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Lucas numbers of the form
(

2t

k

)
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Abstract. Let Lm denote the mth Lucas number. We show that the

solutions to the diophantine equation
(
2t

k

)
= Lm, in non-negative integers

t, k ≤ 2t−1, and m, are (t, k,m) = (1, 1, 0), (2, 1, 3), and (a, 0, 1) with
non-negative integers a.

1. Introduction

As usual, the sequence of Lucas numbers is defined by L0 = 2, L1 = 1,
and

Lm = Lm−1 + Lm−2, m ≥ 2.

This sequence is known as the associate of Fibonacci sequence.
Now we present a short historical background related to the title problem.

The occurrence of figurate numbers in linear recurrences has had a very
extensive literature. The first challenging result is due to Cohn [1, 2], and
independently to Wyler [18], who proved that the square Fibonacci numbers
are F0 = 0, F1 = F2 = 1 and F12 = 144. Focusing only on the occurrence of
binomial coefficients in binary recurrences, first we mention that Ming [11]
proved a conjecture of Hoggatt [5]. Namely, he showed that F0 = 0, F1 =
F2 = 1, F4 = 3, F8 = 21 and F10 = 55 are the only triangular Fibonacci
numbers, further L1 = 1, L2 = 3 and L18 = 5778 are the only Lucas
triangular numbers [12]. Note that the triangular number tn−1 = (n− 1)n/2
is equal to the binomial coefficient

(
n
2

)
. Therefore, it seems natural to search

the binomial coefficients
(
n
k

)
in certain recurrences. Special cases of this

question were handled by several authors, see, for example, [3].
Consider the binary recurrence Um = AUm−1 + BUm−2 with arbitrary

initial values U0 and U1. If {Vm} is the associate of {Um} (i.e., the two
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sequences have the same recurrence rule, further V0 = 2U1 −AU0 and V1 =
AU1 + 2BU0), then their terms satisfy

V 2
n −DU2

n = 4C(−B)n, (1.1)

where D = A2 + 4B and C = U2
1 −AU0U1 −BU2

0 .
Fix |B| = 1. Replacing either Vn or Un by

(
n
2

)
, (1.1) leads to the superel-

liptic equation

y2 = Dn4 − 2Dn3 +Dn2 ± 16C.

The Magma [10] procedure IntegralQuarticPoints() may solve this equa-
tion. Hence if the lower index k is 2 in

(
n
k

)
, then we are able to handle the

problem for certain binary recurrences.
For the lower index k = 3 an algorithm was given in [16] to solve the

equations

Um =

(
n

3

)
and Vm =

(
n

3

)
,

with the conditions D > 0, and U0 = 0, U1 = 1 (and |B| = 1). Illustrating
the algorithm, all integer solutions to the equations

Fm =

(
n

3

)
, Lm =

(
n

3

)
and Pm =

(
n

3

)
were given in [16]. Here Pm is a term of the Pell sequence.

Later, Szalay [15] treated the equations Fm =
(
n
4

)
, Lm =

(
n
4

)
, and Kovács

[6] solved the analogous equation Pm =
(
n
4

)
. The more complicated problem

Lm =
(
n
5

)
was handled by Tengely [17].

In this paper, as a novelty, we do not fix the lower subscript k, but on
the other hand we prescribe n = 2t with unknown non-negative integer t.
Hence, for the Lucas numbers we study the diophantine equation

Lm =

(
2t

k

)
.

The complete description of the result is given by the following theorem.

Theorem 1. The solutions to the diophantine equation

Lm =

(
2t

k

)
(1.2)

in non-negative integers t, k ≤ 2t−1, and m are

(t, k,m) = (1, 1, 0), (2, 1, 3) and (a, 0, 1)

with non-negative integers a.
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2. Auxiliary results

Assume that p is a prime number. The p-adic order of a non-zero integer
n is the largest positive integer exponent ν of p such that pν divides n. As
usual, let ν be denoted by νp (n). For the integer n = a0 +a1p+a2p

2 + · · ·+
adp

d, (0 ≤ ai < p), the digit sum function (in base p) is defined by

sp (n) = a0 + a1 + · · ·+ ad.

In particular, Legendre [8] showed that

νp (n!) =
n− sp (n)

p− 1
. (2.1)

Lemma 1. Assume that n and k ≤ 2n − 1 are positive integers. Then

ν2

((
2n

k

))
= n− ν2 (k) .

Proof. It is clear that ν2 (2n − j) = ν2 (j) holds if 1 ≤ j ≤ 2n − 1. Ex-
panding the binomial coefficient we get

ν2

((
2n

k

))
= ν2

(
2n (2n − 1) . . . (2n − k + 1)

k!

)
= ν2 (2n) + ν2 (2n − 1) + . . .+ ν2 (2n − (k − 1))− ν2 (k!)

= n+ ν2 ((k − 1)!)− ν2 (k!) =

= n− ν2 (k) .

�

We note that Kummer [7] derived a result from Legendre’s theorem, which
also proves the statement of the above lemma. Kummer’s theorem says that
the p-adic valuation of the binomial coefficient

(
a
b

)
is equal to the number of

carries when a− b is added to b in base p.
Citing [9], here we present the 2-adic order of the Lucas numbers.

