ϕ(2u)− 2<ϕ(u)=ϕ(u),

where ϕ(u) = expψ(u). From [17, Theorem 3.1.3] it immediately fol-
lows, that for every fixed u ∈ R,

√
n
(
h1(an)− h1(a)

) D→ N1
(
0,ν ′Σν

)
, as n→∞,

√
n
(
h2(an)− h2(a)

) D→ N1
(
0,η′Ση

)
, as n→∞,

with ν and η as matrix derivatives ([17, Definition 1.4.1]),

ν = dh1(x)
dx

∣∣∣∣
x=a

and η = dh2(x)
dx

∣∣∣∣
x=a

.

It is easy to see that

dh1(x)
dx =

d ln
√
x2

1 + x2
2

dx =
(

x1
x2

1 + x2
2
,

x2
x2

1 + x2
2

)
,′

and

dh2(x)
dx = d atan2(x2, x1)

dx =
(
− x2
x2

1 + x2
2
,

x1
x2

1 + x2
2

)′
.

Hereby,

ν = dh1(x)
dx

∣∣∣∣
x=a

=
( <ϕ(u)
|ϕ(u)|2 ,

=ϕ(u)
|ϕ(u)|2

)′
6= 0,

and

η = dh2(x)
dx

∣∣∣∣
x=a

=
(
− =ϕ(u)
|ϕ(u)|2 ,

<ϕ(u)
|ϕ(u)|2

)′
6= 0.
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Obtaining ν ′Σν is straightforward,

ν ′Σν = (ν1)2σ11 + ν1ν2(σ12 + σ21) + (ν2)2σ22

= 1
2|ϕ(u)|4

[
<2ϕ(u)

(
1 + <ϕ(2u)− 2<2ϕ(u)

)
+ =2ϕ(u)

(
1−<ϕ(2u)− 2=2ϕ(u)

)
+ 2<ϕ(u)=ϕ(u)

(
=ϕ(2u)− 2<ϕ(u)=ϕ(u)

)]
= 1

2|ϕ(u)|4
[
|ϕ(u)|2 − 2|ϕ(u)|4

+ <ϕ(2u)
(
<2ϕ(u)−=2ϕ(u)

)
+ 2=ϕ(2u)<ϕ(u)=ϕ(u)︸ ︷︷ ︸

(∗)

]
,

with <ϕ(u) + =ϕ(u) = |ϕ(u)|2 and

(∗) = <ϕ(2u)2
(
<2ϕ(u)−=2ϕ(u)

)
+ 2=ϕ(2u)<ϕ(u)=ϕ(u)

= exp{<ψ(2u)} exp{2<ψ(u)}
[
cos(2u)

(
cos2(u)

− sin2(u)
)

+ 2 sin(u) cos(u) sin(2u)
]

= exp{<ψ(2u)} exp{2<ψ(u)}. (15)

Since |ϕ(u)| = exp{<ψ(u)}, we have

ν ′Σν = 1
2 exp{2<ψ(u)} (1− 2 exp{2<ψ(u)}+ exp{<ψ(2u)}) ,

which is the same as (13) and κ< = ν ′Σν. In a similar manner,

η′Ση = (η1)2σ11 + η1η2(σ12 + σ21) + (η2)2σ22

= 1
2|ϕ(u)|4

[
=2ϕ(u)

(
1 + <ϕ(2u)− 2<2ϕ(u)

)
+ <2ϕ(u)

(
1−<ϕ(2u)− 2=2ϕ(u)

)
− 2<ϕ(u)=ϕ(u)

(
=ϕ(2u)− 2<ϕ(u)=ϕ(u)

)]
= 1

2|ϕ(u)|4
[
|ϕ(u)|2 − (∗)

]
,

where (*) is given by (15). Replacing |ϕ(u)| by exp{<ψ(u)} yields

ν ′Σν = 1
2 exp{2<ψ(u)} (1− exp{<ψ(2u)}) ,

which is the same as (14) and κ= = η′Ση.
�
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As <ψ(u) = ln |ϕ(u)| → 0 for |u| → 0 (see, e.g., [35]) then the asymptotic
variances given by (13) and (14) tend to 0 as |u| → 0. Hereby, the smaller
the argument u, and the greater the sample size n, the better the real and
imaginary parts of empirical cumulant function estimate those of the cumu-
lant function of X. However, as ψn(0) = ψ(0) = 0 then at u = 0 cumulant
function holds no info about the various parameters of the distribution. In
the framework of the least squares estimation the asymptotic covariance of
empirical cumulant function for a finite interval is discussed in [14]. From
Theorem 2 the asymptotic normality of real and imaginary part of empirical
cumulant function of stable distributions immediately follows.

