
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA

Volume 23, Number 1, June 2019
Available online at http://acutm.math.ut.ee

Spectrum and genus of commuting graphs of some
classes of finite rings

Jutirekha Dutta, Walaa Nabil Taha Fasfous,
and Rajat Kanti Nath

Abstract. We consider commuting graphs of some classes of finite rings
and compute their spectrum and genus. We show that the commuting
graph of a finite CC-ring is integral. We also characterize some finite
rings whose commuting graphs are planar.

1. Introduction

Let R be a finite non-commutative ring and let Z(R) be the center of R.
Let ΓR be the commuting graph of R. Then ΓR is an undirected graph with
vertex set R \ Z(R), and two distinct vertices a, b are adjacent if ab = ba.
In [1, 4, 5, 13, 17, 18, 19], various graph theoretic aspects of ΓR have been
studied for different families of finite rings. Some generalizations of ΓR are
also considered in [3, 8]. In this paper, we compute the spectrum and genus
of ΓR for some classes of finite rings. We show that ΓR is integral if R is
a finite CC-ring. We also characterize some finite rings whose commuting
graphs are planar.

Let Spec(G) denote the spectrum of a graph G. Then Spec(G) := {λk11 , λ
k2
2 ,

. . . , λknn }, where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix
of G with multiplicities k1, k2, . . . , kn, respectively. If Spec(G) contains only
integers then G is called an integral graph. In 1974, Harary and Schwenk
[14] introduced the notion of an integral graph. Following them a number of
mathematicians have considered this class of graphs in their studies (see, for
example, [2, 15, 20]). In [11, 12], Dutta and Nath have determined several
groups whose commuting graphs are integral.
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Let Kn be the complete graph on n vertices. It is well known that
Spec(Kn) = {(−1)n−1, (n − 1)1} and hence Kn is integral. Further, if

G =
m
t
i=1
Kni then we have

Spec(G) = {(−1)

m∑
i=1

ni−m
, (n1 − 1)1, (n2 − 1)1, . . . , (nm − 1)1}. (1.1)

The smallest non-negative integer n such that a graph G can be embedded
on the surface obtained by attaching n handles to a sphere is called the genus
of G. We write γ(G) to denote the genus of a graph G. It is worth mentioning
that (see [21, Theorem 6-38])

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
if n ≥ 3.

Also, if G =
m
t
i=1
Kni then by [6, Corollary 2] we have

γ(G) =

m∑
i=1

γ(Kni). (1.2)

A graph G is called planar or toroidal if γ(G) = 0 or 1, respectively. As
a consequence of our results, we show that the commuting graphs of non-
commutative rings of order p2 and p3 with unity are integral but not toroidal.

For any element r of a ring R, its centralizer CR(r) is the set {s ∈ R : rs =
sr}. Let Cent(R) = {CR(r) : r ∈ R}. Then |Cent(R)| gives the number of
distinct centralizers in R. If |Cent(R)| = n, then R is called an n-centralizer
ring. Recently, Dutta, Basnet, and Nath (see [10, 9]) have characterized
n-centralizer finite rings for n = 4, 5, 6, 7. In Section 3, we show that the
commuting graphs of n-centralizer finite rings are integral but not toroidal for
n = 4, 5. Further, if |R| = pn, where p is a prime and n is a positive integer,
and R is a (p+ 2)-centralizer ring, then we show that the commuting graph
of R is integral. We conclude this paper by computing the spectrum and
genus of the commuting graphs of finite rings with some specific commuting
probability. Recall that, the commuting probability Pr(R) of a ring R is the
“probability that a randomly chosen pair of elements of R commute” (see
[16, 7]).

2. Main results

Recall that a CC-ring is a non-commutative ring R such that CR(r) is
commutative for all r ∈ R \ Z(R). In [13], Erfanian et al. have initiated
the study of CC-rings. In particular, they have computed the diameter of
Γc
R and showed that the clique number and chromatic number of Γc

R are the
same for a finite CC-ring R, where Γc

R denotes the complement of ΓR. The
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following theorem characterizes ΓR as disjoint unions of complete graphs if
R is a finite CC-ring.

