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An Enestrom—Kakeya theorem for
new classes of polynomials
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ABSTRACT. Consider the class of polynomials P(z) = > 7, a;z’ with
0<ao<ai <---<apn. The classical Enestrom—Kakeya Theorem states
that any polynomial in this class has all its zeros in the unit disk |z| <1
in the complex plane. We introduce new classes of polynomials by im-
posing a monotonicity-type condition on the coefficients with all indices
congruent modulo m for some given m < n. We give the inner and outer
radii of an annulus containing all zeros of such polynomials. We also
give an upper bound on the number of zeros in a disk for polynomials
in these classes.

1. Introduction

A classic result concerning the location of the zeros of a polynomial of a
complex variable is the so-called Enestrom-Kakeya Theorem.

Theorem 1.1 (Enestrém-Kakeya). If P(z) = > 1 a;jz’ is a polynomial
of degree n with coefficients satisfying 0 < ag < a1 < --- < ay, then all the
zeros of P lie in |z| < 1.

In 1893, Gustav Enestrom published Theorem 1.1 in Swedish in a paper on
the theory of pension funds [4]. Soichi Kakeya [12] independently published a
slightly more general result in 1912. Enestrom published a French translation
of his 1893 proof in 1920 (see [5]). Theorem 1.1 has thus become known as
the Enestrom—Kakeya Theorem. For more details on the history of this
result (and a survey of its generalizations) see [8].

An early and elegant generalization of the Enestrom—Kakeya Theorem is
Theorem 1.2, due to Joyal et al. [11].
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Theorem 1.2. If P(z) = Y. ja;z’ is a polynomial of degree n with
coefficients satisfying ag < a1 < -+ < an, then all the zeros of P lie in
2] < (an — ao + lao|)/|an|-

Aziz and Mohammad [1] gave a result related to the Enestrom-Kakeya
Theorem, but concerning analytic functions and a “t condition” on the real
and imaginary parts of the coefficients. We state their result as Theorem
1.3.

Theorem 1.3. Let f(z) =3 7%, ajz) be analytic in |z| < t. If Re(a;) =
a; and Im(a;) = p; for j =0,1,2,... and for some k and r,

ap <tag < - < thay > "oy > -, and

Bo<thy <o S 2t By 200
then f has all its zeros in
t]ag|
(agth + Bt7) — (g + Bo)

Gardner and Govil [6, 7] put hypotheses similar to those of Theorem 1.3
on the coefficients of polynomials and gave a number of generalizations of
the Enestrom-Kakeya Theorem. Aziz and Zargar [2] introduced the idea
of imposing a ¢ condition on the even indexed and the odd indexed real
coefficients (separately) of a polynomial. Cao and Gardner [3] applied such a
restriction to the complex coefficients of a polynomial. A corrected statement
of their result is given in Theorem 1.4 (some slight errors involving the powers
of t were present in the original statement of the result in [3]).

>
2 2 5

Theorem 1.4. Let P(z) = Y I ja;z’ be a polynomial of degree n with
complex coefficients, where Re(aj) = o and Im(a;) = B forj =0,1,2,...,n,
satisfying

ag < Pag <tlag <o < PPag > M Pagpy > > PP ag ),
a1 < tPaz <tlag < - <t Pag g > tHage > - > 22 Q2| (n+1)/2)—1s
Bo < t2Bo < t'By < - <13 Boy > 2By 0 > > 2M2By 1 and
Br <Py <t'Bs <o ST PPy g >t Bog iy > e > ¢2ln/2] B2l (nt1)/2)-1
for some k, £, s,q in {0,1,...,|n/2|}. Then all the zeros of P lie in Ry <
|z| < Rg, where Ry = min{t]'g[(il,t}, Ry = max{%ﬂ, %}, and
My = —(ap+ Bo) + (Jaa| + |81t — (1 + Br)t
+ 2[nt®® 4 290 11271 4 Bogt® + Bog_ 1t — (1 + Buo1)t" !
— (o + B)t" + (lan—1| + |Bua )" + (Jom| + 18a 2",
My = (laglt* = (o + Bo))t" ' + (laa[t* — (e + B1))t"
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+ (t4 + 1)(a2ktn—1—2k + a%_ltn—% + 52Stn—1—2s + 52q_1tn—2q)
+ (|an71| - (O‘nfl + ﬁnfl)tél) - (an + ,Bn)tg