Lemma 2. If n ≥ 0 is an integer, then

ν2 (Ln) =

 0, if n ≡ 1, 2 (mod 3),
1, if n ≡ 0 (mod 6),
2, if n ≡ 3 (mod 6).

Lemma 3. For any integer n ≥ 0 we have Ln 6≡ 6 (mod 8).

Proof. Consider the Lucas numbers modulo 8. The sequence becomes
periodic with length 12, and looking at the period, it leads immediately to
the statement. �

Lemma 4. A Lucas number Ln with odd subscript n is composed only of
primes p satisfying p = 2 or p ≡ ±1 (mod 5).
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Proof. Although the proof comes straightaway from the well-know identity
L2
n − 5F 2

n = 4(−1)n, we simply refer to [13], last row of page 280. �

Lemma 5. Suppose that a, b and n are positive integers. Then(
an+ bn

an

)
≡ 0 mod

(
bn+ 1

gcd (a, bn+ 1)

)
.

Proof. See Theorem 1.1 in [14]. �

Lemma 6. For n ≥ 1 we have(
2n+1

2n

)
≡ 6 (mod 8).

Proof. It is obvious when n = 1. Therefore we may assume n ≥ 2.
In case of p = 2 the Legendre formula (2.1) implies ν2(2a!) = 2a − 1.

Subsequently,

ν2

((
2n+1

2n

))
= ν2

(
2n+1!

(2n!)2

)
= ν2(2n+1!)− 2ν2(2n!) = 1,

hence it is sufficient to consider the odd ingredients of the binomial coeffi-
cient in the lemma. To do that, observe that h(a) := 2a!/22a−1 is an odd
integer, and we need to see that h(a) ≡ 3 (mod 8) for a ≥ 2. It is a direct
consequence of Lemma 3.3 in the paper [4] by fixing there p = 2, b = 3,
t = 1, i = 0, and j = 1. Finally, h(n+ 1)/h2(n) ≡ 3/32 ≡ 3 (mod 8) proves
the lemma. �

3. Proof of Theorem 1

The statement is trivial for k = 0, and we obtain the infinite family of
solutions (t, k,m) = (a, 0, 1), a ≥ 0.

In the sequel, we assume 1 ≤ k ≤ 2t−1. Combining (1.2), Lemma 2, and
Lemma 1, it provides

j = t− ν2(k),

where j = 0, 1, 2. Thus, t − j = ν2(k), and, consequently, k = 2t−js holds
with some positive odd integer s. The condition k = 2t−js ≤ 2t−1 is fulfilled
only if j = 1 or 2, and in these cases s = 1 necessarily holds. Hence k = 2t−j

(j = 1, 2). For our convenience put a = t − j. Then k = 2a, and we
distinguish two cases.

First let j = 1. Now we have the equation

Lm =

(
2a+1

2a

)
to solve. Taking both sides of this equation modulo 8, Lemma 3 contradicts
to Lemma 6 if a ≥ 1. The remaining value a = 0 leads to the solution
(t, k,m) = (1, 1, 0).
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Now let j = 2. Clearly, by Lemma 2 we know that m = 6κ+ 3. We have

Lm =

(
2a+2

2a

)
,

and first assume that a is even. The case a = 0 provides the solution
(t, k,m) = (2, 1, 3). Then we may suppose a ≥ 1. Applying Lemma 5, it
yields that(

2a+2

2a

)
=

(
3 · 2a + 2a

3 · 2a

)
≡ 0 mod

(
2a + 1

gcd(3, 2a + 1)

)
.

The parity of a guarantees that the denominator of the modulus is 1, i.e., the
modulus is 2a + 1. Put a = 2`. Note that ` ≥ 1. Then we obtain

L6κ+3 =

(
4`+1

4`

)
≡ 0 (mod 4` + 1).

This gives that 4` + 1 | L6κ+3. By Lemma 4 we have

L6κ+3 = p1p2 · · · pn,

where pi are primes with pi = 2 or pi ≡ ±1 (mod 5) for 1 ≤ i ≤ n. Hence
every prime factor pj of 4`+ 1 (` ≥ 1) has the form pj ≡ ±1 (mod 5). Thus,

4` + 1 = pi1pi2 · · · pit (3.1)

follows with t ≤ n. Now reduce (3.1) modulo 5, and we arrive at a contra-
diction since 4` + 1 ≡ 0 or 2 (mod 5), and at the same time p1p2 · · · pt ≡ 1
or 4 (mod 5).

Assume that a is odd, and let a = 2` + 1 with a non-negative integer `.
The case ` = 0 does not provide a solution to (1.2). So we may assume
` ≥ 1. Now we get(

2a+2

2a

)
=

(
2a + 3 · 2a

2a

)
≡ 0 (mod 3 · 2a + 1)

because trivially gcd(1, 3 · 2a + 1) = 1. Thus,

3 · 2a + 1 = 6 · 4` + 1 | L6κ+3,

where the prime factors pj of L6κ+3 again satisfy pj ≡ ±1 (mod 5). A

modulo 5 consideration of 6 · 4` + 1, similarly to the previous case, leads to
a contradiction.

The proof of Theorem 1 is complete.
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