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Fejér type integral inequalities related with
geometrically-arithmetically convex functions

with applications

S. S. Dragomir, M. A. Latif, and E. Momoniat

Abstract. A new identity involving a geometrically symmetric func-
tion and a differentiable function is established. Some new Fejér type
integral inequalities, connected with the left part of Hermite–Hadamard
type inequalities for geometrically-arithmetically convex functions, are
presented by using the Hölder integral inequality and the notion of
geometrically-arithmetically convexity. Applications of our results to
special means of positive real numbers are given.

1. Introduction

The classical convexity is defined as follows.
A function f : I → R, ∅ 6= I ⊆ R, is said to be convex on a convex set I

if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].
A vast literature has been reported on inequalities concerning classical

convexity during the past three decades, but the most celebrated inequalities
in mathematical analysis for convex functions are the Hermite–Hadamard
inequalities

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
, (1.1)

where f : I → R is a convex mapping and a, b ∈ I with a < b. The
inequalities in (1.1) hold in upturned direction if f is a concave function.
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In the past few years the theory of convex sets and convex functions have
been a subject of extensive research and these notions have been generalized
and extended in diverse directions. As a result many new proofs, notewor-
thy extensions, generalizations, refinements, new Hermite–Hadamard type
inequalities and numerous applications of the inequalities (1.1) have arisen
in the literature of mathematical analysis and in various other branches of
pure and applied mathematics.

We begin with the following generalization of the usual or classical convex-
ity which is called the geometrical-arithmetical convexity or GA-convexity.

Definition 1 (see [7, 8]). Suppose that I ⊆ R+ = (0,∞). A function
f : I → R is said to be GA-convex on I if

f
(
xλy1−λ

)
≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1], where xλy1−λ and λf(x) + (1 − λ)f(y)
are, respectively, the weighted geometric mean of two positive numbers x
and y, and the weighted arithmetic mean of f(x) and f(y).

The notion of GA-convexity is further generalized as GA-s-convexity in
the second sense as follows.

Definition 2 (see [4]). Let s ∈ (0, 1]. A function f : I → R is said to be
GA-s-convex on I ⊆ R+ if

f
(
xλy1−λ

)
≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ I, λ ∈ [0, 1].

Most recently, İşcan [4] proved the following result for GA-s-convex func-
tions.

Theorem 1 (see [4]). Suppose that f : I → R is GA-s-convex in the
second sense, and a, b ∈ I ⊆ R+ with a < b. If f ∈ L [a, b], then

2s−1f
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x)

x
dx ≤ f (a) + f (b)

s+ 1
. (1.2)

If f in Theorem 1 is GA-convex function, then we get the inequalities

f
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x)

x
dx ≤ f (a) + f (b)

2
. (1.3)

In [6], the authors introduced the notion of geometrically symmetric func-
tions as follows.

Definition 3 (see [6]). A function g : [a, b] → R, [a, b] ⊆ R+, is said to

be geometrically symmetric with respect to
√
ab if

g

(
ab

x

)
= g (x) , x ∈ [a, b] .
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The authors in [6] also proved the following Fejér type integral inequalities,
which provide a weighted generalization of (1.3).

Theorem 2 (see [6]). Let f : I → R be a GA-convex function and let
a, b ∈ I ⊆ R+ with a < b. If g : [a, b]→ [0,∞) is a continuous, positive, and

geometrically symmetric to
√
ab mapping, then

f
(√

ab
)∫ b

a

g (x)

x
dx ≤

∫ b

a

f (x) g (x)

x
dx ≤ f (a) + f (b)

2

∫ b

a

g (x)

x
dx. (1.4)

Several new integral inequalities were also established in [6] for the right
part of the inequality (1.4), which not only provide weighted generalization
of the results from [4] connected with the right part of (1.3), but also give
refinements of those results for particular choice of the geometrically sym-
metric weight functions.

For more results on Hermite–Hadamard type inequalities concerning GA-
convex functions, s-GA-convex functions and their applications we refer the
reader to [1]–[6], [9], [10], and references therein.

