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Lucas numbers of the form (2,;)
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To the memory of Professor Jozsef Zavoti

ABSTRACT. Let L., denote the m! Lucas number. We show that the
solutions to the diophantine equation (2; ) = L, in non-negative integers
t, k <271 and m, are (t,k,m) = (1,1,0), (2,1,3), and (a,0,1) with
non-negative integers a.

1. Introduction

As usual, the sequence of Lucas numbers is defined by Lg = 2, L1 = 1,

and
Ly, =Ly 1+ Lp_o, m > 2.
This sequence is known as the associate of Fibonacci sequence.

Now we present a short historical background related to the title problem.
The occurrence of figurate numbers in linear recurrences has had a very
extensive literature. The first challenging result is due to Cohn [1, 2], and
independently to Wyler [18], who proved that the square Fibonacci numbers
are Fy =0, Iy = F, =1 and Fjo = 144. Focusing only on the occurrence of
binomial coefficients in binary recurrences, first we mention that Ming [11]
proved a conjecture of Hoggatt [5]. Namely, he showed that Fy = 0, F} =
F, =1, Fy =3, F3 = 21 and Fjp = 55 are the only triangular Fibonacci
numbers, further Ly = 1, Lo = 3 and Li1g = 5778 are the only Lucas
triangular numbers [12]. Note that the triangular number ¢, = (n — 1)n/2
is equal to the binomial coefficient (g) Therefore, it seems natural to search
the binomial coefficients (Z) in certain recurrences. Special cases of this
question were handled by several authors, see, for example, [3].

Consider the binary recurrence U,, = AU,,_1 + BU,,_o with arbitrary
initial values Uy and U;y. If {V},} is the associate of {U,,} (i.e., the two
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sequences have the same recurrence rule, further Vy = 2U; — AUy and Vi =
AU, + 2BUj), then their terms satisfy

V2 - DU? = 4C(-B)", (1.1)

where D = A2 + 4B and C = U? — AUyU, — BUE.
Fix |B| = 1. Replacing either V,, or U,, by (g), (1.1) leads to the superel-
liptic equation
y? = Dn* — 2Dn® + Dn? £+ 16C.
The Magma [10] procedure IntegralQuarticPoints () may solve this equa-
tion. Hence if the lower index k is 2 in (Z), then we are able to handle the

problem for certain binary recurrences.
For the lower index & = 3 an algorithm was given in [16] to solve the

equations
U, = (g) and V,, = <g>,

with the conditions D > 0, and Uy = 0, U; = 1 (and |B| = 1). Illustrating
the algorithm, all integer solutions to the equations

Fao= () En=(5) i ra= ()

were given in [16]. Here P, is a term of the Pell sequence.

Later, Szalay [15] treated the equations F,,, = (), Ln, = (}), and Kovéacs

[6] solved the analogous equation P, = (Z) The more complicated problem
L = (%) was handled by Tengely [17].

In this paper, as a novelty, we do not fix the lower subscript k, but on
the other hand we prescribe n = 2! with unknown non-negative integer t.
Hence, for the Lucas numbers we study the diophantine equation

2t
L, = .
The complete description of the result is given by the following theorem.

Theorem 1. The solutions to the diophantine equation

L = <2kt> (1.2)

in non-negative integers t, k < 271, and m are
(t,k,m) = (1,1,0), (2,1,3) and (a,0,1)

with non-negative integers a.
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2. Auxiliary results

Assume that p is a prime number. The p-adic order of a non-zero integer
n is the largest positive integer exponent v of p such that p” divides n. As
usual, let v be denoted by v, (n). For the integer n = ag+a1p+ asp® + -+
agp?, (0 < a; < p), the digit sum function (in base p) is defined by

sp(n) =ap+ai+--+aq.

In particular, Legendre [8] showed that
n—sp(n)

p—1

Lemma 1. Assume that n and k < 2™ — 1 are positive integers. Then

()

Proof. 1t is clear that 15 (2" — j) = v2(j) holds if 1 < j < 2" — 1. Ex-
panding the binomial coefficient we get

" <<21:>> . <2n (2" — 1)..k.!(2”—k:+1)>

=1 2")+r@"-1)+... +1r@2"—(k—1)) — v (k)
=n+w((k—1)) - (k)=
=n—wy (k).

vp (nl) = (2.1)

O

We note that Kummer [7] derived a result from Legendre’s theorem, which
also proves the statement of the above lemma. Kummer’s theorem says that
the p-adic valuation of the binomial coefficient (‘Z) is equal to the number of
carries when a — b is added to b in base p.

Citing [9], here we present the 2-adic order of the Lucas numbers.

