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Notes on certain analytic functions concerning
some subordinations

Şahsene Altınkaya, Shigeyoshi Owa, and Sibel Yalçın

Abstract. By making use of the principle of subordination, we investi-
gate a certain subclass of analytic functions. Such results as subordina-
tion and superordination are given. The related sandwich-type results
are also presented.

1. Introduction

Let A denote the class of functions f defined by

f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z : z ∈ C, |z| < 1}, with
f(0) = 0 and f ′(0) = 1. Let us consider a function g given by

g(z) =
α(1− z)
α− z

(z ∈ U)

for some real α > 1. If we write z = reiθ (0 5 r < 1, 0 5 θ < 2π), then
g(0) = 1 and

<(g(z)) =
α(α+ r2 − r(1 + α) cos θ)

α2 + r2 − 2αr cos θ
.

This gives us inequalities

α(1− r)
α− r

5 <(g(z)) 5
α(1 + r)

α+ r
<

2α

α+ 1
.
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Definition 1. Let the functions f, g ∈ A be analytic in U. Then f is said
to be subordinate to g if there exits a Schwarz function w ∈ Λ, where

Λ = {w : w(0) = 0, |w(z)| < 1} (z ∈ U),

such that

f(z) = g(w(z)) (z ∈ U).

We denote this subordination by

f(z) ≺ g(z) (z ∈ U). (1)

In particular, if the function g is univalent in U, then the subordination (1)
is equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

By using the subordination, we say that f ∈ P (α) (α > 1) if f ∈ A
satisfies

f ′(z) ≺ α(1− z)
α− z

.

Then, since

0 < <(f ′(z)) <
2α

α+ 1
(z ∈ U),

we obtain that f ∈ P (α) is close-to-convex function in U (see [4] or [13]).

The following results will be required in our analysis of the class P (α).

Lemma 1 (see [3], [7], [8]). Let w be analytic in U with w(0) = 0. Then,
if |w(z)| attains its maximum value on the circile |z| = r < 1 at a point
z0 ∈ U, then we have that

z0w
′(z0) = kw(z0)

and

<
(

1 +
z0w

′′(z0)

w′(z0)

)
= k,

where k = 1.

Miller and Mocanu [9] have given the following lemma for superordina-
tions.

Lemma 2. Let h1 and h2 be convex in U and let f be univalent in U with
h1(0) = h2(0) = f(0). Let γ 6= 0 with <(γ) = 0. If

h1(z) ≺ f(z) ≺ h2(z),

then

γ

zγ

z∫
0

h1(t)tγ−1dt ≺ γ

zγ

z∫
0

f(t)tγ−1dt ≺ γ

zγ

z∫
0

h2(t)tγ−1dt,

when the middle integral is univalent.
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It should be remarked in passing that, in recent years, several authors
obtained many interesting results associated with subordination and super-
ordination in the unit disk. The interested reader may refer to several earlier
works including, for example, [1], [2], [5], [6], [10], [11], and [12].

2. Some properties

We first derive the following theorem.

Theorem 1. If f ∈ A satisfies
∞∑
n=2

n |an| 5
α− 1

α+ 1
(z ∈ U) (2)

for α > 1, then f ∈ P (α). The equality is attained for

f(z) = z +
∞∑
n=2

(α− 1)ε

n2(n− 1)(α+ 1)
zn (|ε| = 1). (3)

Proof. Let us consider a function f ∈ A which satisfies∣∣(α2 − 6α+ 1) + 4(α+ 1)f ′(z)
∣∣ < ∣∣(α2 + 10α+ 1)− 4(α+ 1)f ′(z)

∣∣ (4)

for α > 1 and f ∈ A. From the inequality (4), we get

f ′(z) + f ′(z) <
4α

α+ 1
,

which yields

0 < <(f ′(z)) <
2α

α+ 1
(z ∈ U).

Hence, we get f ∈ P (α).
If f satisfies (4), then we have that∣∣∣∣∣(α2 − 2α+ 5) + 4(α+ 1)

∞∑
n=2

nanz
n−1

∣∣∣∣∣
<

∣∣∣∣∣α2 + 6α− 3− 4(α+ 1)
∞∑
n=2

nanz
n−1

∣∣∣∣∣ .
To satisfy (4), f has to satisfy

(α+ 1)

∞∑
n=2

n |an| 5 α− 1.

Thus, if f ∈ A satisfies (2), then the inequality (4) is satisfied.
Further, if we consider f given by (3), then we deduce that
∞∑
n=2

n |an| =
∞∑
n=2

(α− 1)

n(n− 1)(α+ 1)
=
α− 1

α+ 1

∞∑
n=2

(
1

n− 1
− 1

n

)
=
α− 1

α+ 1
.
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The proof of theorem is thus completed. �

The following theorem is on the extremal function for the class P (α).