Proposition 1. Let X ∼ S(α, β, γ, δ; 0) be a stable random variable with
cumulant function given by (3) and ψn be as given by (11). Then, for every
fixed u ∈ R,

√
n
(
<ψn(u)−<ψ(u)

) D→ N1
(
0, κ<(u)

)
, as n→∞,

√
n
(
=ψn(u)−=ψ(u)

) D→ N1
(
0, κ=(u)

)
, as n→∞,

where

κ<(u) = exp{2(γu)α} (1 + exp{−(2γu)α)} − 2 exp{−2(γu)α}) /2,

and

κ=(u) = exp{2(γu)α} (1− exp{−(2γu)α)}) /2.

The asymptotic normality of ECuF estimators, given by Definition 1, is
established in a similar manner as Theorem 2. Note that the parameter space
of stable laws has a boundary at α = 2 and β = ±1 and the asymptotic
normality does not make sense there. To obtain asymptotic distribution
of estimators we assume that the true parameter is in the interior of the
parameter space. The distribution on the boundary is not considered.

Theorem 3. Let b be given by (5), bn by (12), and functions gj(b),
j = 1, 2, 3, 4 in Theorem 1. The ECuF estimators given by Definition 1 are
consistent and g1(bn) is asymptotically normal for g1(b) ∈ (0, 2), g2(bn) is
asymptotically normal for g2(b), g3(bn) is asymptotically normal for g3(b) ∈
(−1, 1), and g4(bn) is asymptotically normal for g4(b),

√
n (gj(bn)− gj(b))

d→ N1(0, ξ′jΛξj), as n→∞,

where

Λ = (λij) (16)
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is the 4× 4 covariance matrix with components

2λ11 = 1 + <ϕ(2u1)− 2<2ϕ(u1),
2λ22 = 1 + <ϕ(2u2)− 2<2ϕ(u2),
2λ33 = 1−<ϕ(2u1)− 2=2ϕ(u1),
2λ44 = 1−<ϕ(2u2)− 2=2ϕ(u2),
2λ12 = 2λ21 = <ϕ(u1 − u2) + <ϕ(u1 + u2)− 2<ϕ(u1)<ϕ(u2),
2λ13 = 2λ31 = =ϕ(2u1)− 2<ϕ(u1)=ϕ(u1),
2λ14 = 2λ41 = =ϕ(u1 + u2)−=ϕ(u1 − u2)− 2<ϕ(u1)=ϕ(u2),
2λ23 = 2λ32 = =ϕ(u1 + u2)−=ϕ(u2 − u1)− 2<ϕ(u2)=ϕ(u1),
2λ24 = 2λ42 = =ϕ(2u2)− 2<ϕ(u2)=ϕ(u2),
2λ34 = 2λ43 = <ϕ(u1 − u2)−<ϕ(u1 + u2)− 2=ϕ(u1)=ϕ(u2);

ξ1 has components

ξ1i = bi
|ϕ(u1)|2<φ(u1) ln(u1/u2) for i = 1, 3,

ξ1i = −bi
|ϕ(u2)|2<φ(u2) ln(u1/u2) for i = 2, 4,

ξ2 has components

ξ2i = 1
|ϕ(u1)|2<φ(u1)

−bi(ln u2 + g2(b))
ln(<ψ(u1)/<ψ(u2)) for i = 1, 3,

ξ2i = 1
|ϕ(u2)|2<φ(u2)

bi(ln u1 + g2(b))
ln(<ψ(u1)/<ψ(u2)) for i = 2, 4;

if α 6= 1, then ξ3 has components

ξ31 = g3(b)
|ϕ(u1)|2<φ(u1)

