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Estimations of Riemann–Liouville k-fractional
integrals via convex functions

Ghulam Farid

Abstract. The k-fractional integrals introduced by S. Mubeen and
G. M. Habibullah in 2012 are a generalization of Riemann–Liouville
fractional integrals. Some estimations of these fractional integrals via
convexity have been established.

1. Introduction

Riemann–Liouville fractional integral operator is the first formulation of
an integral operator of non-integral order.

Definition 1. Let f ∈ L1[a, b]. Then the Riemann–Liouville fractional
integrals of f of order α > 0 with a ≥ 0 are defined by

Iαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt, x > a,

and

Iαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt, x < b.

In fact these formulations of fractional integral operators have been es-
tablished by Letnikov [10], Sonin [12], and then by Laurent [9]. A lot of
fractional integral inequalities have been established in literature (for more
details, see [1, 3, 4, 5, 6, 7, 8, 13]).

In [11], the following generalization of Riemann–Liouville fractional inte-
grals was studied.
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Definition 2. Let f ∈ L1[a, b]. The Riemann–Liouville k-fractional inte-
grals of f of order α, with k > 0 and a ≥ 0, are defined by

Iα,k
a+
f(x) =

1

kΓk(α)

∫ x

a
(x− t)

α
k
−1f(t)dt, x > a,

and

Iα,kb−
f(x) =

1

kΓk(α)

∫ b

x
(t− x)

α
k
−1f(t)dt, x < b,

where Γk(α) is the k-Gamma function defined as Γk(α) =
∫∞
0 tα−1e−

tk

k dt.

Inequalities have always proved to be useful in establishing mathematical
models and their solutions in almost all branches of applied sciences, in
particular, in physics and engineering. Convexity plays a very important
role in the optimization of solutions of mathematical problems. The aim of
this paper is to extend some k-fractional inequalities via convexity properties
of functions.

2. Main results

The following theorem gives an estimate for the sum of the left and right
handed Riemann–Liouville k-fractional integrals.

Theorem 1. Let f : I −→ R be a positive convex function. Then, for
a, b ∈ I and α, β ≥ k, the following inequality for the Riemann–Liouville
k-fractional integrals holds:

Iα,k
a+
f(x) + Iβ,k

b− f(x) ≤ (x− a)
α
k f(a) + (b− x)

β
k f(b)

2kΓk(α)

+ f(x)

(
(x− a)

α
k + (b− x)

β
k

2kΓk(β)

)
, x ∈ (a, b).

(2.1)

Proof. It is easy to observe the following inequality for α > k and x ∈ [a, b]:

(x− t)
α
k
−1 ≤ (x− a)

α
k
−1, t ∈ [a, x]. (2.2)

The convexity of f provides the inequality

f(t) ≤ x− t
x− a

f(a) +
t− a
x− a

f(x), t ∈ [a, x], x ∈ (a, b). (2.3)

From (2.2) and (2.3), we obtain that∫ x

a
(x− t)

α
k
−1f(t)dt ≤ (x− a)

α
k
−1

x− a

(
f(a)

∫ x

a
(x− t)dt+ f(x)

∫ x

a
(t− a)dt

)
.

Therefore, in view of the definition of the Riemann–Liouville k-fractional
integrals, we get

Iα,k
a+
f(x) ≤ (x− a)

α
k

2kΓk(α)
(f(a) + f(x)). (2.4)
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Now, for x ∈ [a, b] and β > k, the following inequality can be observed:

(t− x)
β
k
−1 ≤ (b− x)

β
k
−1, t ∈ [x, b]. (2.5)

By the convexity of f , we also have

f(t) ≤ t− x
b− x

f(b) +
b− t
b− x

f(x), t ∈ [x, b]. (2.6)

From the inequalities (2.5) and (2.6), one obtains that∫ b

x
(t− x)

β
k
−1f(t)dt ≤ (b− x)

β
k
−1

b− x

(
f(b)

∫ b

x
(t− x)dt+ f(x)

∫ b

x
(b− t)dt

)
.

Therefore, in view of the definition of the Riemann–Liouville k-fractional
integrals, we conclude that

Iβ,k
b− f(x) ≤ (b− x)

β
k

2kΓk(β)
(f(b) + f(x)). (2.7)

Adding (2.4) and (2.7), we get the required inequality (2.1). �

Corollary 1. By setting α = β in (2.1), this inequality reduces to the
fractional integral inequality

Iα,k
a+
f(x) + Iα,k

b− f(x) ≤ 1

2kΓk(α)

(
(x− a)

α
k f(a) + (b− x)

α
k f(b)

+f(x)

(
(x− a)

α
k + (b− x)

α
k

))
.