In Section 2, we will prove a weighted integral identity for the left part of
the inequality (1.4) involving a differentiable mapping and a geometrically
symmetric function. We will use this identity, the geometrical-arithmetical
convexity and some auxiliary results to obtain some new Fejér type integral
inequalities related with the left part of (1.4). The results of Section 2
provide a weighted version of the results given in [4] for the left part of
the inequality (1.3) and also refine those results for particular choice of the
geometrically symmetric function involved. Some applications of our results
to special means of positive real numbers are given in Section 3.

2. Fejér type integral inequalities for
geometrically-arithmetically convex functions

Throughout this paper we will use the notations

U (t) : = a(1−t)/2b(1+t)/2, V (t) : = a(1+t)/2b(1−t)/2.

The beta function and the integral from of the hypergeometric function
are defined as follows to be used in the sequel of the paper:

B (α, β) : =

∫ 1

0
tα−1 (1− t)β−1 dt, α > 0, β > 0

and, for |z| < 1, γ > β > 0,

2F1 (α, β; γ; z) : =
1

B (β, γ − β)

∫ 1

0
tβ−1 (1− t)γ−β−1 (1− zt)−α dt.

In addition, for numbers a > 0 and b > 0 with a 6= b let

A (a, b) : =
a+ b

2
, L (a, b) : =

b− a
ln b− ln a

, G (a, b) : =
√
ab, H (a, b) : =

2ab

a+ b
,
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and

Lp (a, b) : =


[
bp+1−ap+1

(p+1)(b−a)

] 1
p
, p 6= −1, 0,

L (a, b) , p = −1,

1
e

(
bb

aa

) 1
b−a

, p = 0,

be the arithmetic mean, logarithmic mean, geometric mean, harmonic mean,
and generalized logarithmic mean of order p ∈ R, respectively.

Now we prove a weighted integral identity which plays a key role in es-
tablishing our main results.

Lemma 1. Let f : I → R, I ⊆ R+, be a differentiable function on I◦

and let a, b ∈ I◦ with a < b. Suppose that g : [a, b]→ [0,∞) is a continuous,

positive, and geometrically symmetric to
√
ab mapping. If f

′ ∈ L ([a, b]),
then the following equality holds:

F(f, g; a, b) : = f
(√

ab
)∫ b

a

g (x)

x
dx−

∫ b

a

f (x) g (x)

x
dx

=
ln b− ln a

2

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)[
V (t) f

′
(V (t))− U (t) f

′
(U (t))

]
dt.

Proof. Let

I1 : =

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)
V (t) f

′
(V (t)) dt,

I2 : =

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)
U (t) f

′
(U (t)) dt.

Since g : [a, b]→ [0,∞) is geometrically symmetric to
√
ab, we have g(U(t))=

g (V (t)) and ∫ V (t)

a

g (x)

x
dx =

∫ b

U(t)

g (x)

x
dx, t ∈ [0, 1] .

Now we observe that

I1 =

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)
V (t) f

′
(V (t)) dt

= − 2

ln b− ln a

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)
d [f (V (t))]

= − 2

ln b− ln a

(∫ V (t)

a

g (x)

x
dx

)
f (V (t))

∣∣∣∣∣
1

0

−
∫ 1

0
g (V (t)) f (V (t)) dt
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=
2f
(√

ab
)

ln b− ln a

∫ √ab
a

g (x)

x
dx−

∫ 1

0
g (V (t)) f (V (t)) dt

=
2f
(√

ab
)

ln b− ln a

∫ √ab
a

g (x)

x
dx− 2

ln b− ln a

∫ √ab
a

g (x) f (x)

x
dx

and, similarly,

−I2 =
2f
(√

ab
)

ln b− ln a

∫ b

√
ab

g (x)

x
dx− 2

ln b− ln a

∫ b

√
ab

g (x) f (x)

x
dx.

