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About the convergence type of improper integrals
defining fractional derivatives

B. Kalam and G. Vainikko

Abstract. This article continues the analysis of the class of fraction-
ally differentiable functions. We complete the main result of [4] that
characterises the class of fractionally differentiable functions in terms of
the pointwise convergence of certain improper integrals containing these
functions. Our aim is to present an example, which shows that in order
to obtain all fractionally differentiable functions, one may not replace the
conditional convergence of those integrals by their absolute convergence.

1. Introduction

Consider the Riemann–Liouville integral operator Jα : C[0, T ] → C[0, T ]
of order α > 0, α ∈ R, defined by

(Jαu)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, 0 ≤ t ≤ T, u ∈ C[0, T ],

where Γ is the Euler gamma-function. In particular, (J1u)(t) =
∫ t
0 u(s)ds.

It is well known that, for α = m ∈ N = {1, 2, . . . }, the range of the operator
Jm is given by

JmC[0, T ] = {v ∈ Cm[0, T ] : v(k)(0) = 0, k = 0, . . . ,m− 1} =: Cm0 [0, T ],

and Jm is invertible on it, (Jm)−1v = Dm
0 v, where Dm

0 : Cm0 [0, T ]→ C[0, T ]
is the restriction of the operator Dm = (d/dt)m : Cm[0, T ] → C[0, T ].
Due to the semigroup property (see, e.g., [2, 1]),

JαJβ = JβJα = Jα+β for α > 0, β > 0,

and Jαu can be interpreted as a fractional integral of u. Note that Jα

is invertible on its range JαC[0, T ] also for fractional (noninteger) α > 0.
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Indeed, if Jαu = 0 for some u ∈ C[0, T ], then, taking m ∈ N, m > α, we
have u = 0, since

Jmu = Jm−αJαu = 0.

The description of the range JαC[0, T ], α > 0, is closely related to the
description of the class of fractionally differentiable functions. Namely, one
possible definition of the fractional differentiation operator of order α > 0 is
given by

Dα
0 v = (Jα)−1v, v ∈ JαC[0, T ].

This most natural definition is used, e.g., in the Mathematical Encyclopedia
[5]. The more popular Riemann–Liouville and Caputo fractional derivatives
Dα
R−Lv and Dα

Capv are closely related to Dα
0 v, see [4] for details.

By Hα[0, T ], 0 < α ≤ 1, we mean the standard Hölder space consisting of
functions v ∈ C[0, T ] such that

‖v‖Hα := max
0≤t≤T

|v(t)|+ sup
0≤s<t≤T

|v(t)− v(s)|
(t− s)α

<∞,

and byHα0 [0, T ], 0 < α < 1, we mean the closed (see [3]) subspace ofHα[0, T ]
consisting of functions v ∈ Hα[0, T ] such that

lim
ε→0

sup
0≤s<t≤T , t−s≤ε

|v(t)− v(s)|
(t− s)α

= 0.

Although the concept of fractionally differentiable functions is old, the class
of all fractionally differentiable functions has been described only recently.
Below we formulate one possible form of the criteria for fractional differen-
tiability of a function.

Theorem 1 (see [4], Theorem 2.1). A function v ∈ C[0, T ] is Dα
0 -differen-

tiale for an α ∈ (0, 1), i.e., v ∈ JαC[0, T ], if and only if v has the structure
v = γ0t

α + v0, where γ0 is a constant, v0 ∈ Hα0 [0, T ], v(0) = 0, and the
improper integral

w(t) :=

∫ t

0
(t− s)−α−1(v(t)− v(s))ds, 0 < t ≤ T, (1)

converges for any t ∈ (0, T ] and defines a function w ∈ C(0, T ], which has a
finite limit w(0) := limt→0w(t). Besides, for 0 < t ≤ T ,

(Dα
0 v)(t)) =

1

Γ(1− α)

(
t−αv(t) + α

∫ t

0
(t− s)−α−1(v(t)− v(s))ds

)
,

(Dα
0 v)(0) := ((Jα)−1v)(0) = Γ(α+ 1)γ0.

