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A new characterization of symplectic
groups C2(3

n)

Behnam Ebrahimzadeh and Reza Mohammadyari

Abstract. We prove that symplectic groups C2(3
n), where n = 2k

(k ≥ 0) and (32n + 1)/2 is a prime number, can be uniquely determined
by the order of the group and the number of elements with the same
order.

1. Introduction

Let G be a finite group, π(G) be the set of prime divisors of the order of
G and πe(G) be the set of orders of elements in G. If k ∈ πe(G), then we
denote the number of elements of order k in G by mk(G) and the set of the
numbers of elements with the same order in G by nse(G). In other words,

nse(G) = {mk(G) : k ∈ πe(G)}.
Also we denote a Sylow p-subgroup of G by Gp and the number of Sylow
p-subgroups of G by np(G). The prime graph Γ(G) of group G is a graph
whose vertex set is π(G), and two vertices u and v are adjacent if and only
if uv ∈ πe(G). Moreover, assume that Γ(G) has t(G) connected components
πi, for i = 1, 2, . . . , t(G). In the case where G is of even order, we assume
that 2 ∈ π1.

The characterization of groups by nse(G) pertains to Thompson’s problem
(see [6]) which Shi posed in [9]. The first time, this type of characterization
was studied by Shao and Shi. In [8], they proved that if S is a finite simple
group with |π(S)| = 4, then S is characterizable by nse(S) and |S|. Following
this result, in [5, 4, 7] it is proved that sporadic simple groups, linear groups
L2(p), where 2n − 1 or 2n + 1 is a prime number, and Suzuki groups Sz(q),

Received October 27, 2018.
2010 Mathematics Subject Classification. 20D06; 20D60.
Key words and phrases. Order of an element; elements with the same order; prime

graph; symplectic group.
http://dx.doi.org/10.12697/ACUTM.2019.23.12
Corresponding author: Behnam Ebrahimzadeh

117



118 BEHNAM EBRAHIMZADEH AND REZA MOHAMMADYARI

where q − 1 is a prime number, can be uniquely determined by the order
of the group and nse(G). In this paper, we prove that symplectic groups
C2(3

n), where n = 2k (k ≥ 0) and (32n + 1)/2 is a prime number can be
uniquely determined by the order of the group and the number of elements
with the same order. In fact, we prove the following theorem.

Main Theorem. Let G be a group with |G| = |C2(3
n)| and nse(G) =

nse(C2(3
n)), where n = 2k (k ≥ 0) and p = (32n + 1)/2 is a prime number.

Then G is isomorphic to C2(3
n).

2. Notation and preliminaries

Lemma 2.1 (see [3]). Let G be a Frobenius group of even order with
kernel K and complement H. Then

(a) t(G) = 2, π(H) and π(K) are vertex sets of the connected components
of Γ(G);

(b) |H| divides |K| − 1;
(c) K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a
normal series 1 EH EK E G such that G/H and K are Frobenius groups
with kernels K/H and H, respectively.

Lemma 2.3 (see [1]). Let G be a 2-Frobenius group of even order. Then

(a) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;
(b) G/K and K/H are cyclic groups satisfying |G/K| divides
|Aut(K/H)|.

Lemma 2.4 (see [10]). Let G be a finite group with t(G) ≥ 2. Then one
of the following statements holds:

(a) G is a Frobenius group;
(b) G is a 2-Frobenius group;
(c) G has a normal series 1 E H E K E G such that H and G/K are

π1-groups, K/H is a non-abelian simple group, H is a nilpotent group
and |G/K| divides |Out(K/H)|.

Lemma 2.5 (see [2]). Let G be a finite group and m be a positive integer
dividing |G|. If Lm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.

Lemma 2.6. Let G be a finite group. Then for every i ∈ πe(G), ϕ(i)
divides mi(G), and i divides

∑
j|imj(G). Moreover, if i > 2, then mi(G) is

even.

Proof. By Lemma 2.5, the proof is straightforward. �
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Lemma 2.7 (see [11]). Let q, k, l be natural numbers. Then

(1) (qk − 1, ql − 1) = q(k,l) − 1.

(2) (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k/(k, l) and l/(k, l) are odd,

(2, q + 1) otherwise.

(3) (qk − 1, ql + 1) =

{
q(k,l) + 1 if k/(k, l) is even and l/(k, l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1, the inequality (qk − 1, qk + 1) ≤ 2
holds.

Lemma 2.8. Let G be a symplectic group C2(3
n), where p = (32n + 1)/2

is a prime number. Then mp(G) = (p − 1)|G|/(8p) and, for every i ∈
πe(G)− {1, p}, p divides mi(G).

Proof. Since |Gp| = p, we deduce that Gp is a cyclic group of order p.
Thus

mp(G) = ϕ(p)np(G) = (p− 1)np(G).