Corollary 2 (see [3], Corollary 2). By setting α = β = k = 1 and taking
x = b or x = a in (2.1), we get the inequality

1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2
.

Corollary 3 (see [3], Corollary 3). By setting α = β = 1 and taking
x = (a+ b)/2 in (2.1), we have the inequalities

0 ≤ 1

b− a

∫ b

a
f(t)dt− f

(
a+ b

2

)
≤ f(a) + f(b)

2
.

Remark 1. It is interesting to see that if, in Theorem 1, the function f
is concave and 0 < α, β ≥ k, then the reverse of inequality (2.1) holds.

In the following, we prove a fractional integral inequality for functions
whose derivative in absolute value is convex.
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Theorem 2. Let f : I −→ R be a differentiable function. If |f ′| is convex,
then, for a, b ∈ I, a < b, and α, β > 0, the following inequality for the
Riemann–Liouville k-fractional integrals holds:∣∣∣Γk(α+ k)Iα,k

a+
f(x) + Γk(β + k)Iβ,k

b− f(x)

−
(

(x− a)
α
k f(a) + (b− x)

β
k f(b)

)∣∣∣
≤ 1

2

(
(x− a)

α
k
+1|f ′(a)|+(b− x)

β
k
+1|f ′(b)|

+|f ′(x)|
(

(x− a)
α
k
+1 + (b− x)

β
k
+1
))

, x ∈ (a, b).

(2.8)

Proof. By the convexity of |f ′|, we have

|f ′(t)| ≤ x− t
x− a

|f ′(a)|+ t− a
x− a

|f ′(x)|, t ∈ [a, x], x ∈ (a, b),

from which it follows that

−
(
x− t
x− a

|f ′(a)|+ t− a
x− a

|f ′(x)|
)
≤ f ′(t) ≤ x− t

x− a
|f ′(a)|+ t− a

x− a
|f ′(x)|.

(2.9)
We firstly consider the right hand side of (2.9):

f ′(t) ≤ x− t
x− a

|f ′(a)|+ t− a
x− a

|f ′(x)|. (2.10)

Now, using the inequality

(x− t)
α
k ≤ (x− a)

α
k , t ∈ [a, x], α, k > 0, (2.11)

from (2.10) we get∫ x

a
(x− t)

α
k f ′(t)dt

≤ (x− a)
α
k
−1
(
|f ′(a)|

∫ x

a
(x− t)dt+ |f ′(x)|

∫ x

a
(t− a)dt

)
= (x− a)

α
k
+1

(
|f ′(a)|+ |f ′(x)|

2

)
.

(2.12)

Since ∫ x

a
(x− t)

α
k f ′(t)dt = f(t)(x− t)

α
k |xa +

α

k

∫ x

a
(x− t)

α
k
−1f(t)dt

= −f(a)(x− a)
α
k + Γk(α+ k)Iα,k

a+
f(x),

by the definition of the Riemann–Liouville fractional integral, from (2.12),
we have

Γk(α+k)Iα,k
a+
f(x)− f(a)(x−a)

α
k ≤ (x−a)

α
k
+1

(
|f ′(a)|+ |f ′(x)|

2

)
. (2.13)
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Now, considering the left hand side of (2.9) and proceeding as we did for
(2.10), we get

f(a)(x−a)
α
k −Γk(α+k)Iα,k

a+
f(x) ≤ (x−a)

α
k
+1

(
|f ′(a)|+ |f ′(x)|

2

)
. (2.14)

From (2.13) and (2.14), we conclude that∣∣∣Γk(α+ k)Iα,k
a+
f(x)− f(a)(x− a)

α
k

∣∣∣ ≤ (x− a)
α
k
+1

(
|f ′(a)|+ |f ′(x)|

2

)
.

(2.15)
On the other hand, using the convexity of |f ′|, for t ∈ [x, b] we have

|f ′(t)| ≤ t− x
b− x

|f ′(b)|+ b− t
b− x

|f ′(x)|. (2.16)

Also, since, for t ∈ [x, b] and β, k > 0, one has

(t− x)
β
k ≤ (b− x)

β
k , (2.17)

by adapting the same approach as we did for (2.10) and (2.11), from (2.16)
and (2.17) we obtain the inequality∣∣∣Γk(β + k)Iβ,k

b− f(a)− f(b)(b− x)
β
k

∣∣∣ ≤ (b− x)
β
k
+1

(
|f ′(b)|+ |f ′(x)|

2

)
.