2k—2 263
SR Yl I S A D S A
j=0,j even =1, odd
25—2 2¢—3
T e
j=0,j even j=Lj even
2|n/2] 2[(n+1)/2]-1
+(1—th) > " ey gt
j=2k+2,j even j=20+1,5 odd
2|n/2) 2[(n+1)/2]-1
D TS ST
j=2s12,j even j=2¢+1,7 odd

Notice the use of the parameters 2|n/2] and 2[(n + 1)/2] — 1 in Theorem
1.4. Regardless of the parity of natural number n, the largest even natural
number less than or equal to n is 2|n/2| and the largest odd natural number
less than or equal to n is 2| (n + 1)/2] — 1. In fact, 2|n/2] = 2[(n — 1)/2]
and 2| (n+1)/2] —1=2[(n—2)/2] + 1. One can more generally show that
the largest integer N less than or equal to n which is congruent to £ modulo
mis N=m[(n—m—k+1)/m]+k.

2. Location of zeros results

Inspired by the hypotheses of Theorem 1.4, we now present results for
the class of polynomials which satisfy the monotonicity ¢ condition with
a reversal as considered in Theorem 1.3, but as concerns the coefficients
with indices the same modulo m. For example, if m = 2, then we apply
the condition to all coefficients with indices congruent to 0 (mod 2) and
1 (mod 2); that is, the condition is satisfied by the even indexed and odd
indexed coefficients considered separately (as in Theorem 1.4). We consider
polynomials satisfying this condition on the real part and imaginary part of
the coefficients in our main result.

n
Theorem 2.1. Let P(z) = Zajzj be a polynomial of degree n with
j=0
Re(aj) = a; and Im(a;) = B;, for some m € N with m < n, and certain
positive t,
@y < Qprt™ < Qo™ < - < ap ™ 2 gy g R >

> Qnf(nm—k1)fm] 4kt T RED/m]
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and
B < Brpmt™ < Bryomt®™ < - < B tmle/m > g gmlsk/mlEm s

> Bn[(nom—k-t1)/m] 45t TR/

for k€ {0,1,....m =1}, rp =k (mod m), 0 < ryp <mn, sp =k (mod m),
and 0 < sg < n. Then all the zeros of P lie in Ry < |z| < Ry, where

. t]a0| M2 1
Ry = g d Ry = —= .
1 mln{ Ml, } an 2 max{an| 7

Here

m—1 m—1
My = —(a0+B0) + Y (Jar| — (ck + B)tF +2> (™ + By t™)
k=1 k=0

n

+ Z |ak| Oék +ﬁk>)tk

k=n—m+1

and

3
L

My =) (Jag|t*™ — (aj + Be))t" 1 F
0

£
I
—

+ (tQm + 1) (Oérktnflfrk 4 ﬁSktnflfsk)

3

i
o

+ Z (Jax] = (e + BR) ™M) = (an + Bt

k=n—m+1
m—1 [ (rp—k)/m—1
+ (tQm o 1) Z ak_‘_emtnflfkfﬁm
k=0 =1
(sk—k)/m—1
+ ) Brpemt™ R
=1

[(n—m—k+1)/m]—-1

m—1
) Sl B S
k=0

b=(rp—k)/m+1
[(n—m—k+1)/m]-1

D

l=(sp—k)/m+1

Notice that when m = 2, Theorem 2.1 reduces to Theorem 1.4. If the
coefficients of P are real, then Theorem 2.1 implies the following result.
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Corollary 2.1. Let P(z) = Z?:o a;jz’ be a polynomial of degree n with
real coefficients where for some m € N with m < n, and certain positive t,
ap < Appmt™ < ak+2mt2m <...< amtm[rk/mj > aTkertmLTk/mJ-ﬁ-m > ...

> Ay [(n—m—k+1)/m] +ktm [(n=m=k+1)/m]

for k€ {0,1,...,m —1}, ry. =k (mod m), and 0 < rp < n. Then all the
zeros of P lie in Ry < |z| < Ry, where

. [ tla My 1
Ry :mln{JWd,t} and Rs :maX{Q,t}.