Adding these equations and multiplying the result by ln b−ln a
2 , we get the

required identity. �

Lemma 2. For u, v > 0, we have

ζ (u, v) :=

∫ 1

0
u(1−t)/2v(1+t)/2dt =


√
vL (
√
u,
√
v) , u 6= v,

u, u = v,

ξ (u, v) :=
1

2

∫ 1

0
tu(1−t)/2v(1+t)/2dt =


v−
√
vL(
√
u,
√
v)

ln v−lnu , u 6= v,

u/4, u = v,

and

ς (u, v) :=
1

2

∫ 1

0
t2u(1−t)/2v(1+t)/2dt =


4
√
vL(
√
u,
√
v)−4v+v(ln v−lnu)

(ln v−lnu)2
, u 6= v,

u/6, u = v.

Proof. The proof follows from a straightforward computation. �

We now establish new Fejér type inequalities for GA-convex functions,
which provide a weighted generalization of some results from [4].

Theorem 3. Let f : I → R, I ⊆ R+, be a differentiable function on I◦

and let a, b ∈ I◦ with a < b. Suppose that g : [a, b]→ [0,∞) is a continuous,

positive, and geometrically symmetric to
√
ab mapping. If f

′ ∈ L ([a, b]) and∣∣∣f ′∣∣∣q is GA-convex on [a, b] for q ≥ 1, then

|F(f, g; a, b)| ≤ (ln b− ln a)2

4
‖g‖∞

{
[ζ (a, b)− 2ξ (a, b)]1−1/q

×
(

[ζ (a, b) + 2ς (a, b)]A
(∣∣∣f ′ (a)

∣∣∣q , ∣∣∣f ′ (b)∣∣∣q)− 2ξ (a, b)
∣∣∣f ′ (a)

∣∣∣q)1/q

+ [ζ (b, a)− 2ξ (b, a)]1−1/q ([ζ (b, a) + 2ς (b, a)]

×A
(∣∣∣f ′ (a)

∣∣∣q , ∣∣∣f ′ (b)∣∣∣q)− 2ξ (b, a)
∣∣∣f ′ (b)∣∣∣q)1/q

}
,
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where ‖g‖∞ = supx∈[a,b] g (x) < ∞ and ζ (·, ·), ξ (·, ·), ς (·, ·) are defined in
Lemma 2.

Proof. From Lemma 1, using Hölder’s inequality, we have

|F(f, g; a, b)|

≤ ln b− ln a

2

∫ 1

0

(∫ V (t)

a

g (x)

x
dx

)[
U (t)

∣∣∣f ′ (U (t))
∣∣∣+ V (t)

∣∣∣f ′ (V (t))
∣∣∣] dt

≤ (ln b− ln a)2

4
‖g‖∞

∫ 1

0

[
(1− t)U (t)

∣∣∣f ′(U (t))
∣∣∣+ (1− t)V (t) f

′
(V (t))

]
dt

≤ (ln b−ln a)2

4
‖g‖∞

{(∫ 1

0
(1−t)U (t) dt

)1−1/q

×
(∫ 1

0
(1− t)U (t)

∣∣∣f ′ (U (t))
∣∣∣q dt)1/q

+

(∫ 1

0
(1− t)V (t) dt

)1−1/q (∫ 1

0
(1− t)V (t)

∣∣∣f ′ (V (t))
∣∣∣q dt)1/q

}
.

