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Some Hermite–Hadamard and Ostrowski type
inequalities for fractional integral operators with

exponential kernel

Hüseyin Budak, Mehmet Zeki Sarikaya, Fuat Usta,
and Hüseyin Yildirim

Abstract. We firstly establish Hermite–Hadamard type integral in-
equalities for fractional integral operators. Secondly, we give new gener-
alizations of fractional Ostrowski type inequalities through convex func-
tions via Hölder and power means inequalities. In accordance with this
purpose, we use fractional integral operators with exponential kernel.

1. Introduction

The study of various types of integral inequalities has been the focus of
great attention for well over a century by a number of scientists, interested
both in pure and applied mathematics. On the other hand, the concept of
fractional calculus got wide use in numerous physical and other applications,
as viscoelastic materials, fluid flow, diffusive transport, electrical networks,
electromagnetic theory, probability, and others. We will summarize these
two concepts below.

1.1. Hermite–Hadamard inequality. The inequalities discovered by
C. Hermite and J. Hadamard for convex functions are of considerable signif-
icance in the literature (see, e.g., [8, p. 137], [2]). These inequalities state
that if f : I → R is a convex function on an interval I of real numbers and
a, b ∈ I with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f (a) + f (b)

2
. (1.1)

Received January 9, 2018.
2010 Mathematics Subject Classification. 26D15; 26B25; 26D10; 26A51.
Key words and phrases. Hermite–Hadamard inequality; Ostrowski inequality; fractional

integral operators; convex function.
http://dx.doi.org/10.12697/ACUTM.2019.23.03
Corresponding author: Fuat Usta

25
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Both inequalities hold in the reverse direction if f is concave. We note
that Hadamard’s inequality may be regarded as a refinement of the concept
of convexity, and it follows easily from Jensen’s inequality. Hadamard’s
inequality for convex functions has received renewed attention in recent years
and a remarkable variety of refinements and generalizations have been found
(see, for example, [3], [9], [10], and the references therein).

1.2. Ostrowski inequality. One of the many fundamental mathematical
discoveries of A. M. Ostrowski [7] is the following classical integral inequality
associated with differentiable mappings.

Theorem 1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose
derivative f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| <

∞. Then, we have the inequality∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)

∥∥f ′∥∥∞
for all x ∈ [a, b]. The constant 1

4 is the best possible.

Ostrowski’s inequality has applications in quadrature, probability and op-
timization theory, stochastic, statistics, information, and integral operator
theory. During the past few years, a number of scientists have focused on
Ostrowski’s type inequalities for functions of bounded variation (see, for
example, [1], [4], [6], [11], and the references therein).

1.3. Fractional integral operators with exponential kernel. Recently,
Kirane and Torebek [5] introduced a new class of fractional integrals as fol-
lows.

Definition 1. Let f ∈ L1 (a, b) . The fractional integrals Iαa+ and Iαb− of
order α ∈ (0, 1) are defined by

Iαa+f(x) : =
1

α

x∫
a

exp

{
−1− α

α
(x− t)

}
f(t)dt, x > a,

and

Iαb−f(x) : =
1

α

b∫
x

exp

{
−1− α

α
(t− x)

}
f(t)dt, x < b.

The remainder of this work is organized as follows. In Section 2, we will
present a new Hermite–Hadamard type integral inequality via fractional cal-
culus mentioned above. In Section 3, new Ostrowski type integral inequali-
ties are proved via fractional integral operators with exponential kernel.
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2. Hermite–Hadamard type inequalities via fractional
integral operators with exponential kernel

In this section, we will present some significant results for Hermite–
Hadamard type inequalities with fractional integral operators with exponen-
tial kernel. Throughout this section, we denoteA : = 1−α

α

(
b−a
2

)
for α ∈ (0, 1).

Theorem 2. Let f : [a, b] → R be a function with 0 ≤ a < b and
f ∈ L1 [a, b] . If f is a convex function on [a, b], then we have the follow-
ing inequalities for fractional integral operators with exponential kernel:

f

(
a+ b

2

)
≤ 1− α

2 [1− exp {−A}]

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
≤ f(a) + f(b)

2
.

(2.1)

Proof. Since f is a convex function on [a, b] , we have

f

(
x+ y

2

)
≤ f(x) + f(y)

2
, x, y ∈ [a, b] .

For x = t
2a+ 2−t

2 b and y = 2−t
2 a+ t

2b, we obtain

2f

(
a+ b

2

)
≤ f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
. (2.2)

Multiplying both sides of (2.2) by exp {−At} and integrating the resulting
inequality with respect to t over [0, 1] , we get

2f

(
a+ b

2

) 1∫
0

exp {−At} dt ≤
1∫

0

exp {−At} f
(
t

2
a+

2− t
2

b

)
dt

+

1∫
0

exp {−At} f
(

2− t
2

a+
t

2
b

)
dt.