The situation seems to be similar for the fractional differentiability of
a function v ∈ Lp(0, T ). According to Conjecture 7.1 of [4], a function
v ∈ Lp(0, T ), 1 < p ≤ ∞, belongs to JαLp(0, T ), 0 < α < 1, if and
only if t−αv(t) lies in Lp(0, T ), the integral (1) is well defined for almost
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every t ∈ (0, T ] in the Lebesgue sense (hence converges absolutely), and
w ∈ Lp(0, T ). An essential question arrives: whether in Theorem 1 one can
replace the conditional convergence of the improper integrals (1) by their
absolute convergence? The answer occurs to be “no”: restricting ourselves
to the absolute convergence of those integrals, we do not obtain all func-
tions v ∈ JαC[0, T ]. To prove this claim, we construct an example function
v ∈ JαC[0, T ], such that the integral (1) does not converge absolutely for
some t ∈ (0, T ]. Namely, as we shall see in Section 2,

v(t) = t(1− t)α (log(1− t))−1 sin(log(1− t)), 0 < t < 1, v(0) = v(1) = 0,
(2)

occurs to be such a function with T = 1.

2. The study of the example function

To see the continuity of v(t) defined in (2) at points t = 0 and t = T = 1,
we observe that

lim
t→0

v(t) = lim
t→0

t(1− t)α sin(log(1− t))
log(1− t)

= lim
t→0

t(1−t)α·lim
t→0

sin(log(1− t))
log(1− t)

= 0

and

lim
t→1

v(t) = lim
t→1

t(1− t)α sin(log(1− t))
log(1− t)

= lim
t→1

t(1−t)α·lim
t→1

sin(log(1− t))
log(1− t)

= 0.

Proposition 1. The function v(t) defined in (2) satisfies the following
conditions of Theorem 1, with T = 1 and γ0 = 0:

v ∈ Hα0 [0, 1], (3)

w(t) :=

∫ t

0
(t− s)−α−1(v(t)− v(s))ds converges for any t ∈ (0, 1], (4)

w ∈ C(0, 1] and lim
t→0

w(t) = 0, thus w ∈ C[0, 1]. (5)

By Theorem 1, v ∈ JαC[0, 1] ⊂ JαLp(0, T ), p ≤ 1, so v is Dα
0 -differentiable

in the spaces C[0, 1] and Lp(0, 1). We claim that for t = 1 the convergence
of the integral (4) is non-absolute:∫ 1

0
(1− s)−α−1 |v(1)− v(s)| ds

=

∫ 1

0
s(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds =∞.

(6)

Proof. Proof of (3). First we show that v ∈ C1[0, 1). One has

v′(t) =

4∑
i=1

ui(t), (7)
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where

u1(t) = (1− t)α(log(1− t))−1 sin(log(1− t)),
u2(t) = −α · t(1− t)α−1(log(1− t))−1 sin(log(1− t)),
u3(t) = t(1− t)α−1(log(1− t))−2 sin(log(1− t)),
u4(t) = −t(1− t)α−1(log(1− t))−1 cos(log(1− t)).

Clearly v′ ∈ C(0, 1). To show that v ∈ C1[0, 1) we have to notice that a
finite limit limt→0 ui(t) exists for i = 1, 2, 3, 4. Using the change of variable
log(1− t) = x, we get

lim
t→0

sin(log(1− t))
log(1− t)

= lim
x→0

sinx

x
= 1. (8)

Knowing this, let us analyse the limits:

lim
t→0

u1(t) = lim
t→0

(1− t)α sin(log(1− t))
log(1− t)

= lim
t→0

(1−t)α · lim
t→0

sin(log(1− t))
log(1− t)

= 1,

lim
t→0

u2(t) = lim
t→0

−αt(1− t)α−1 sin(log(1− t))
log(1− t)

= −α lim
t→0

t(1− t)α−1 · lim
t→0

sin(log(1− t))
log(1− t)

= 0,

lim
t→0

u3(t) = lim
t→0

t(1− t)α−1 sin(log(1− t))
(log(1− t))2

=

= lim
t→0

sin(log(1− t))
log(1− t)

· lim
t→0

(1− t)α−1 · lim
t→0

t

log(1− t)

= lim
t→0

t

log(1− t)
= lim

t→0

1

− 1
1−t

= −1,

lim
t→0

u4(t) = lim
t→0

−t(1− t)α−1 cos(log(1− t))
log(1− t)

= lim
t→0

−t
log(1− t)

· lim
t→0

(1− t)α−1 · lim
t→0

cos(log(1− t)

= lim
t→0

−t
log(1− t)

= 1.