Theorem 2. The extremal function f for the class P (α) is

f(z) = αz + α(α− 1) log(α− z). (5)

Proof. It is easy to see that f , given by (5), satisfies

f ′(z) = α− α(α− 1)

α− z
=
α(1− z)
α− z

.

This means that f given by (5) is the extremal function for the class P (α).
�

Now, we are ready to state and prove our next theorem.

Theorem 3. If f ∈ P (α) with an = 0, then

∞∑
n=2

nan 5 α− 1. (6)

The equality in (6) is attained for

f(z) = z +

∞∑
n=2

α− 1

n2(n− 1)
zn. (7)

Proof. If f ∈ P (α), then there exists a function w which is analytic in U,
w(0) = 0, |w(z)| < 1 (z ∈ U), and

f ′(z) =
α(1− w(z))

α− w(z)
.

This shows us that

|w(z)| =
∣∣∣∣α(f ′(z)− 1)

f ′(z)− α

∣∣∣∣ < 1.

Therefore, we have ∣∣(α+ 1)f ′(z)− α
∣∣ < α. (8)

Letting z → 1− in (8), we obtain that

1 +
∞∑
n=2

nan 5 α,

which is equivalent to (6). Also, considering f given by (7), we see that

∞∑
n=2

nan =

∞∑
n=2

α− 1

n(n− 1)
= (α− 1)

∞∑
n=2

(
1

n− 1
− 1

n

)
= α− 1.

�



ANALYTIC FUNCTIONS CONCERNING SOME SUBORDINATIONS 83

In the light of Lemma 1, we obtain the next result.

Theorem 4. If f ∈ A satisfies

<
(
zf ′′(z)

f ′(z)

)
<

α− 1

2(α+ 1)
(z ∈ U) (9)

for some real α > 1, then f ∈ P (α).

Proof. Let us consider an analytic function w in U given by

f ′(z) =
α(1− w(z))

α− w(z)
, (10)

with w(0) = 0, and such that f satisfies (9). It is easy to see that the
equation (10) gives

zf ′′(z)

f ′(z)
=
zw′(z)

w(z)

(
w(z)

α− w(z)
− w(z)

1− w(z)

)
.

Now, we suppose that there exists a point z0 ∈ U such that

max
|z|5|z0|

|w(z)| = |w(z0)| = 1.

Then, in view of Lemma 1, we get

z0w
′(z0) = kw(z0) (k = 1).

Letting w(z0) = eiθ, we obtain that

<
(
z0f
′′(z0)

f ′(z0)

)
= k<

(
eiθ

α− eiθ
− eiθ

1− eiθ

)
= k

(
α cos θ − 1

α2 + 1− 2α cos θ
+

1

2

)
=

α− 1

2(α+ 1)
.

This contradicts the condition (9) of the theorem. Therefore, we say that
there is no z0 ∈ U such that |w(z0)| = 1. This shows us that |w(z)| < 1 for
all z ∈ U. It follows from the equation (10) that

f ′(z) ≺ α(1− z)
α− z

,

which yields

f ∈ P (α).

�

Finally, we consider a sandwich-type result for f ∈ P (α).

Theorem 5. Let f ∈ A satisfy

β(1− z)
β − z

≺ f ′(z) ≺ α(1− z)
α− z

(11)



84 ŞAHSENE ALTINKAYA, SHIGEYOSHI OWA, AND SIBEL YALÇIN

for 1 < β < α. Then we have

β

z

(
z + log

(
β − z
β

)β−1
)
≺ f(z)

z
≺ α

z

(
z + log

(
α− z
α

)α−1
)
. (12)

Proof. The function

log

(
β − z
β

)β−1

is well-defined and analytic for |z| < 1 by the requirement log 1 = 0.
Now, let us define a function g by

g(z) =
α(1− z)
α− z

(z ∈ U).

Then g satisfies g(0) = 1 and

1 +
zg′′(z)

g′(z)
= 1 +

2z

α− z
.

If we take z = eiθ, then we get

<
(

1 +
zg′′(z)

g′(z)

)
= <

(
1 +

2eiθ

α− eiθ

)
= 1 +

2(α cos θ − 1)

α2 + 1− 2α cos θ
>
α− 1

α+ 1
.

Therefore, g is convex in U. This shows us that β(1−z)
β−z and α(1−z)

α−z are convex

in U with 1 < β < α.
Further, we note that f is close-to-convex in U. This means that f is

univalent in U. Thus, applying Lemma 2, if f satisfies the superordination
(11), then, taking γ = 1, we have that

1

z

z∫
0

β(1− t)
β − t

dt ≺ 1

z

z∫
0

f ′(t)dt ≺ 1

z

z∫
0

α(1− t)
α− t

dt.

It is easy to show that f satisfies the superordination (12). �
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