(
−b3u2 ln |ϕ(u1)|

C1
− b1C2

ln(u1/u2) −
b1u2u

g1(b)
1

C3

)
,

ξ32 = g3(b)
|ϕ(u2)|2<φ(u2)

(
−b4u1 ln |ϕ(u2)|

C1
+ b2C2

ln(u1/u2) + b2u1u
g1(b)
2

C3

)
,

ξ33 = g3(b)
|ϕ(u1)|2<φ(u1)

(
b1u2 ln |ϕ(u1)|

C1
− b3C2

ln(u1/u2) −
b3u2u

g1(b)
1

C3

)
,

ξ34 = g3(b)
|ϕ(u2)|2<φ(u2)

(
b2u1 ln |ϕ(u2)|

C1
+ b4C2

ln(u1/u2) + b4u1u
g1(b)
2

C3

)
,
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and ξ4 has components

ξ41 = u
g1(b)
2

C2
3 |ϕ(u1)|2

(
b1u

g1(b)
1 C1 − b3

)
+ C1(ξ31/g3(b) + ξ21 + ξ11C2)

C3 exp{g2(b)(g1(b)− 1)} ,

ξ42 = u
g1(b)
1

C2
3 |ϕ(u2)|2

(
−b2u

g1(b)
2 C1 + b4

)
+ C1(ξ32/g3(b) + ξ22 + ξ12C2)

C3 exp{g2(b)(g1(b)− 1)} ,

ξ43 = u
g1(b)
2

C2
3 |ϕ(u1)|2

(
b3u

g1(b)
1 C1 + b1

)
+ C1(ξ33/g3(b) + ξ23 + ξ13C2)

C3 exp{g2(b)(g1(b)− 1)} ,

ξ44 = u
g1(b)
1

C2
3 |ϕ(u2)|2

(
−b4u

g1(b)
2 C1 − b2

)
+ C1(ξ34/g3(b) + ξ24 + ξ14C2)

C3 exp{g2(b)(g1(b)− 1)} ,

where C1 = u2=ψ(u1)−u1=ψ(u2), C2 = π/2[cot(πg1(b)/2)+tan(πg1(b)/2)],
C3 = u2 exp{g1(b) ln u1} − u1 exp{g1(b) ln u2}. If α = 1, then ξ3 has com-
ponents

ξ31 = π

2 exp{g2(b)}

(
ξ21 −

b3
u1|ϕ(u1)|2 ln(u2/u1)

)
,

ξ32 = π

2 exp{g2(b)}

(
ξ22 + b4

u2|ϕ(u2)|2 ln(u2/u1)

)
,

ξ33 = π

2 exp{g2(b)}

(
ξ23 + b1

u1|ϕ(u1)|2 ln(u2/u1)

)
,

ξ34 = π

2 exp{g2(b)}

(
ξ24 −

b2
u2|ϕ(u2)|2 ln(u2/u1)

)
,

and ξ4 has components

ξ41 = −b3 ln u2
u1 ln(u2/u1) + 2

π
(ξ31g2(b) exp{g2(b)}+ ξ31g4(b)(g2(b) + 1)),

ξ42 = b4 ln u1
u2 ln(u2/u1) + 2

π
(ξ32g2(b) exp{g2(b)}+ ξ32g4(b)(g2(b) + 1)),

ξ43 = b1 ln u2
u1 ln(u2/u1) + 2

π
(ξ33g2(b) exp{g2(b)}+ ξ33g4(b)(g2(b) + 1)),

ξ44 = −b2 ln u1
u2 ln(u2/u1) + 2

π
(ξ34g2(b) exp{g2(b)}+ ξ34g4(b)(g2(b) + 1)).