(2.1)

By the GA-convexity of
∣∣∣f ′∣∣∣q on [a, b] for q ≥ 1, and by Lemma 2, we have∫ 1

0
(1− t)U (t)

∣∣∣f ′ (U (t))
∣∣∣q ≤ ∣∣∣f ′ (a)

∣∣∣q ∫ 1

0
(1− t)

(
1− t

2

)
a(1−t)/2b(1+t)/2dt

+
∣∣∣f ′ (b)∣∣∣q ∫ 1

0
(1− t)

(
1 + t

2

)
a(1−t)/2b(1+t)/2dt

=

[
1

2
ζ (a, b) + ς (a, b)

] ∣∣∣f ′ (b)∣∣∣q +

[
1

2
ζ (a, b)− 2ξ (a, b) + ς (a, b)

] ∣∣∣f ′ (a)
∣∣∣q
(2.2)

and, similarly,∫ 1

0
(1− t)V (t)

∣∣∣f ′ (V (t))
∣∣∣q

≤
[

1

2
ζ (b, a) + ς (b, a)

] ∣∣∣f ′ (a)
∣∣∣q +

[
1

2
ζ (b, a)− 2ξ (b, a) + ς (b, a)

] ∣∣∣f ′ (b)∣∣∣q .
(2.3)

Using (2.2) and (2.3) in (2.1), we get the required result. �

Corollary 1. Suppose that the assumptions of Theorem 3 are satisfied
and q = 1. Then the following inequality holds:

|F(f, g; a, b)|

≤ 2 ‖g‖∞
{[
L (a, b)−

√
aA
(√

a,
√
b
)
− 1

4
a (ln b− ln a)

] ∣∣∣f ′ (a)
∣∣∣
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+

[
L (a, b)−

√
bA
(√

a,
√
b
)

+
1

4
b (ln b− ln a)

] ∣∣∣f ′ (b)∣∣∣} .
Corollary 2. If g (x) = 1

ln b−ln a , x ∈ [a, b], in Theorem 3, then

|F(f, g; a, b)| ≤ (ln b− ln a)

4

{
[ζ (a, b)− 2ξ (a, b)]1−1/q

×
(

[ζ (a, b) + 2ς (a, b)]A
(∣∣∣f ′ (a)

∣∣∣q , ∣∣∣f ′ (b)∣∣∣q)− 2ξ (a, b)
∣∣∣f ′ (a)

∣∣∣q)1/q

+ [ζ (b, a)− 2ξ (b, a)]1−1/q ([ζ (b, a) + 2ς (b, a)]

×A
(∣∣∣f ′ (a)

∣∣∣q , ∣∣∣f ′ (b)∣∣∣q)− 2ξ (b, a)
∣∣∣f ′ (b)∣∣∣q)1/q

}
.

Corollary 3. If q = 1 in Corollary 2, then we get the inequality

|F(f, g; a, b)| ≤ 2

ln b− ln a

×
{[
L (a, b)−

√
aA
(√

a,
√
b
)
− 1

4
a (ln b− ln a)

] ∣∣∣f ′ (a)
∣∣∣

+

[
L (a, b)−

√
bA
(√

a,
√
b
)

+
1

4
b (ln b− ln a)

] ∣∣∣f ′ (b)∣∣∣} .
Theorem 4. Let f and g be the same as in Theorem 3. If f

′ ∈ L ([a, b])

and
∣∣∣f ′∣∣∣q is GA-convex on [a, b] for q > 1, then

|F(f, g; a, b)| ≤
(ln b− ln a)2−1/q ‖g‖∞

4 · q1/q

×
(
q − 1

2q − 1

)1− 1
q {

b1/2
([
L
(
aq/2, bq/2

)
− aq/2

] ∣∣∣f ′ (a)
∣∣∣q

+
[
2bq/2 − aq/2 − L

(
aq/2, bq/2

)] ∣∣∣f ′ (b)∣∣∣q)1/q

+ a1/2
([
L
(
aq/2, bq/2

)
+ bq/2 − 2aq/2

] ∣∣∣f ′ (a)
∣∣∣q

+
[
bq/2 − L

(
aq/2, bq/2

)] ∣∣∣f ′ (b)∣∣∣q)1/q
}
.

(2.4)

Proof. From Lemma 1, by Hölder’s inequality we have

|F(f, g; a, b)| ≤
(ln b− ln a)2 ‖g‖∞

4

(∫ 1

0
(1− t)q/(q−1) dt

)1−1/q

×

{(∫ 1

0
[U (t)]q

∣∣∣f ′ (U (t))
∣∣∣q dt)1/q

+

(∫ 1

0
[V (t)]q

∣∣∣f ′ (V (t))
∣∣∣q dt)1/q

}
.