Thus, v′(0) := limt→0 v
′(t) = 1 + 0− 1 + 1 = 1, and v ∈ C1[0, 1).

Further, observe that

lim
t→1

(1− t)1−αv′(t) = lim
t→1

4∑
i=1

(1− t)1−αui(t) = 0. (9)
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Indeed, in the following fractions the numerator is bounded and the
denominator tends to infinity:

lim
t→1

(1− t)1−αu1(t) = lim
t→1

(1− t) sin(log(1− t))
log(1− t)

= 0,

lim
t→1

(1− t)1−αu2(t) = lim
t→1

−αt sin(log(1− t))
log(1− t)

= 0,

lim
t→1

(1− t)1−αu3(t) = lim
t→1

t sin(log(1− t))
(log(1− t))2

= 0,

lim
t→1

(1− t)1−αu4(t) = lim
t→1

−t cos(log(1− t))
log(1− t)

= 0.

We also conclude that (1 − t)1−α |v′(t)| |log(1− t)| ≤ c, 0 ≤ t < 1, for a
constant c, and therefore∣∣v′(t)∣∣ ≤ c (1− t)α−1

|log(1− t)|
, 0 ≤ t < 1. (10)

We are ready to finish the proof of (3). Since v ∈ C1[0, 1), we have
v ∈ Hα0 [0, θ] for all θ ∈ (0, 1). So it remains to show that

0 ≤ sn < tn < 1 and sn, tn → 1 ⇒ v(tn)− v(sn)

(tn − sn)α
→ 0 as n→∞.

We estimate (for sn, tn → 1):

|v(tn)− v(sn)| =
∣∣∣∣∫ tn

sn

v′(τ)dτ

∣∣∣∣ =

∣∣∣∣∫ tn

sn

(1− τ)α−1(1− τ)1−αv′(τ)dτ

∣∣∣∣
≤ max

sn≤τ≤tn
((1− τ)1−α

∣∣v′(τ)
∣∣)∫ tn

sn

(1− τ)α−1dτ.

Here ∫ tn

sn

(1− τ)α−1dτ =
1

α
((1− sn)α − (1− tn)α) ≤ 1

α
(tn − sn)α,

since |tα − sα| ≤ |t− s|α, for 0 < α < 1, s, t ≥ 0. Applying (9), we obtain

|v(tn)− v(sn)|
(tn − sn)α

≤ 1

α
max

sn≤τ≤tn
(1− τ)1−α

∣∣v′(τ)
∣∣→ 0.

Thus v ∈ Hα0 [0, 1].

Proof of (4). For 0 < t < 1, integrating by parts gives

w(t) =

∫ t

0
(t− s)−α−1(v(t)− v(s))ds = − 1

α
t−αv(t) +

1

α

∫ t

0
(t− s)−αv′(s)ds.

(11)
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Since v ∈ Hα0 [0, 1] and v(0) = 0, we have

t−αv(t) =
v(t)− v(0)

tα
→ 0, as t→ 0.

With this limit value at t = 0 the function t−αv(t) is continuous in [0, 1].
The integral in the right hand side of (11) converges for 0 < t < 1, since
v ∈ C1[0, 1). Moreover, we observe that w ∈ C[0, 1), w(0) = 0. Let now

t = 1. We prove that also the improper integral
∫ 1
0 (1−s)−αv′(s)dx converges.