Proof. From elementary complex analysis,
b = (<ϕ(u1),<ϕ(u2),=ϕ(u1),=ϕ(u2))′,

ϕ(u) = exp{ψ(u)}, and

bn = (<ϕn(u1),<ϕn(u2),=ϕn(u1),=ϕn(u2))′

with ϕn(u) = exp{ψn(u)} given by (10). It is easy to see, that for every
u ∈ R the empirical characteristic function is an unbiased estimator of the
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corresponding characteristic function

Eϕn(u) = 1
n

n∑
j=1

E[eiuYj ] = ϕY1(u) = ϕ(u),

where Y1, . . . , Yn form a real valued random sample of i.i.d. variables with
ϕY1(u) = ϕ(u). Thereby, Ebn = b. At every fixed point u ∈ R, ϕn(u)→ϕ(u)
both almost surely and in mean square as n → ∞ (e.g., [35]). Then, for
every fixed pair of positive real arguments (u1, u2) with u1 6= u2,

bn
a.s.→ b, as n→∞.

By continuous mapping theorem (e.g., [36, Theorem 2.3]),
gj(bn) a.s.→ gj(b), as n→∞,

and the estimators gj(bn) are consistent for gj(b), j = 1, . . . , 4. The quan-
tities <ϕn(u1), <ϕn(u2), =ϕn(u1), =ϕn(u2) in bn are sample means of i.i.d.
random variables with Ebn = b and finite variance. Applying the multivari-
ate central limit theorem to bn for fixed u1, u2 it yields

√
n(bn − b)

d→ N4(0,Λ), as n→∞,
where Λ is the 4×4 asymptotic covariance matrix with components as given
by (16) (that easily follow from the product-to-sum identities of cosine and
sine functions, see, also, [35, p. 162]). For more on the convergence we
refer, e.g., to [8, Theorem 3.1] and [7, p. 22]. Applying the Theorem 3.1.3
in [17] we have for j = 1, 2, 3, 4

√
n (gj(bn)− gj(b))

d→ N1(0, ξ′jΛξj), as n→∞
where

ξj = d
dxgj(x)

∣∣∣∣∣
x=b

6= 0

are the matrix derivatives [17, Definition 1.4.1]. The components of ξj ,
j = 1, 2, 3, 4 easily follow from the matrix derivatives of gj(b), j = 1, 2, 3, 4,
given by (6)–(9b), and elementary complex analysis. �

5. Selection of the arguments u1 and u2

First we illustrate the ECuF estimates for the tail index α at various choice
of (u1, u2) ∈ (0, 1] × (0, 1]. A single replicate from S(α = 1.5, β = 0.5; 0)
and a single replicate from S(α = 0.5, β = 0.5; 0) are simulated with the
sample size n = 10000. The ECuF estimator αn(u1, u2) = g1(bn) is given
by Definition 1. The ECuF estimates α̂n(u1, u2) = g1(b̂n) are obtained by R
[30] at (u1, u2) ∈ (0, 1]× (0, 1] with step size 0.01 (i.e., at 100× 100 pairs of
arguments). Results are presented in Figure 1. Note that ECuF estimators
are not defined for u1 = u2 and in all illustrative figures those pairs (i.e., the
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diagonal) have no values. Due to the definition of cumulant function of stable
laws ECuF estimates behave symmetrically with respect to the diagonal of
(0, 1]×(0, 1]. In Figure 1 smaller values relate to underestimating and bigger
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Figure 1. ECuF estimates at (u1, u2) ∈ (0, 1] × (0, 1] for
α = 1.5 (on left) and α = 0.5 (on right).

values to overestimating, comparing to the actual values of α = 1.5 (on right)
and α = 0.5 (on left). For α = 0.5 the ECuF estimates turn out negative,
that is, outside of the parameter space of α ∈ (0, 2]. Based on Figures 1 the
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Figure 2. The asymptotic standard deviation of the ECuF
estimates at (u1, u2) ∈ (0, 1]× (0, 1] for α = 1.5 (on left) and
α = 0.5 (on right).

ECuF estimates at (u1, u2) ∈ (0, 1]× (0, 1] vary a lot form the actual values
α = 1.5 and α = 0.5 even for a quite large sample such as n = 10000. ECuF
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estimates for α = 1.5 give relatively smaller range of values comparing to
the ECuF estimates for α = 0.5.