Theorem 2.1. If R is a finite CC-ring with distinct centralizers S1,
S2, . . . , Sn of non-central elements of R, then

ΓR =
n
t
i=1
K|Si|−|Z(R)|. (2.1)

Proof. Let R be a finite CC-ring with distinct centralizers S1, S2, . . . , Sn
of non-central elements of R. Let Si = CR(si), where si ∈ R \ Z(R) for
i = 1, 2, . . . , n. Let s ∈ (Si∩Sj)\Z(R) for some i, j such that 1 ≤ i 6= j ≤ n.
Then s commutes with si as well as sj . If t ∈ CR(s), then tsi = sit since
si ∈ CR(s) and R is a CC-ring. Therefore, t ∈ CR(si) and so CR(s) ⊆ CR(si).
Similarly we can show that CR(si) ⊆ CR(s). Thus CR(s) = CR(si). Also, it
can be seen that CR(s) = CR(sj). Hence CR(s) = CR(si) = CR(sj), which
is a contradiction. Therefore, Si ∩ Sj = Z(R) for 1 ≤ i < j ≤ n. This shows
that (2.1) holds. �

Now, using Theorem 2.1, (1.1), and (1.2), we get the following corollary.

Corollary 2.2. If R is a finite CC-ring with distinct centralizers S1,
S2, . . . , Sn of non-central elements of R, then

Spec(ΓR)=

{
(−1)

n∑
i=1
|Si|−n(|Z(R)|+1)

, (|S1| − |Z(R)| − 1)1,

. . . , (|Sn| − |Z(R)| − 1)1
}

and

γ(ΓR) =
n∑

i=1

γ
(
K|Si|−|Z(R)|

)
.

Corollary 2.3. Let A be any finite commutative ring and R be a finite
CC-ring. Then

Spec(ΓR×A) =

{
(−1)

n∑
i=1
|A|(|Si|−|Z(R)|)−n

, (|A|(|S1| − |Z(R)|)− 1)1,

. . . , (|A|(|Sn| − |Z(R)|)− 1)1
}

and

γ(ΓR×A) =

n∑
i=1

γ
(
K|A|(|Si|−|Z(R)|)

)
,

where Cent(R) = {R,S1, . . . , Sn}.

Proof. Let R be a finite CC-ring and Cent(R) = {R,S1, . . . , Sn}. Then
Cent(R×A) = {R×A,S1×A, . . . , Sn×A}. Hence, R×A is a CC-ring and
the result follows from Corollary 2.2 noting that Z(R×A) = Z(R)×A. �
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It seems to be difficult to determine all the finite non-commutative rings
R such that ΓR is integral. However, by Corollary 2.2, it follows that ΓR is
integral if R is a finite CC-ring. Further, if R is a finite CC-ring and A is
any finite commutative ring then, by Corollary 2.3, ΓR×A is also integral. In
the next two results, we consider a particular class of CC-rings and compute
the spectrum and genus of its commuting graph.

Theorem 2.4. If p is a prime and the additive quotient group R
Z(R) of a

finite ring R is isomorphic to Zp × Zp, then

ΓR =
p+1
t
j=1

K(p−1)|Z(R)|.

Proof. Let a, b ∈ R such that

R

Z(R)
= 〈a+ Z(R), b+ Z(R)〉.

Then it is clear that pa, pb ∈ Z(R). Also, ab 6= ba sinceR is non-commutative.
If z ∈ Z(R), then we have

CR(a) = CR(ma+ z)

= Z(R) t a+ Z(R) t · · · t (p− 1)a+ Z(R) for 1 ≤ m ≤ p− 1

and, for 1 ≤ i ≤ p,
CR(ia+ b) = CR(ia+ b+ z)

= Z(R) t (ia+ b) + Z(R) t · · · t ((p− 1)ia+ (p− 1)b) + Z(R).

Note that CR(x) = CR(a) or CR(ia+b), where 1 ≤ i ≤ p, for any x ∈ R\Z(R)
and hence it is a commutative subring of R. Thus R is a CC-ring. Therefore,
by Theorem 2.1 we have

ΓR = K|CR(a)|−|Z(R)| t
(

p
t
i=1
K|CR(ia+b)|−|Z(R)|

)
.

That is,

ΓR = K(p−1)|Z(R)| t
(

p
t
i=1
K(p−1)|Z(R)|

)
=

p+1
t
i=1

K(p−1)|Z(R)|,

since |CR(ia+ b)| = p|Z(R)| = |CR(a)| for 1 ≤ i ≤ p. �

Using Theorem 2.4, (1.1), and (1.2), we get the following corollary.

Corollary 2.5. If p is a prime and the additive quotient group R
Z(R) of a

finite ring R is isomorphic to Zp × Zp, then

Spec(ΓR) =
{

(−1)(p
2−1)|Z(R)|−p−1, ((p− 1)|Z(R)| − 1)p+1

}
(2.2)

and
γ(ΓR) = (p+ 1)γ

(
K(p−1)|Z(R)|

)
. (2.3)
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3. Some consequences

In this section, we obtain several consequences of the results obtained
in Section 2. It is not easy to determine all finite non-commutative rings
such that their commuting graphs are planar or toridal. In this section, we
characterize some finite rings whose commuting graphs are planar. We begin
with the following result.