(2.5)
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One has ∫ 1

0
[U (t)]q

∣∣∣f ′ (U (t))
∣∣∣q

≤
∣∣∣f ′ (a)

∣∣∣q ∫ 1

0

(
1− t

2

)
a[q(1−t)]/2b[q(1+t)]/2dt

+
∣∣∣f ′ (b)∣∣∣q ∫ 1

0

(
1 + t

2

)
a[q(1−t)]/2b[q(1+t)]/2dt

=
bq/2

[
L
(
aq/2, bq/2

)
− aq/2

]
q (ln b− ln a)

∣∣∣f ′ (a)
∣∣∣q

+
bq/2

[
2bq/2 − aq/2 − L

(
aq/2, bq/2

)]
q (ln b− ln a)

∣∣∣f ′ (b)∣∣∣q

(2.6)

and, similarly,∫ 1

0
[V (t)]q

∣∣∣f ′ (V (t))
∣∣∣q ≤ aq/2

[
L
(
aq/2, b

q
2

)
+ bq/2 − 2aq/2

]
q (ln b− ln a)

∣∣∣f ′ (a)
∣∣∣q

+
aq/2

[
bq/2 − L

(
aq/2, bq/2

)]
q (ln b− ln a)

∣∣∣f ′ (b)∣∣∣q .
(2.7)

The inequality (2.4) is proved by applying (2.6) and (2.7) in (2.5). �

Corollary 4. If the assumptions of Theorem 4 are satisfied and g (x) =
1

ln b−ln a for all x ∈ [a, b], then

|F(f, g; a, b)|

≤ (ln b− ln a)1−1/q

4 · q1/q

(
q − 1

2q − 1

)1− 1
q {

b1/2
([
L
(
aq/2, bq/2

)
− aq/2

] ∣∣∣f ′ (a)
∣∣∣q

+
[
2bq/2 − aq/2 − L

(
aq/2, bq/2

)] ∣∣∣f ′ (b)∣∣∣q)1/q
+ a1/2

([
L
(
aq/2, bq/2

)
+ bq/2 − 2aq/2

] ∣∣∣f ′ (a)
∣∣∣q +

[
bq/2 − L

(
aq/2, bq/2

)] ∣∣∣f ′ (b)∣∣∣q)1/q
}
.

Theorem 5. Let f and g be the same as in Theorem 3. If f
′ ∈ L ([a, b])

and
∣∣∣f ′∣∣∣q is GA-convex on [a, b] for q > 1, then

|F(f, g; a, b)| ≤ (ln b− ln a)2−1/q

2 · (4q)1/q
‖g‖∞

(
q − 1

2q − 1

)1− 1
q

×
{

[L (aq, bq)− aq]
∣∣∣f ′ (a)

∣∣∣q + [bq − L (aq, bq)]
∣∣∣f ′ (b)∣∣∣q}1/q

.

(2.8)

Proof. From Lemma 1 and Hölder’s inequality it follows that (2.5) holds.
By the power-mean inequality ar + br ≤ 21−r (a+ b)r for a > 0, b > 0 and
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r < 1, we have

(∫ 1

0
[U (t)]q

∣∣∣f ′ (U (t))
∣∣∣q dt)1/q

+

(∫ 1

0
[V (t)]q

∣∣∣f ′ (V (t))
∣∣∣q dt)1/q

≤ 21−1/q

(∫ 1

0
[U (t)]q

∣∣∣f ′ (U (t))
∣∣∣q dt+

∫ 1

0
[V (t)]q

∣∣∣f ′ (V (t))
∣∣∣q dt)1/q

.