According to (7) we present this integral as the sum of four integrals. Making
the change of variables log(1 − s) = −x, we have s = 1 − e−x, ds = e−xdx,
and we get

∫ 1

0
(1− s)−αu1(s)ds =

∫ 1

0
(log(1− s))−1 sin(log(1− s))ds

=

∫ ∞
0

e−x

−x
sin(−x)dx =

∫ ∞
0

e−x sinx

x
dx

=

∫ ∞
0

f1(x) sinx dx, f1(x) =
e−x

x
,

∫ 1

0
(1− s)−αu2(s)ds = −α

∫ 1

0
s(1− s)−1(log(1− s))−1 sin(log(1− s))ds

= −α
∫ ∞
0

ex(1− e−x) · e
−x

−x
· sin(−x)dx

= −α
∫ ∞
0

1− e−x

x
sinx dx

=

∫ ∞
0

f2(x) sinx dx, f2(x) =
1− e−x

x
,

∫ 1

0
(1− s)−αu3(s)ds =

∫ 1

0
s(1− s)−1(log(1− s))−2 sin(log(1− s))ds

=

∫ ∞
0

(1− e−x)ex(−x)−2e−x sin(−x)dx

= −
∫ ∞
0

1− e−x

x2
sinx dx

= −
∫ ∞
0

f3(x) sinx dx, f3(x) = −1− e−x

x2
,
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0
(1− s)−αu4(s)ds =

∫ 1

0
s(1− s)−1(log(1− s))−1 cos(log(1− s))ds

=

∫ ∞
0

(1− e−x)ex · e
−x

−x
· cos(−x)dx

= −
∫ ∞
0

1− e−x

x
cosx dx

=

∫ ∞
0

f4(x) cosx dx, f4(x) = −1− e−x

x
.

Clearly f2, f4 ∈ C[0,∞), and f1(x) sinx and f3(x) sinx are in C[0,∞). Due
to Dirichlet’s test, integrals

∫∞
0 f(x) sinx dx and

∫∞
0 f(x) cosx dx converge

if function f(x) tends monotonically to 0 as x → ∞, and this is the case
for fi(x), i = 1, 2, 3, 4. Thus the integrals

∫∞
0 fi(x) sinx dx, i = 1, 2, 3, 4,

converge and hence (4) holds true also for t = 1.

Proof of (5). In the proof of (4) we already saw that w ∈ C[0, 1). It
remains to prove the continuity of w at t = 1, i.e.,∫ t

0
(t− s)−αv′(s)ds→

∫ 1

0
(1− s)−αv′(s)ds as t→ 1.

We have already shown that the improper integral
∫ 1
0 (1 − s)αv′(s)ds

converges, hence
∫ 1
t (1 − s)αv′(s)ds → 0 as t → 0. Therefore it is sufficient

to show that∣∣∣∣∫ t

0
[(t− s)−α − (1− s)−α]v′(s)ds

∣∣∣∣→ 0 as t ↑ 1.

We establish a more strong relation∫ t

0
[(t− s)−α − (1− s)−α]ds max

0≤s≤t

∣∣v′(s)∣∣→ 0 as t ↑ 1. (12)

First,∫ t

0
[(t− s)−α − (1− s)−α]ds =

1

1− α
[
(1− t)1−α − 1 + t1−α

]
≤ 1

1− α
(1− t)1−α.

(13)

Further, the function (1 − s)α−1 |log(1− s)|−1 increases in (0, 1), and (10)
implies that

max
0≤s≤t

∣∣v′(s)∣∣ ≤ c(1− t)α−1

|log(1− t)|
.

Together with (13), this implies (12), and w ∈ C[0, 1].
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Proof of (6). The integrand in (6) has a singularity only at s = 1. It is
sufficient to analyse the integral

I =

∫ 1

1/2
(1− s)−1 |log(1− s)|−1 |sin(log(1− s))| ds.

Making the change in variables s̃ = 1 − s and after that writing again
s instead of s̃, we have

I =

∫ 1/2

0
s−1 |log s|−1 |sin(log s)| ds.

After the change of variable t = − log s, we get that

I = −
∫ ∞
log(2)

et · t−1 |sin t| e−tdt =

∫ ∞
log(2)

|sin t|
t

dt =∞.

The proof of Proposition 1 is complete. �
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