(2.18)
Combining (2.15) and (2.18) via the triangular inequality, we get the required
inequality. �

Corollary 4. By setting α = β in (2.8), this inequality reduces to the
fractional integral inequality∣∣∣Γk(α+ k)[Iα,k

a+
f(x) + Iα,k

b− f(x)]−
(

(x− a)
α
k f(a) + (b− x)

α
k f(b)

)∣∣∣
≤ 1

2

(
(x− a)

α
k
+1|f ′(a)|+ (b− x)

α
k
+1|f ′(b)|

+|f ′(x)|
(

(x− a)
α
k
+1 + (b− x)

α
k
+1
))

.

Corollary 5 (see [3], Corollary 5). By setting α = β = k = 1 and
x = (a+ b)/2 in (2.8), we get the inequality∣∣∣∣ 1

b− a

∫ b

a
f(t)dt− f(a) + f(b)

2

∣∣∣∣ ≤ b− a
8

(
|f ′(a)|+ |f ′(b)|+ 2f ′

(
a+ b

2

))
.

We use the following lemma to prove our next theorem.

Lemma 1 (see [3], Lemma 1). Let f : [a, b] −→ R, be a convex function.
If f is symmetric with respect to (a+ b)/2, then

f

(
a+ b

2

)
≤ f(x), x ∈ [a, b]. (2.19)
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Theorem 3. Let f : I −→ R be a positive convex function. If f is sym-
metric with respect to (a+ b)/2, then the following inequalities for fractional
integrals hold:

1

2k

(
1

α
k + 1

+
1

β
k + 1

)
f

(
a+ b

2

)

≤
Γk(β + k)Iβ+k,k

b− f(a)

2(b− a)
β
k
+1

+
Γk(α+ k)Iα+k,k

a+
f(b)

2(b− a)
α
k
+1

(2.20)

≤ f(a) + f(b)

2k
.

Proof. For x ∈ [a, b] and β, k > 0, we have

(x− a)
β
k ≤ (b− a)

β
k . (2.21)

By the convexity of f , we have

f(x) ≤ x− a
b− a

f(b) +
b− x
b− a

f(a), x ∈ [a, b]. (2.22)

From the inequalities (2.21) and (2.22), it follows that∫ b

a
(x− a)

β
k f(x)dx ≤ (b− a)

β
k

b− a

(
f(b)

∫ b

a
(x− a)dx+ f(a)

∫ b

a
(b− x)dx

)
.

Thus, by the definition of the k-fractional integral, we have

Γk(β + k)Iβ+k,k
b− f(a)

(b− a)
β
k
+1

≤ f(a) + f(b)

2k
. (2.23)

On the other hand, since

(b− x)
α
k ≤ (b− a)

α
k , x ∈ [a, b], α, k > 0,

from (2.22) we get∫ b

a
(b− x)

α
k f(x)dx ≤ (b− a)

α
k
+1 f(a) + f(b)

2
.

Thus, by the definition of the k-fractional integral, we have

Γk(α+ k)Iα+k,k
a+

f(b)

(b− a)
α
k
+1

≤ f(a) + f(b)

2k
. (2.24)

Adding (2.23) and (2.24), we get

Γk(β + k)Iβ+k,k
b− f(a)

2(b− a)
β
k
+1

+
Γk(α+ k)Iα+k,k

a+
f(b)

2(b− a)
α
k
+1

≤ f(a) + f(b)

2k
.
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Using Lemma 1 and multiplying (2.19) by (x − a)
β
k , integrating over [a, b]

gives

f

(
a+ b

2

)∫ b

a
(x− a)

β
k dx ≤

∫ b

a
(x− a)

β
k f(x)dx, (2.25)

f

(
a+ b

2

)
1

2k(βk + 1)
≤

Γk(β + k)Iβ+k,k
b− f(a)

2(b− a)
β
k
+1

. (2.26)

Using Lemma 1 and multiplying (2.19) by (b − x)α, integrating over [a, b],
gives

f

(
a+ b

2

)
1

2k(αk + 1)
≤

Γk(α+ k)Iα+k,k
a+

f(b)

2(b− a)
α
k
+1

. (2.27)

Adding (2.26) and (2.27), and then combining with (2.25), we obtain the
required inequality. �

Corollary 6. If we put α = β in (2.20), then this inequality reduces to
the fractional integral inequalities

f

(
a+ b

2

)
1

k(αk + 1)
≤ Γk(α+ k)

2(b− a)
α
k
+1

(
Iα+k,k
b− f(a) + Iα+k,k

a+
f(b)

)
≤ f(a) + f(b)

2k
.

3. Concluding remarks

If we take k = 1 in Theorem 1, Theorem 2, and Theorem 3, then we
obtain the results for the Riemann–Liouville fractional integrals (cf. [3]).
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