1 |an|
Here,
Mlz—a0+z lag| — ax) tk+22arkt”“+ Z (|ag| — az)t*
k=n—m+1
and
m—1
M2 _ {(|ak|t2m _ ak)tnflfk + (tQm + 1)arktnflfrk
k=0
(re—Fk)/m—1
+ (t2m o 1) Z akJrEmtnflfkum
=1
[(n—m—k+1)/m]-1
1 D S

{=(r—k)/m+1

n
+ D (lar] — gty — g
k=n—m+1

In addition, if ¢ = 1, then Corollary 2.1 reduces to the following corollary.

Corollary 2.2. Let P(z) = Z?:o a;jz’ be a polynomial of degree n with
real coefficients, where for some m € N with m < n,

ag < A < Opgom <00 < Qry, > Arp+m > 2 Am[(n—m—k-+1)/m]+k

for k€ {0,1,...,m —1}, ry, =k (mod m), and 0 < rp < n. Then all the
zeros of P lie in Ry < |z| < Ra, where

M.
R = min{w,l} and Ry = max{Q,l}.
My |an|

fag+Z|ak|fak +22ark+ Z (lak| — ax),

k=n—m+1

Here,
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m— n—1
Z {(lax| — ak) + 2a,,) + Z (lag| — ax) — ap.
= k m+1

3. Number of zeros results

With the bounds M; and M, established above, we can easily prove re-
sults concerning the number of zeros in a disk for the classes of polynomials
addressed in the previous section. For a list of several such previous results,
see the introductory section of [9].

Theorem 3.1. Let P(z) = Z?:o ajzj be a polynomial of degree n with
Re(a;) = o, Im(a;) = B;, and ag # 0. Suppose the coefficients of P satisfy
the hypotheses of Theorem 2.1. Then, for 0 < § < 1, the number of zeros of
P in the disk |z| < 6t is less than

1 ) M
0O,
log 1/5 2 [tmag|’

where
m—1 m—1
M= (jar] = (o + BT 423 (an " 4 By 194)
k=0 k=0
n
+ > (lak] = (an + Bt
k=n—m-+1

With m = 2 in Theorem 3.1 we get, as a corollary, Theorem 2.3 of [10].

We can extract a number of corollaries from Theorem 3.1. In particular,
if P has real coefficients, then with t = 1 we have the following corollary.

Corollary 3.1. Let P(z) = Z;‘L:o a;z0 be a polynomial of degree n with
real coefficients, where ag # 0. Suppose the coefficients of P satisfy the
hypotheses of Corollary 2.2. Then, for 0 < § < 1, the number of zeros of P
in the disk |z| < ¢ is less than

1 1 M
oo —
log 1/8 % Jao|’
where
m—1
M = (lag| — ax) +22ark+ Z (lak| — ax).
k=0 k=n—m+1

As an example, consider the polynomial P(z) = (322 + 10z + 1)(2% +
224+ 1) = 14+ 102 + 322 + 2% + 102% + 32° + 26 + 1027 + 32%. P has the
roots (—5 4 1/22)/3, 11/9,12/9 1%/9 15/9 17/9 and 18/% (where we use the
principal branch of the 9th root function so that 19 = exp(27i/9); notice
that (—5++/22)/3 ~ —0.103, (—5 — 1/22)/3 ~ —3.230, and that each of the
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remaining roots has modulus 1). With ag = a3 = ag = 1, a1 = a4 = a7 = 10,
as =as =ag =3, 79 =6, 11 =7, and ro = 8, we see that Corollary 3.1
applies to P with m = 3. We find that M = 2(ag+a;+ag) =2(1+10+3) =
28. With § = 0.15, Corollary 3.1 implies that the number of zeros of P in
|z| <4 is less than

1 1 M 1

O _—
log1/5 Clag] ~ log1/0.15
which implies that P has at most one zero in |z| < 0.15, namely (—5++/22)/3.
In fact, P has exactly one zero in |z| < 0.15, and so Corollary 3.1 is sharp
for this example.

log 28 ~ 1.76,

4. Proofs of results

We need a lemma which appears in Titchmarsh’s book [13] (see page 171
of the second edition).