In addition we obtain for each α̂n = α̂n(u1, u2) the corresponding as-
ymptotic standard deviation. Note that the asymptotic variance of αn is
given by Theorem 3, υ1(u1, u2) = ξ′1Λξ1, where the matrix calculations are
made by R [30]. The results are presented in Figure 2. The asymptotic
standard deviations of ECuF estimates for α = 1.5 give remarkably smaller
values comparing to the asymptotic standard deviation of ECuF estimates
for α = 0.5. For both α = 1.5 and α = 0.5 bigger values are around the
diagonal of (0, 1]× (0, 1] while for α = 1.5 the biggest values occur when at
least one of the arguments is close to 0, while for α = 0.5 the highest values
occur when both arguments are close to 1.

From Figures 1 and 2 it is not clear whether the pairs of (u1, u2) ∈ (0, 1]×
(0, 1] yielding small asymptotic variance also yield better ECuF estimates
(comparing to other pairs). For a better comparison the absolute errors of α̂n
are obtained and a more robust overview is provided by grouping the values
of absolute errors of α̂n and asymptotic standard deviation of α̂n within their
quartiles. That is, within the quartiles of the 100×100 results obtained from
the single replicate with n = 10000. Figure 3 corresponds to α = 1.5 and
Figure 4 to α = 0.5 with absolute errors of the ECuF estimates on left and
standard deviations of the ECuF estimates on right. It is expected that
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Figure 3. Absolute errors and asymptotic standard devia-
tion (grouped between their quartiles) of ECuF estimates at
(u1, u2) ∈ (0, 1]× (0, 1] for α = 1.5.

if the smaller asymptotic variance would indicate the more accurate ECuF
estimates then the patterns of colors on the left and right half of Figures 3 and
4 would look similar. However, it can be noticed, that the pairs of arguments
u1 and u2 at which the asymptotic standard deviation of ECuF estimates
has smallest values (lightest yellow) do not guarantee the smallest absolute
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errors (lightest yellow) of the estimates for α. In fact, many of the pairs
of (u1, u2) that minimize the asymptotic standard deviation lead to quite
poor estimates of α while other such pairs lead to rather good estimates of
α. That leads to conclusion, that selecting u1, u2 for ECuF estimates based
on minimizing the asymptotic variance of αn may not be a useful approach.
Note that in simulations of samples with smaller size that disparateness is
even more noticeable. In conclusion, based on Figures 3 and 4, and more
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Figure 4. Absolute errors and asymptotic standard devia-
tion (grouped between their quartiles) of ECuF estimates at
(u1, u2) ∈ (0, 1]× (0, 1] for α = 0.5

simulations not presented here, there is no evidence of existing a consistently
good area for selecting the arguments (u1, u2) for ECuF estimators and the
selection of u1 > 0, u2 > 0, u1 6= u2 should not be based on minimizing the
asymptotic variance of one or more of g1(bn), g2(bn), g3(bn), g4(bn).

For applying [29] estimators in symmetric stable laws centered around
zero with γ = 1 [5] used values u1 = 0.5 and u2 = 1.5 while [11, p. 157]
suggested selecting u1 from the 0.3-quantile and u2 from the 0.7-quantile of
the values of the empirical characteristic function ϕn(u).

Perhaps the most important aim of our paper is to propose suggestions
on the selection of the of arguments u1 > 0, u2 > 0, u1 6= u2 for estimating
the parameters of general (including symmetric as well as skewed) stable
laws, that is, at which the cumulant estimators g1(bn), g2(bn), g3(bn), and
g4(bn) would accurately estimate α = g1(b), ln γ = g2(b), β = g3(b), and
δ = g4(b). We propose the selection of u1 > 0, u2 > 0, u1 6= u2 based on
the real part of empirical cumulant function, <ψn(u). The idea follows from
the fact, that ECuF estimators are found step-by-step: the estimators for α
and γ are evaluated through <ψn(u) at u1 > 0, u2 > 0, u1 6= u2 and then
the estimators for β and δ are evaluated through <ψn(u) and =ψn(u) at the
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same values u1, u2. It is easy to see that for u ≥ 0 the absolute estimation
error of the real part of ψn(u) is

|<ψn(u)−<ψ(u)| = |1/2 ln(=2ϕn(u) + <2ϕn(u)) + γαuα|, (17)
where <ψ(u) is given by (4). The estimation error in (17) decreases when
u→ 0 (note that, the point u = 0 is uninformative because ψn(0) = ψ(0) =
0 and the cumulant function holds no information about its parameters).
However, as it is discussed in [27], the scale parameter γ >> 1 may dominate
the estimation error in (17).