For u = t
2a+ 2−t

2 b and v = 2−t
2 a+ t

2b, we obtain

2

A
f

(
a+ b

2

)
[1− exp {−A}] ≤ 2

b− a

b∫
a+b
2

exp

{
−1− α

α
(b− u)

}
f (u) du

+
2

b− a

a+b
2∫
a

exp

{
−1− α

α
(v − a)

}
f (v) dv

=
2α

b− a

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
,

and the first inequality is proved.
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For the proof of the second inequality in (2.1), we first note that if f is a
convex function, then

f

(
t

2
a+

2− t
2

b

)
≤ t

2
f(a) +

2− t
2

f(b)

and

f

(
2− t

2
a+

t

2
b

)
≤ 2− t

2
f(a) +

t

2
f(b).

By adding these inequalities, we have

f

(
t

2
a+

2− t
2

b

)
+ f

(
2− t

2
a+

t

2
b

)
≤ f(a) + f(b). (2.3)

Then multiplying both sides of (2.3) by exp {−At} and integrating the re-
sulting inequality with respect to t over [0, 1] , we obtain

1∫
0

exp {−At} f
(
t

2
a+

2− t
2

b

)
dt+

1∫
0

exp {−At} f
(

2− t
2

a+
t

2
b

)
dt

≤ [f(a) + f(b)]

1∫
0

exp {−At} dt =
1

A
[1− exp {−A}] [f(a) + f(b)] .

That is,

2α

b− a

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
≤ 1

A
[1− exp {−A}] [f(a) + f(b)] .

The proof is complete. �

Remark 1. Since lim
α→1

1−α
2[1−exp{−A}] = 1

b−a , the inequality (2.1) reduces to

the classical Hermite–Hadamard inequality (1.1).

Lemma 1. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If f ′ ∈ L [a, b] , then we have the following identity for generalized
fractional integral operators with exponential kernel:

1− α
2 [1− exp {−A}]

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
− f

(
a+ b

2

)

=
1

2 [1− exp {−A}]


b∫

a+b
2

[
1− exp

{
−1− α

α
(b− u)

}]
f ′ (u) du

−

a+b
2∫
a

[
1− exp

{
−1− α

α
(u− a)

}]
f ′ (u) du

 .
(2.4)
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Proof. Integrating by parts gives

J1 : =

b∫
a+b
2

[
1− exp

{
−1− α

α
(b− u)

}]
f ′ (u) du

= f(u)

[
1− exp

{
−1− α

α
(b− u)

}]∣∣∣∣b
a+b
2

+
1− α
α

b∫
a+b
2

exp

{
−1− α

α
(b− u)

}
f (u) du

= − [1− exp {−A}] f
(
a+ b

2

)
+ (1− α) Iα

(a+b
2 )+

f(b).

(2.5)

Similarly, we get

J2 : =

a+b
2∫
a

[
1− exp

{
−1− α

α
(u− a)

}]
f ′ (u) du

= [1− exp {−A}] f
(
a+ b

2

)
− (1− α) Iα

(a+b
2 )−

f(a).

(2.6)

By subtracting (2.6) from (2.5), we have

J1 − J2 = −2 [1− exp {−A}] f
(
a+ b

2

)
+ (1− α)

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
.

By re-arranging the last equality above, we get the desired result. �

Theorem 3. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈
L1 [a, b] . If f ′ is bounded on [a, b], then we have the inequality∣∣∣∣ 1− α

2 [1− exp {−A}]

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
− f

(
a+ b

2

)∣∣∣∣
≤ (1− α) (b− a)− 2α [1− exp {−A}]

2 (1− α) [1− exp {−A}]
∥∥f ′∥∥∞ .

Proof. Using Lemma 1, we have

M : =

∣∣∣∣ 1− α
2 [1− exp {−A}]

[
Iα
(a+b

2 )+
f(b) + Iα

(a+b
2 )−

f(a)

]
− f

(
a+ b

2

)∣∣∣∣
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≤ 1

2 [1− exp {−A}]


b∫

a+b
2

[
1− exp

{
−1− α

α
(b− u)

}] ∣∣f ′ (u)
∣∣ du

+

a+b
2∫
a

[
1− exp

{
−1− α

α
(u− a)

}] ∣∣f ′ (u)
∣∣ du

 .
Since f ′ is bounded on [a, b] , we deduce that

M ≤
‖f ′‖∞

2 [1− exp {−A}]


b∫

a+b
2

[
1− exp

{
−1− α

α
(b− u)