Lemma 4.1. Let F(z) be analytic in |z| < R. Let |F(z)| < M in the disk
|z| < R and suppose F(0) # 0. Then, for 0 < § < 1, the number of zeros of
F in the disk |z| < 6R is less than

1 1 M
(0] .
log1/6 % [F(0)]

Proof of Theorem 2.1. Define G(z) = (" — 2™)P(z). Then

n n n
G(z)=({t"—-2") Zajzj = Zajtmzj — Zajszrm
=0 =0 =0

m—1
k

(aktmzk + At 2T g gt 2T 4
=0
N amH”_m—kﬂ)/m]+kz—mtmzm“”—m—k+1)/m1+k—m

+amf(n—m—k+1)/m'\ +ktmzm[(n—m—k+1)/m] +k)

m—1
_ Z (akzmm +ak+mzk+2m +ak+2m2k+3m T
k=0

F [kt 1) ] b2 (TR /m T

+am[(n—m—k+1)/m“+k2m’—(n_m_k+1)/m]+k+m)

m—1
— Z (aktmzk + ak+mtmzk+m + ak+2mtmzk+2m 4.
k=0

+ O‘m((n—m—k+1)/m]+k_mtmzm((n—m—k+1)/m]+k_m
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+Oémf(n—m—k+1)/m1+ktmzm[(n_m_k+1)/m]+k)
m—1
44 Z (ﬂktmzk + 6k’+mtmzk+m + 6k+2mtmzk+2m 4.
k=0

+ B[ (k1) fm] 4kt ™2™ (MR /m]k=m

B 1) "2 kD

m—1
_ Z (Ozkzk—i-m + ak+mzk+2m + ak+2mzk+3m ..
k=0

+ Oém((n—m—kﬂ)/m}+k_msz(n—m—k+1)/m1+k

T [(n—m—k+1)/m] k2" [(n—m—k+1)/m] +k+m)

m—1

—i), (5kzk+m + Boam T 4 Brom I 4
k=0

+ Bmf(n—m—k+1)/m1+k_msz(”—m—k+1)/m1+k

+5m((n—m—k+1)/m1+ksz("—m—k+1)/m]+k+m)

—_

m— m—1 ([ (rk—Fk)/m

g k+¢
- akth + Z Z (akJrfmtm - Oék+(e71)m)z +em

[(n—m—k+1)/m]
+ Z (ak+€m

=(r—k)/m+1

— g akszrm

k=n—m+1

tm Sh+Hm

= Qht(t—1)m)

m—1 [ (sk—k)/m

i) D Brremt™ = Bra(e-1ym) 2™

k=0 (=1
[(n—m—k+1)/m)]
+ > (Bremt™ = Bros (¢—1ym) 2™
t=(si—k)/m+1
= apt"™ + G (z)
On [z| = t, we have

m—1 ([ (re—k)/m

m—1
G1(2)] < Z |ag [t*F™ + Z Z | Qg emt™ = Qg (- 1y 1T
k=1 k=0 =1
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[(n—m—k+1)/m]

+ Z |ak’+fmtm - Oék+([_1)m|tk+€m
{=(rp,—k)/m+1

n

+ Z |a;€|tker
k=n—m+1
m—1 [ (sx—k)/m

+ Z Z ’BkJr@mtm — 5k+(£_1)m’tk+€m

(=1
[(n—m—k+1)/m]
+ Z ’/Bk—i-fmtm - ﬁkJr(zfl)m‘threm
l=(s,—k)/m+1
m—1 m—1 [ (rk— k)/m
[(n—m—k+1)/m]
+ Z (Qg (6= 1)m — ket ™ T
{=(rp,—k)/m+1
m—1 [ (sk—k)/m
+ Z (5k+€mtm - /BkJr(gfl)m)thrzm

k=0 =1
[(n—m—k+1)/m]

+ Z (Br+(e-1ym — Bretom gk tem

{=(sp—k)/m+1

n
+ Z |ak|tk+m
k=n—m+1
-1
Jag [t5F™ + Z {_akthrk + 2a, tTE™
1

3

ﬁ

_ak+m((nimik+1)/m_‘tk+m+mf(nfmfk+1)/m] }

m—1
Y {—ﬁktm+k + 23, 5T
k=0

—~Brtm (k1) m] T (1Mo kE ) /m }

n
+ Z |ay[tFT™

k=n—m+1
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m—1
= —apt™ — Bot™ + Y _ (x| — (ag + Bi))t"™
k=1
—1
+2 ) (o 7T 4 B 19T

3

bl
i

+ > (akl = (an + By

k=n—m+1
=t"Mj.

Applying Schwarz’s Lemma (see page 168 of [13]) to G1(z), we get
< thﬂZ‘

|G1(2)] =t My|z| for |z| < t.