Lemma 2. Ifn > 0 is an integer, then

0, ifn=1,2 (mod 3),
vo(Ly) =14 1, if n=0 (mod 6),
2, ifn=3 (mod 6).

Lemma 3. For any integer n > 0 we have L, # 6 (mod 8).

Proof. Consider the Lucas numbers modulo 8. The sequence becomes
periodic with length 12, and looking at the period, it leads immediately to
the statement. (]

Lemma 4. A Lucas number L, with odd subscript n is composed only of
primes p satisfying p =2 or p = £1 (mod 5).
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Proof. Although the proof comes straightaway from the well-know identity
L2 —5F2 = 4(—1)", we simply refer to [13], last row of page 280. O

Lemma 5. Suppose that a, b and n are positive integers. Then

an+bn\ _ 0 mod bn +1
an - ged (a,bn+1) )
Proof. See Theorem 1.1 in [14]. O

Lemma 6. Forn > 1 we have

<27;1> —6 (mod 8).

Proof. 1t is obvious when n = 1. Therefore we may assume n > 2.
In case of p = 2 the Legendre formula (2.1) implies 15(2%!) = 2% — 1.
Subsequently,

v ((2;:1» =1y <(2;;> = 1(2"TH) — 20 (27) =1,

hence it is sufficient to consider the odd ingredients of the binomial coeffi-
cient in the lemma. To do that, observe that h(a) := 2%1/22°~! is an odd
integer, and we need to see that h(a) = 3 (mod 8) for a > 2. It is a direct
consequence of Lemma 3.3 in the paper [4] by fixing there p = 2, b = 3,
t=1,i=0, and j = 1. Finally, h(n + 1)/h%(n) = 3/3? = 3 (mod 8) proves
the lemma. (]

3. Proof of Theorem 1

The statement is trivial for £ = 0, and we obtain the infinite family of
solutions (¢, k,m) = (a,0,1), a > 0.

In the sequel, we assume 1 < k < 2/=!. Combining (1.2), Lemma 2, and
Lemma 1, it provides

j =t— VQ(k)7

where j = 0,1,2. Thus, t — j = 1»(k), and, consequently, k = 2¢=7s holds
with some positive odd integer s. The condition k = 2775 < 2t is fulfilled
only if j = 1 or 2, and in these cases s = 1 necessarily holds. Hence k = 2¢=J
(j = 1,2). For our convenience put a = ¢t — j. Then k£ = 2% and we
distinguish two cases.

First let j = 1. Now we have the equation

2a+1
=% )
2(1
to solve. Taking both sides of this equation modulo 8, Lemma 3 contradicts

to Lemma 6 if ¢ > 1. The remaining value a = 0 leads to the solution
(t? k? m) = (1’ 1?0)'
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Now let j = 2. Clearly, by Lemma 2 we know that m = 6« + 3. We have

2a+2
2(1
and first assume that a is even. The case a = 0 provides the solution

(t,k,m) = (2,1,3). Then we may suppose a > 1. Applying Lemma 5, it
yields that

ga+2 3.920 4 90 0 q 20 41
= = mo R ——— .
20 3-20 ged (3,22 + 1)

The parity of @ guarantees that the denominator of the modulus is 1, i.e., the
modulus is 2% + 1. Put a = 2¢. Note that ¢ > 1. Then we obtain

gt+1 '
Lgnts = ( A ) =0 (mod4"+1).

This gives that 4° + 1 | L., 3. By Lemma 4 we have

Ler+3 = p1p2 - Pn,

where p; are primes with p; = 2 or p; = £1 (mod 5) for 1 < i < n. Hence
every prime factor p; of 4 +1 (¢ > 1) has the form p; = 1 (mod 5). Thus,

45 41 =pi,pi, - pi, (3.1)

follows with ¢ < n. Now reduce (3.1) modulo 5, and we arrive at a contra-
diction since 4 +1 =0 or 2 (mod 5), and at the same time p1ps---py = 1
or 4 (mod 5).

Assume that a is odd, and let a = 2¢ 4+ 1 with a non-negative integer /.
The case £ = 0 does not provide a solution to (1.2). So we may assume
£ > 1. Now we get

2a+2 2a 3.9¢
(2a>:( +2a )EO (mod 3-2%+41)

because trivially ged(1,3-2% 4 1) = 1. Thus,
3:2941=6-4"+1| Lgeys,

where the prime factors p; of Le.i3 again satisfy p; = +1 (mod 5). A
modulo 5 consideration of 6 - 4¢ + 1, similarly to the previous case, leads to
a contradiction.

The proof of Theorem 1 is complete.
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