(2.9)

Since
∣∣∣f ′∣∣∣q is GA-convex on [a, b] for q > 1, by (2.6) and (2.7) we get

∫ 1

0
[U (t)]q

∣∣∣f ′ (U (t))
∣∣∣q dt+

∫ 1

0
[V (t)]q

∣∣∣f ′ (L (t))
∣∣∣q dt

≤
[

2L (aq, bq)− 2aq

q (ln b− ln a)

] ∣∣∣f ′ (a)
∣∣∣q +

[
2bq − 2L (aq, bq)

q (ln b− ln a)

] ∣∣∣f ′ (b)∣∣∣q . (2.10)

Applying (2.9) and (2.10) in (2.5), we obtain the required inequality (2.8).
�

Corollary 5. If the assumptions of Theorem 5 are satisfied and g (x) =
1

ln b−ln a for all x ∈ [a, b], then the following inequality holds:

|F(f, g; a, b)| ≤ (ln b− ln a)1−1/q

2 · (4q)1/q
‖g‖∞

(
q − 1

2q − 1

)1− 1
q

×
{

[L (aq, bq)− aq]
∣∣∣f ′ (a)

∣∣∣q + [bq − L (aq, bq)]
∣∣∣f ′ (b)∣∣∣q}1/q

.

Theorem 6. By the assumptions of Theorem 5 we have the inequality

|F(f, g; a, b)| ≤
(ln b− ln a)2 [L (aq/[2(q−1)], bq/[2(q−1)]

)]1−1/q ‖g‖∞
8

×

{(
b1/2

(
1

2q + 1

)1/q

+ a1/2

[
2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q
)∣∣∣f ′ (a)

∣∣∣
+

(
a1/2

(
1

2q + 1

)1/q

+ b1/2
[

2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q
)∣∣∣f ′ (b)∣∣∣} .
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Proof. As in the proof of Theorem 3, from Lemma 1 and the GA-convexity

of
∣∣∣f ′∣∣∣ on [a, b] we have

|F(f, g; a, b)|≤ (ln b−ln a)2

4
‖g‖∞

{∫ 1

0
a(1−t)/2b(1+t)/2

[
(1−t)

(
1− t

2

)∣∣∣f ′(a)
∣∣∣

+ (1− t)
(

1 + t

2

) ∣∣∣f ′ (b)∣∣∣] dt+

∫ 1

0
a(1+t)/2b(1−t)/2

×
[
(1− t)

(
1 + t

2

) ∣∣∣f ′ (a)
∣∣∣+ (1− t)

(
1− t

2

) ∣∣∣f ′ (b)∣∣∣] dt} .
(2.11)

Using Hölder’s integral inequality, we get∫ 1

0
a(1−t)/2b(1+t)/2

[
(1− t)

(
1− t

2

) ∣∣∣f ′ (a)
∣∣∣+ (1− t)

(
1 + t

2

) ∣∣∣f ′ (b)∣∣∣] dt
≤
(∫ 1

0
a[q(1−t)]/[2(q−1)]b[q(1+t)]/[2(q−1)]dt

)1−1/q

×

{[∫ 1

0
(1−t)q

(
1−t

2

)q
dt

]1/q ∣∣∣f ′(a)
∣∣∣+[∫ 1

0
(1−t)q

(
1+t

2

)q
dt

]1/q ∣∣∣f ′(b)∣∣∣}

=
1

2

[
bq/[2(q−1)]L

(
aq/[2(q−1)], bq/[2(q−1)]

)]1−1/q

×

{(
1

2q + 1

)1/q ∣∣∣f ′ (a)
∣∣∣+

[
2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q ∣∣∣f ′ (b)∣∣∣} .
(2.12)

Similarly, we have∫ 1

0
a(1+t)/2b(1−t)/2

[
t

(
1 + t

2

) ∣∣∣f ′ (a)
∣∣∣+ t

(
1− t

2

) ∣∣∣f ′ (b)∣∣∣] dt
≤ 1

2

[
aq/[2(q−1)]L

(
aq/[2(q−1)], bq/[2(q−1)]

)]1−1/q
{(

1

2q + 1

)1/q ∣∣∣f ′ (b)∣∣∣
+

[
2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q ∣∣∣f ′ (a)
∣∣∣} .