This implies
|G(2)| = [(t"™ = 2™)P(2)| = |aot™ + G1(2)|
> t"ag| — |G1(2)| > t"|ag| — tmflMl\z| for |z| <t.

Hence, if |z| < Ry = min {t|ag|/M1,t}, then G(z) # 0 and so P(z) # 0.
Next we take G(z) = (™ — 2™)P(z) = Ga(2) — anz™t™ and so

m—1 m—1 [ (re—Fk)/m
Ga(2) =Y art™2"+ )¢ Y (hromt™ = A e—1ym) P
k=0 k=0 /=1

[(n—m—k+1)/m]
+ Z (akJrﬁm
L=(rp—k)/m+1

m k+fm
t" = Qg (e-1)m)®

n—1

_ Z ag zk-i—m

k=n—m+1
m—1 ( (se—k)/m

+iy > Brremt™ = Brs(—tym) 2"

k=0 /=1
[(n—m—k+1)/m]

+ Z (Beremt™ = Brrt—1ym)#

{=(sp—k)/m+1

k+4fm

Then

m—1

1
Zn+m—1G - = a tmzn+m—1—k

k=0
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1 (re—Fk) /m
+ (Ohgemt™ — ak+(£_1)m)zn+m_1_k_gm
k=0
[(n—m—k+1)/m]
* Z (Qhrtmt™ — Qg (1) 2" TR
t=(rp—Fk)/m+1
n—1
— Z CLkzn—l—k
k=n—m+1
m—1 [ (sk=k)/m
+e (Brremt™ — ﬁk+(eil)m)zn+mflfkffm
k=0 =1

[(n—m—k+1)/m]

+ Z (/Bk-‘rfmtm — Bk+(£—1)m)z

t=(sg—k)/m+1

n+m—1—k—fm

For |z| =t we have

1

m
Ltm=la, ( >’§Z| p|En+em—1-k

m—1 [ (rk—k)/m

+) D7 [thmt™ = gyt
k=0 =1
[(n—m—k+1)/m]

+ Z |t t™ — Qe (o yg TR

t=(rp—k)/m+1
m—1 [ (sp—k)/m

+ Z Z ’ﬁk—%mtm - Bk+(ﬁ_1)m|tn+m_1—k—fm

k=0 =1
[(n—m—k+1)/m]

+ Z ‘Bk+£mtm - ,Bk+(g,1)m|tn+m*1*k*€m
£=(Sk*k)/m+1

+ Z g1k

k=n—m+1
—1
S {(oulf™ = (ot =15 (1)

k=0
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(r—Fk)/m—1
+58ktn—1—sk) + (tQm o 1) Z ak+£mtn—1—k—€m
=1
(sk—k)/m—1
b Btk
(=1

[(n—m—k+1)/m]—-1
+(1 . t2m) Z ak—i—ﬁmtnilikizm""
l=(r—k)/m+1
[(n—m—k+1)/m]-1

Z Brepomt" 1R

l=(sp—k)/m+1

n—1
+ ) (arl=(ok + Bt = (ap + B2
k=n—m-+1

= M.
Hence, by the Maximum Modulus Theorem,

1
PRI e ()’ < My for |z| < t,
z

which implies that

|Ga(2)] < My|z|"*™ 1 for |z| >

&+ | =

Therefore, for |z| > 1/t we have
G(2)| = | = anz™" + Ga(2)| 2 lag||2]"™™ — Ma|z[""7

= [ (lan|2] — Ma).

So, if |z| > Ry = max{%,%}, then G(z) # 0 and hence P(z) # 0. The

proof is complete. O
Proof of Theorem 3.1. As in the proof of Theorem 2.1, for |z| =t we have
G(2)] = [t = 2")P(2)] = |aot™ + G1(2)] < |aolt™ + |G1(2)]

m—1 m—1
<> (lar] = (o + BT 42 (an 75 4 B ™)
k=0 k=0
n
+ Y (akl = (o + BT = M.
k=n—m-+1

Now G(z) is analytic in |z| < ¢, and |G(z)| < M for |z| = t. So, by Lemma
4.1 and the Maximum Modulus Theorem, the number of zeros of G (and
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hence of P) in |z| < dt is less than
! lo Mo 1 lo
log1/5 “2|G(0)] ~ logl/o % Jtmag|
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