To reduce the influence of γ in (17) it is suggested to pre-standardize the
data (e.g., [27], [18, 19], and [16]) or reduce the scale by dividing the data
by its median [20]. In this paper we follow a different approach. From (4)
it follows that <ψ(1/γ) = −1. By the substitution principle (e.g., [15]), it is
reasonable to believe that for large sample a similar empirical relation holds
for empirical characteristic function (even when γ is unknown),

<ψn(1/γ) ≈ −1. (18)
The empirical cumulant function can oscillate and there may be multiple
solutions for 18. This empirical relationship forms the basis of our selection
of u1, u2 for the [20] cumulant estimators. More exactly, we assume that the
selection of u1 and u2 such that <ψn(uk) ∈ (0,−1], k = 1, 2 would concur
the domination of the scale parameter γ in (17). Let p1 6= p2 ∈ (0,−1].
Suggestions for the values of p1 and p2 are as follows: by the definition of
αn in Definition 1, and simulation results in Figure 1, it is suggested that
u1, u2 are not too close, that is, p1 and p2 should not be too close. Based
on (17), and Figure 5, it is suggested that u1 →, u2 → 0, or equivalently
p1 → 0, p2 → 0. However, based on Figures 3 and 4, and on the definition
of αn, it is suggested that u1, u2 are not too close to zero. As a conclusion,
a following Argument-Selection-Rule is proposed.

Argument-Selection-Rule 1. For S(α, β, γ, δ; 0) the cumulant estima-
tors, given by Definition 1, are obtained at u1 > 0 and u2 > 0 numerically
(approximately) satisfying

<ψ̂n(u1) = −0.1, (19)

<ψ̂n(u2) = −0.5, (20)

where <ψ̂n(u) is the realization of <ψn(u), given by (11).

In other words, Argument-Selection-Rule 1 suggests to select u1 as the
approximate numerical solutions of (19) with respect to u1, and u1 as the
approximate numerical solutions of (20) with respect to u2. The empirical
cumulant function can oscillate and there may be multiple solutions for (19)
and (20). The selection of u1 > 0 and u2 > 0 can be solved by a look-up
procedure with the mid-range rule, or some simple one-dimensional search
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function (see, e.g., [2])). One-dimensional search function are available in
a variety of computer programming languages, e.g., functions uniroot and
optimize in R-package stats4 [30]. We illustrate the choice of u1 > 0
and u2 > 0 for fixed γ = 1 and α = 0.2, 1.0, 1.8. Single replicates from
S(α, β = 0.5; 0), where α = 0.2, 1.0, 1.8, with n = 1000 are simulated. In
Figure 5 the graphs of corresponding <ψ(u) (dashed blue lines) and graphs of
<ψ̂n(u) of the simulated samples (solid black lines) at u > 0 are presented.
In Figure 5, the solid red lines show the levels where <ψ(u) = −0.1 and

u

0.0 0.5 1.0 1.5
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−1.0

−0.5

−0.1
0.0

Re(ψ̂n(u))
Re(ψ(u))

α = 0.2

α = 1

α = 1.8

Figure 5. Argument-Selection-Rule 1 applied to a sample
from S(α, β = 0.5; ·). For each sample, the values of u1 are
selected from <ψ̂n(u1) = −0.1 and u2 from <ψ̂n(u2) = −0.5.

<ψ(u) = −0.5. The corresponding u1 and u2 where obtained through the
look-up procedure by R [30] functions which.min and which.max) and the
mid-range rule. Based on Argument-Selection-Rule 1, the ECuF estimators
for the parameters of X ∼ S(α, β = 0.5; ·) for α = 0.2 are suggested to
evaluate at u1 = 0.6 × 10−5 and u2 = 0.03; for α = 1 at u1 = 0.11 and
u2 = 0.48; and for α = 1.8 at u1 = 0.29 and u2 = 0.68; and they all indeed
are less than 1/γ. Note that in addition to considering the unknown γ the
selection by Argument-Selection-Rule 1 considers the unknown value of α.
Indeed, assuming that data arises from some unknown stable distribution
with <ψ(u) = −γα|u|α then for every fixed γ the solutions of (19) and (20)
depend on the (unknown) tail index α.