(2.13)
Using (2.12) and (2.13) in (2.11), we obtain the required inequality. �

Corollary 6. If g (x) = 1
ln b−ln a in Theorem 6, then

|F(f, g; a, b)| ≤
(ln b− ln a)

[
L
(
aq/[2(q−1)], bq/[2(q−1)]

)]1−1/q

2
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×

{(
b1/2

(
1

2q + 1

)1/q

+ a1/2

[
2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q
)∣∣∣f ′ (a)

∣∣∣
+

(
a1/2

(
1

2q + 1

)1/q

+ b1/2
[

2F1 (−q, 1; q + 2;−1) · 1

q + 1

]1/q
)∣∣∣f ′ (b)∣∣∣} .

3. Applications to special means

In this section we apply some of the above established inequalities of
Hermite–Hadamard type involving the product of a geometrically-arithme-
tically convex function and a geometrically symmetric function to construct
inequalities for special means.

Let f(x) = xr for x > 0, r ∈ R with r 6= 0. Then∣∣∣f ′ (xλy1−λ
)∣∣∣q = |r|q

[
xq(r−1)

]λ [
yq(r−1)

]1−λ

≤ |r|q
[
λxq(r−1) + (1− λ) yq(r−1)

]
for λ ∈ [0, 1], x, y > 0 and q ≥ 1. That is,

∣∣∣f ′ (x)
∣∣∣q = |r|q xq(r−1) is

geometrically-arithmetically convex on [a, b] for q ≥ 1 and r 6= 1, where
a, b > 0.

Let the function g : [a, b]→ R0 be defined by

g (x) =

(
x√
ab
−
√
ab

x

)2

, x ∈ [a, b] . (3.1)

It is obvious that

g

(
ab

x

)
= g (x)

for all x ∈ [a, b]. Hence g (x) is geometrically symmetric with respect to

x =
√
ab.

Applications of our results are given in the following theorems.

Theorem 7. Let 0 < a < b, r ∈ R\ {−2, 0, 1, 2}, and q ≥ 1. Then

G[r; a, b] : =
∣∣2Gr−2 (a, b)L

(
a2, b2

)
+ 2L (ar, br)− 2Gr (a, b)

−G2 (a, b)L
(
ar−2, br−2

)
+
L
(
ar+2, br+2

)
G2 (a, b)

∣∣∣∣∣
≤ (b− a) |r|

2G (a, b)

{[√
bL
(√

a,
√
b
)
−G (a, b)

]1−1/q

×

4
√
bL
(√

a,
√
b
)
− 4b

ln b− ln a
−G (a, b) + 2b

A(aq(r−1), bq(r−1)
)
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−
[
b−
√
bL
(√

a,
√
b
)]
aq(r−1)

)1/q
+
[
G (a, b)−

√
aL
(√

a,
√
b
)]1−1/q

×

4
√
aL
(√

a,
√
b
)
− 4a

ln b− ln a
+G (a, b)− 2a

A(aq(r−1), bq(r−1)
)

+
[
a−
√
aL
(√

a,
√
b
)]
bq(r−1)

)1/q
}
.

Proof. By applying Theorem 3 to the functions f(x) = xr, x > 0, and
(3.1) we get the desired result. �

Corollary 7. Suppose the assumptions of Theorem 7 are satisfied. If
r = −1, then the following inequality holds:

H[a, b] : =

∣∣∣∣∣2L
(
a2, b2

)
− 2G2 (a, b) + L (a, b)G (a, b)

G3 (a, b)

−G2 (a, b)L
(
a−3, b−3

)
+ 2L

(
a−1, b−1

)∣∣
≤ (b− a)

2G (a, b)

{[√
bL
(√

a,
√
b
)
−G (a, b)

]1−1/q

×

4
√
bL
(√

a,
√
b
)
− 4b

ln b− ln a
−G (a, b) + 2b

A (a−2q, b−2q
)

−
[
b−
√
bL
(√

a,
√
b
)]
a−2q

)1/q
+
[
G (a, b)−

√
aL
(√

a,
√
b
)]1−1/q

×

4
√
aL
(√

a,
√
b
)
− 4a

ln b− ln a
+G (a, b)− 2a

A (a−2q, b−2q
)

+
[
a−
√
aL
(√

a,
√
b
)]
b−2q

)1/q
}
.