Proposition 3.1. Let R be a finite ring such that the additive quotient
group R

Z(R) is isomorphic to Zp×Zp, where p is a prime. Then the following
statements are true.

(a) ΓR is integral but not toroidal.
(b) ΓR is planar if and only if p = 2 and |Z(R)| = 1, 2, 3 or 4, or p = 3

and |Z(R)| = 1 or 2.

Proof. Part (a) follows from Corollary 2.5. If p = 2, then γ(ΓR) = 0 if
and only if 3γ(K|Z(R)|) = 0, which holds if and only if |Z(R)| = 1, 2, 3 or 4.
If p = 3, then γ(ΓR) = 0 if and only if 4γ(K2|Z(R)|) = 0, i.e., if and only if
|Z(R)| = 1 or 2. Hence, part (b) follows. �

Proposition 3.2. Let R be a non-commutative ring of order p2 for any
prime p. Then the following is true.

(a) ΓR is integral but not toroidal.
(b) ΓR is planar if and only if p = 2, 3 or 5.

Proof. Note that |Z(R)| = 1 and the additive quotient group R
Z(R) is

isomorphic to Zp × Zp. So, by Corollary 2.5, we have

Spec(ΓR) =
{

(−1)p
2−p−2, (p− 2)p+1

}
and

γ(ΓR) = (p+ 1)γ (Kp−1) .

Thus it follows that ΓR is integral. Also, γ(ΓR) 6= 1, that is, ΓR is not
toroidal. Part (b) follows from the fact that γ(ΓR) = 0 if and only if p = 2, 3
or 5. �

Proposition 3.3. Let R be a non-commutative ring with unity of order
p3 for any prime p. Then the following statements hold.

(a) ΓR is integral but not toroidal.
(b) ΓR is planar if and only if p = 2.

Proof. Note that |Z(R)| = p and the additive quotient group R
Z(R) is

isomorphic to Zp × Zp. So, by Corollary 2.5, we have

Spec(ΓR) =
{

(−1)p
3−2p−1, (p2 − p− 1)p+1

}
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and
γ(ΓR) = (p+ 1)γ

(
Kp2−p

)
.

Thus ΓR is integral. Also, γ(ΓR) 6= 1, that is, ΓR is not toroidal. Part (b)
follows from the fact that γ(ΓR) = 0 if and only if p = 2. �

Proposition 3.4. If R is a finite 4-centralizer ring, then ΓR is integral
but not toroidal. Also ΓR is planar if and only if |Z(R)| = 1, 2, 3 or 4.

Proof. If R is a finite 4-centralizer ring, then by [10, Theorem 3.2] we have
that the additive quotient group R

Z(R) is isomorphic to Z2 × Z2. Now the

results follow from Proposition 3.1. �

Proposition 3.5. If R is a finite 5-centralizer ring, then ΓR is integral
but not toroidal. Also ΓR is planar if and only if |Z(R)| = 1 or 2.

Proof. Let R be a 5-centralizer finite ring. Then by [10, Theorem 4.3]
it follows that the additive quotient group R

Z(R) is isomorphic to Z3 × Z3.

Hence, the result follows from Proposition 3.1. �

In the following proposition, we compute the spectrum and genus of a
(p+ 2)-centralizer ring having order pn for any prime p and positive integer
n.

Proposition 3.6. Let R be a ring of order pn, where p is a prime and
n is a positive integer. If R is (p+ 2)-centralizer ring, then (2.2) and (2.3)
are true.

Proof. It follows, by [10, Theorem 2.12], that the additive quotient group
R

Z(R) is isomorphic to Zp × Zp. Therefore, using Corollary 2.5 we get the

required result. �

The commuting probability Pr(R) of a finite ring R is given by the ratio

|{(r, s) ∈ R×R : rs = sr}|
|R|2

.

The study of Pr(R) was initiated by MacHale [16] in 1976. MacHale [16]
proved the following result.

Theorem 3.7. Let R be a finite ring and p the smallest prime dividing
|R|. Then

Pr(R) ≤ p2 + p− 1

p3
. (3.1)

The equality holds if and only if the additive quotient group R
Z(R) is isomor-

phic to Zp × Zp.

We conclude this paper with the following two consequences of Corollary
2.5 and Theorem 3.7.
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Proposition 3.8. Let R be a finite ring with Pr(R) = 5
8 . Then

Spec(ΓR) =
{

(−1)3(|Z(R)|−1), (|Z(R)| − 1)3
}

and

γ(ΓR) = 3γ
(
K|Z(R)|

)
.

Proposition 3.9. Let R be a finite ring and p the smallest prime dividing
|R|. If (3.1) holds, then (2.2) and (2.3) are satisfied.
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