6. Estimating S(α, β; 0) via ECuF and other estimators
In this section, Monte–Carlo simulations for assessing the quality of the

empirical cumulant function (ECuF) based estimators, given by Definition 1,
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are carried out at the arguments u1, u2 selected by Argument-Selection-Rule
1. Without loss of generality, standard stable laws are studied, δ = 0 and γ =
1, and by reflection property (e.g., [34, Property (2), p. 99], [26, Proposition
1.11, p. 12]) only non-negative values of β are used, β ∈ [0, 1]. In simulation
study K = 100 replicates S(α, β; 0) are generated. For a simple comparison
between various methods the number of replicates of K = 100 is considered
sufficient. The ECuF estimates α̂n = g1(b̂n), ln γ̂n = g2(b̂n), β̂n = g3(b̂n),
and δ̂n = g4(b̂n) are obtained from (6)–(9b) at b̂n. When |α̂n − 1| < 0.01,
then it is set α̂n = 1. For α̂n = 1 the estimates of β and δ are calculated by
(8b) and (9b), respectively, and for α̂n 6= 1 by (8a) and (9a), respectively.
The arguments u1 and u2 are obtained by solving (19) and (20) by a search
function combining the so-called gold section procedure with the parabolic
interpolation [9], available by function uniroot in R-package stats4 [30].
Note that in ECuF estimation procedure the values <ψn(u1) and <ψn(u2)
are used, i.e., these are not replaced by the values of −0.1 and −0.5. Values
of the possible parameter values are used: the values of β̂n are taken using
the equality β̂n = min(max(β̂n, 0), 1) and the calculated values of α̂n are
replaced with α̂n = min(max(α̂n, 0.001), 2).

For comparison purposes, we calculated also estimates results for the fol-
lowing algorithmic methods: the maximum likelihood (ML) based [25], the
empirical characteristic function (EChF) based [16], and the quantile based
(QB) estimators [22]. We did not include the closed-form logarithmic mo-
ments (Log), fractional lower order moments (FLOM), nor extreme value
theory (EVT) based methods by [21] for the following reasons: EVT, FLOM,
Log methods do not provide estimators for the location parameter δ; as men-
tioned in [21], EVT methods, although very fast, have not shown as high a
performance (in the sense of the estimation error) as FLOM and Log meth-
ods; in [21] the FLOM and Log methods, though well-performing in general,
did not outperform the EChF methods in estimating parameters α and γ.

All statistical computing and graphics are done by open-source free soft-
ware R [30] while simulations and the estimates of ML, EChF and QB meth-
ods are found by its package STABLE® [31].

All results are reported (following [16], [21]) in terms of the root mean-
square error (RMSE) of the parameter estimates, which is given by

RMSE(θ̂n) =
√

1
K

∑K
k=1

(
θ − θ̂n(k)

)2
,

where K = 100 is the number of replications, θ is the true parameter
value and θ̂n(k) is the estimate of the parameter from the kth sample,
k = 1, 2, . . . ,K.

6.1. Estimating S(α, β; 0) from samples with n = 5000. From S(α, β =
0.5; 0) with α = 0.2, 0.3, 0.5, 0.8, 1, 1.2, 1.5, 1.8, 2 the K = 100 replicates with
size n = 5000 are simulated. The RMSE of α̂n, β̂n, γ̂n, δ̂n versus the values
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of tail index α for the ECuF, ML, EChF, QB (solid red line, dashed, dotted
and dash-dot lines, respectively) estimates are shown in Figure 6.
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Figure 6. The performance of empirical cumulant function
(ECuF), empirical characteristic function (EChF), maximum
likelihood (ML) and quantile based (QB) estimators for α
(upper left), β (upper right), γ (lower left) and δ (lower right)
plotted as RMSE vs. tail index α (n = 5000).