Corollary 8. Under the assumptions of Theorem 7, the following inequal-
ity holds true for q = 1:

G[r; a, b] ≤ (b− a) |r|
2G (a, b)

8A
(√

a,
√
b
)
L
(√

a,
√
b
)
− 8A (a, b)

ln b− ln a

+2 (b− a) + (r − 2) (b− a)G2 (a, b)Lr−3
r−3 (a, b)

−
(
r − 3

2

)
(b− a)G (a, b)L

r− 5
2

r− 5
2

(a, b)

]
.
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Corollary 9. If r = −1 in Corollary 8, then we have the inequality

H[a, b] ≤ (b− a)

2

8A
(√

a,
√
b
)
L
(√

a,
√
b
)
− 8A (a, b)

(ln b− ln a)G (a, b)
+

2 (b− a)

G (a, b)

−3 (b− a)G (a, b)L−4
−4 (a, b) +

5

2
(b− a)L

7
2
7
2

(a, b)

]
.

Theorem 8. Let 0 < a < b, r ∈ R\ {−2, 0, 1, 2}, and q > 1. Then

G[r; a, b] ≤ (ln b− ln a)1−1/q (b− a) |r|
4 · q1/qG (a, b)

(
q − 1

2q − 1

)1− 1
q

×
{
b1/2

([
L
(
aq/2, bq/2

)
− aq/2

]
aq(r−1)

+
[
2bq/2 − aq/2 − L

(
aq/2, bq/2

)]
bq(r−1)

)1/q

+a1/2
([
L
(
aq/2, bq/2

)
+ bq/2 − 2aq/2

]
aq(r−1)

+
[
bq/2 − L

(
aq/2, bq/2

)]
bq(r−1)

)1/q
}
.

Proof. By applying Theorem 4 to the functions f(x) = xrand (3.1) we get
the desired result. �

Corollary 10. Suppose the assumptions of Theorem 8 are fulfilled. If
r = −1, then the following inequality holds:

H[a, b] ≤ (ln b− ln a)1−1/q (b− a)

4 · q1/qG (a, b)

(
q − 1

2q − 1

)1− 1
q

×
{
b1/2

([
L
(
aq/2, bq/2

)
−aq/2

]
a−2q+

[
2bq/2−aq/2−L

(
aq/2, bq/2

)]
b−2q

)1/q

+a1/2
([
L
(
aq/2, bq/2

)
+bq/2−2aq/2

]
a−2q+

[
bq/2−L

(
aq/2, bq/2

)]
b−2q

)1/q
}
.

Theorem 9. Let 0 < a < b, r ∈ R\ {−2, 0, 1, 2}, and q > 1. Then

G[r; a, b] ≤ (b− a)2 |r|
22/q+1L (a, b)G (a, b)

(
q − 1

2q − 1

)1− 1
q

×
{
rL (aqr, bqr)− (r − 1)L

(
aq(r−1), bq(r−1)

)
L (aq, bq)

}1/q
.

Proof. Application of Theorem 5 to the functionsf(x) = xr and (3.1) gives
the desired result. �
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Corollary 11. By the assumptions of Theorem 9, for r = −1 we have
the inequality

H[a, b] ≤ (b− a)2

22/q+1G (a, b)L (a, b)

(
2q − 1

q − 1

)1− 1
q

×
[
2L
(
a−2q, b−2q

)
L
(
a−1, b−1

)
− L

(
a−q, b−q

)]1/q
.
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