}]
du

+

a+b
2∫
a

[
1− exp

{
−1− α

α
(u− a)

}]
du


=

(1− α) (b− a)− 2α [1− exp {−A}]
2 (1− α) [1− exp {−A}]

∥∥f ′∥∥∞ ,
which completes the proof. �

Remark 2. Since

lim
α→1

1− α
2 [1− exp {−A}]

=
1

b− a

and

lim
α→1

(1− α) (b− a)− 2α [1− exp {−A}]
2 (1− α) [1− exp {−A}]

=
b− a

4
,

we have the midpoint inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣∣ ≤ b− a
4

∥∥f ′∥∥∞ .
3. Ostrowski type inequalities via fractional integral

operators with exponential kernel

Throughout this section, we denote θa : = 1−α
α (x− a) and θb : = 1−α

α (b− x)
for α ∈ (0, 1).

Lemma 2. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If f ′ ∈ L [a, b] , then we have the following identity for generalized



SOME HERMITE–HADAMARD AND OSTROWSKI TYPE INEQUALITIES 31

fractional integral operators with exponential kernel:

f(x)− 1− α
2− exp {−θa} − exp {−θb}

[
Iαx−f(a) + Iαx+f(b)

]
=

x− a
2− exp {−θa} − exp {−θb}

1∫
0

[1− exp {−θat}] f ′(tx+ (1− t)a)dt

− b− x
2− exp {−θa} − exp {−θb}

1∫
0

[1− exp {−θbt}] f ′(tx+ (1− t)b)dt.

Proof. Integrating by parts, we have

J3 : =

1∫
0

[1− exp {−θat}] f ′(tx+ (1− t)a)dt

=
1

x− a
[1− exp {−θat}] f(tx+ (1− t)a)

∣∣∣∣1
0

− θa
x− a

1∫
0

exp {−θat} f(tx+ (1− t)a)dt

=
1− exp {−θa}

x− a
f(x)− 1− α

x− a
Iαx−f(a).

Similarly,

J4 : =

1∫
0

[1− exp {−θbt}] f ′(tx+ (1− t)b)dt

= −1− exp {−θb}
b− x

f(x) +
1− α
b− x

Iαx+f(b).

It follows that

(x− a)J3 − (b− x)J4
2− exp {−θa} − exp {−θb}

= f(x)− 1− α
2− exp {−θa} − exp {−θb}

[
Iαx−f(a) + Iαx+f(b)

]
,

which completes the proof. �

Theorem 4. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈
L1 [a, b] . If |f ′|q , q > 1, is a convex function on [a, b] , then we have the
following inequality for fractional integral operators with exponential kernel:∣∣∣∣f(x)− 1− α

2− exp {−θa} − exp {−θb}
[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
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≤ 1

2− exp {−θa} − exp {−θb}
×

[
(x− a)A1(α, p)

(
|f ′(x)|q + |f ′(a)|q

2

) 1
q

+ (b− x)A2(α, p)

(
|f ′(x)|q + |f ′(b)|q

2

) 1
q

]
,

where 1
p + 1

q = 1, and

A1(α, p) :=

 1∫
0

[1−exp{−θat}]p dt


1
p

, A2(α, p) :=

 1∫
0

[1−exp{−θbt}]p dt


1
p

.

Proof. Taking the modulus in Lemma 2 and using the fact that ex > 1,
x > 0, we obtain∣∣∣∣f(x)− 1− α

2− exp {−θa} − exp {−θb}
[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
≤ x− a

2− exp {−θa} − exp {−θb}
J3 +

b− x
2− exp {−θa} − exp {−θb}

J4.

(3.1)

Using Hölder’s inequality and convexity of |f ′|q, we find that

1∫
0

[1− exp {−θat}]
∣∣f ′(tx+ (1− t)a)

∣∣ dt
≤

 1∫
0

[1− exp {−θat}]p dt


1
p
 1∫

0

∣∣f ′(tx+ (1− t)a)
∣∣q dt


1
q

≤ A1(α, p)

(
|f ′(x)|q + |f ′(a)|q

2

) 1
q

(3.2)

and, similarly,

1∫
0

[1− exp {−θbt}]
∣∣f ′(tx+ (1− t)b)

∣∣ dt
≤ A2(α, p)

(
|f ′(x)|q + |f ′(b)|q

2

) 1
q

.