The results for the tail index α: According to RMSEs of α, as shown in
Figure 6 (upper left), the ECuF and EChF methods remarkably outperform
other estimators at the lower values of α while the ECuF method performs
slightly better than the EChF method. For 0.5 ≤ α ≤ 1.8, the methods
give similar results while the ML method performs better. For α > 1.8, the
ECuF, EChF, and ML methods perform similarly while they all outperform
the QB method.

The results for the asymmetry index β: According to RMSEs of β, as
shown in Figure 6 (upper right), the ECuF and ML methods notably out-
perform the other estimates at the lower values of α while for 0.5 ≤ α ≤ 1.5
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the ML and QB methods perform better than ECuF and EChF methods.
For 1.5 ≤ α ≤ 2 the ECuF, EChF and ML methods outperform the QB
method (the fact that RMSE (β̂n)→∞ as α→ 2 is not relevant in practice
as β means little when α→ 2). In estimating the tail index α and asymme-
try index β our ECuF method performs most steadily over the whole space
of the values of parameter α.

The results for the scale parameter γ and the shift parameter δ: Accord-
ing to RMSEs of γ̂n, as shown in Figure 6 (lower left), the ECuF method
outperforms other methods at the lower values of α. For 0.5 ≤ α ≤ 1.2,
all methods perform similarly. Based on RMSEs of the shift parameter δ,
as shown in in Figure 6 (lower right), the proposed ECuF method does not
outperform others.

6.2. Estimating S(α, β; 0) from samples with various sizes. From sta-
ble laws S(α, β; 0) with α = 0.3, 1, 1.8 and β = 0, 1 K = 100 replicates with
sample sizes n = 200, 500, 1000, 3000, 5000 are generated. The RMSEs of
α̂n, β̂n, γ̂n, δ̂n of the ECuF, ML, EChF, QB (solid red line, dashed, dot-
ted and dash-dot lines, respectively) estimates versus the sample size are
presented in Appendix 7, Figures A1–A4 with Figure A1 showing results
for α, Figure A2 presenting results for β, Figure A3 showing results for γ,
and Figure A4 showing results for δ. Not surprisingly, the effectiveness of
all methods under discussion depends on the sample size (the greater the
sample size the better the performance). However, the results in Appendix
7 show that the ECuF method performs best at the lower values of α and
in comparison to other methods, it is more robust to changes in values of β.

7. Conclusions
We provide new insights to the empirical cumulant function (ECuF) based

estimation by [20]. Under proposed Argument-Selection-Rule 1 the simula-
tion results show that ECuF method compares favourably with the quantile
(QB), empirical characteristic function (EChF), and maximum likelihood
(ML) based estimation methods. In estimating the tail index α, the closed-
form ECuF estimators outperform other methods in the case when α < 0.5,
while at the higher values of α the the closed-form ECuF estimators perform
similarly to the algorithmic methods. In estimating the parameters β, γ, δ
the ECuF method outperforms algorithmic methods in some cases but not
always.

The main argument in favour of the closed-form ECuF estimators is their
computational simplicity: there is no need for data standardization, no re-
strictions have to be put to the parameter space, and they perform steadily
across the values of the tail index α and skewness index β.
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Appendix: Figures
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Figure A1. The performance of empirical cumulant func-
tion (ECuF), empirical characteristic function (EChF), max-
imum likelihood (ML) and quantile based (QB) estimators for
parameter α of K = 100 replicates from S(α, β; 0) plotted as
RMSE vs. sample size n.
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Figure A2. The performance of empirical cumulant func-
tion (ECuF), empirical characteristic function (EChF), max-
imum likelihood (ML) and quantile based (QB) estimators
for parameter β of K = 100 replicates from S(α, β; 0) plotted
as RMSE vs. sample size n.
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Figure A3. The performance of empirical cumulant func-
tion (ECuF), empirical characteristic function (EChF), max-
imum likelihood (ML) and quantile based (QB) estimators
for parameter γ of K = 100 replicates from S(α, β; 0) plotted
as RMSE vs. sample size n.
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Figure A4. The performance of empirical cumulant func-
tion (ECuF), empirical characteristic function (EChF), max-
imum likelihood (ML) and quantile based (QB) estimators
for parameter δ of K = 100 replicates from S(α, β; 0) plotted
as RMSE vs. sample size n.
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