(3.3)

By substituting the inequalities (3.2) and (3.3) into (3.1), we have∣∣∣∣f(x)− 1− α
2− exp {−θa} − exp {−θb}

[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
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≤ 1

2− exp {−θa} − exp {−θb}

[
(x− a)A1(α, p)

(
|f ′(x)|q + |f ′(a)|q

2

) 1
q

+ (b− x)A2(α, p)

(
|f ′(x)|q + |f ′(b)|q

2

) 1
q

]
.

This completes the proof. �

Theorem 5. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈
L1 [a, b] . If |f ′|q, q ≥ 1, is a convex function on [a, b] , then we have the
inequality∣∣∣∣f(x)− 1− α

2− exp {−θa} − exp {−θb}
[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
≤ 1

2− exp {−θa} − exp {−θb}

×

{
x− a

θ
1− 1

q
a

[1 + θa − exp {−θa}]1−
1
q

×
(∣∣f ′(x)

∣∣q [1

2
− 1

θ2a
[1− exp {−θa} (θa + 1)]

]
+
∣∣f ′(a)

∣∣q [1

2
− 1

θ2a
[θa + exp {−θa} − 1]

]) 1
q

+
b− x

θ
1− 1

q

b

(1+θb−exp {−θb})1−
1
q

(∣∣f ′(x)
∣∣q [1

2
− 1

θ2b
[1−exp {−θb} (θb+1)]

]

+
∣∣f ′(b)∣∣q [1

2
− 1

θ2b
[θb + exp {−θb} − 1]

]) 1
q

}
.

Proof. Using power means inequality and convexity of |f ′|q in (3.1), we
find that∣∣∣∣f(x)− 1− α

2− exp {−θa} − exp {−θb}
[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
≤ x− a

2− exp {−θa} − exp {−θb}

 1∫
0

[1− exp {−θat}] dt

1− 1
q

×

 1∫
0

[1− exp {−θat}]
∣∣f ′(tx+ (1− t)a)

∣∣q dt


1
q

(3.4)
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+
b− x

2− exp {−θa} − exp {−θb}

 1∫
0

[1− exp {−θbt}] dt

1− 1
q

×

 1∫
0

[1− exp {−θbt}]
∣∣f ′(tx+ (1− t)b)

∣∣q dt


1
q

.

Since |f ′|q is a convex function, we have

1∫
0

[1− exp {−θat}]
∣∣f ′(tx+ (1− t)a)

∣∣q dt
≤

1∫
0

[1− exp {−θat}]
[
t
∣∣f ′(x)

∣∣q + (1− t)
∣∣f ′(a)

∣∣q] dt
=
∣∣f ′(x)

∣∣q [1

2
− 1

θ2a
[1− exp {−θa} (θa + 1)]

]
+
∣∣f ′(a)

∣∣q [1

2
− 1

θ2a
[θa + exp {−θa} − 1]

]
(3.5)

and, similarly, ∣∣∣∣∣∣
1∫

0

[1− exp {−θbt}]
∣∣f ′(tx+ (1− t)b)

∣∣q dt
∣∣∣∣∣∣

≤
∣∣f ′(x)

∣∣q [1

2
− 1

θ2b
[1− exp {−θb} (θb + 1)]

]
+
∣∣f ′(b)∣∣q [1

2
− 1

θ2b
[θb + exp {−θb} − 1]

]
.

(3.6)

On the other hand, we have

1∫
0

[1− exp {−θat}] dt =
1

θa
(1 + θa − exp {−θa}) (3.7)

and, similarly,

1∫
0

[1− exp {−θbt}] dt =
1

θb
(1 + θb − exp {−θb}) . (3.8)

Then, substituting the inequalities (3.5)–(3.8) into (3.4), we obtain the de-
sired result. �
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Corollary 1. Suppose that the assumptions of Theorem 5 hold for q = 1.
Then we have the following inequality for fractional integral operators with
exponential kernel:∣∣∣∣f(x)− 1− α

2− exp {−θa} − exp {−θb}
[
Iαx−f(a) + Iαx+f(b)

]∣∣∣∣
≤ x− a

2− exp {−θa} − exp {−θb}

×
{[

1

2
− 1

θ2a
[1− exp {−θa} (θa + 1)]

] ∣∣f ′(x)
∣∣

+

[
1

2
− 1

θ2a
[θa + exp {−θa} − 1]

] ∣∣f ′(a)
∣∣}

+
b− x

2− exp {−θa} − exp {−θb}

×
{[

1

2
− 1

θ2b
[1− exp {−θb} (θb + 1)]

] ∣∣f ′(x)
∣∣

+

[
1

2
− 1

θ2b
[θb + exp {−θb} − 1]

] ∣∣f ′(b)∣∣} .
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E-mail address: hyildir@ksu.edu.tr