Now it is enough to show that np(G) = |G|/(8p). By [10], p is an isolated
vertex of Γ(G). Hence |CG(Gp)| = p and |NG(Gp)| = xp for a natural number
x. We know that NG(Gp)/CG(Gp) embeds in Aut(Gp), which implies x | p−
1. Furthermore, by Sylow’s theorem, np(G) = |G : NG(Gp)| and np(G) ≡ 1
(mod p). Therefore p divides |G|/(xp) − 1. Thus q2 + 1/2 divides q4(q4 −
1)(q2 − 1)/2/(xp) − 1. It follows that q2 + 1 divides (2q8 − 4q6 + 2q4 − x),
hence q2 +1 divides (q2 +1)(2q6−6q4 +8q2−8)+(8−x), and since x | p−1,
we obtain that x = 8. Let i ∈ πe(G)−{1, p}. Since p is an isolated vertex of
Γ(G), we conclude that p - i and pi /∈ πe(G). Thus Gp acts fixed point freely
on the set of elements of order i by conjugation and hence |Gp| | mi(G). So
we conclude that p | mi(G). �

3. Proof of the Main Theorem

In this section, we prove the main theorem by the following lemmas. We
denote by C the symplectic group C2(3

n), where n = 2k (k ≥ 0) and p :=
(32n + 1)/2 is a prime number. Recall that G is a group with |G| = |C| and
nse(G) = nse(C).

Lemma 3.1. We have

m2(G) = m2(C), mp(G) = mp(C), np(G) = np(C),

p is an isolate vertex of Γ(G), and p | mk(G) for every k ∈ πe(G)− {1, p}.

Proof. By Lemma 2.6, for every 1 6= r ∈ πe(G), r = 2 if and only if
mr(G) is odd. Thus we deduce that m2(G) = m2(C). According to Lemma
2.6, (mp(G), p) = 1. Thus p - mp(G) and hence Lemma 2.8 implies that
mp(G) ∈ {m1(C),m2(C),mp(C)}. Moreover, mp(G) is even, so we conclude
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that mp(G) = mp(C). Since Gp and Cp are cyclic groups of order p and
mp(G) = mp(C), we deduce that mp(G) = ϕ(p)np(G) = ϕ(p)np(C) =
mp(C), so np(G) = np(C).

Now we prove that p is an isolated vertex of Γ(G). Assume the con-
trary. Then there is t ∈ π(G) − {p} such that tp ∈ πe(G). So mtp(G) =
ϕ(tp)np(G)k, where k is the number of cyclic subgroups of order t in CG(Gp)
and since np(G) = np(C), it follows that

mtp(G) = (t− 1)(p− 1)|C|k/(8p).

If mtp(G) = mp(C), then t = 2 and k = 1. Furthermore, Lemma 2.5 yields
p | m2(G) + m2p(G) and since m2(G) = m2(C) and p | m2(C), we have
p | m2p(G), which is a contradiction. So Lemma 2.8 implies that p | mtp(G).
Hence p | t − 1, and since mtp(G) < |G|, we have that t − 1 ≤ 8. In
conclusion we deduce that t ∈ {3, 4, 5, 6, 7, 8, 9}. Now, since p - mtp(G), this
is a contradiction.

Let k ∈ πe(G) − {1, p}. Since p is an isolated vertex of Γ(G), we have
that p - k and pk /∈ πe(G). Thus Gp acts fixed point freely on the set of
elements of order k by conjugation and hence |Gp| | mk(G). So we conclude
that p | mk(G). �

Lemma 3.2. The group G is neither a Frobenius group nor a 2-Frobenius
group.

Proof. Let G be a Frobenius group with kernel K and complement H.
Then by Lemma 2.1, t(G) = 2 and π(H) and π(K) are vertex sets of the
connected components of Γ(G), and |H| divides |K| − 1. Now by Lemma
3.1, p is an isolated vertex of Γ(G). Thus we deduce that (i) |H| = p and
|K| = |G|/p, or (ii) |H| = |G|/p and |K| = p. Since |H| divides |K| − 1,
we conclude that the last case can not occur. So |H| = p and |K| = |G|/p,
hence

(q2 + 1)/2 | q
4(q4 − 1)(q2 − 1)/2

(q2 + 1)/2
− 1.

We conclude that

(q2 + 1) | ((q2 + 1)(2q6 − 6q4 + 8q2 − 8) + 7.

Thus q2 + 1 | 7 which is impossible.
We now show that G is not a 2-Frobenius group. Let G be a 2-Frobenius

group. Then G has a normal series 1 EH EK E G such that G/H and K
are Frobenius groups by kernels K/H and H, respectively. Set |G/K| = x.
Since p is an isolated vertex of Γ(G), we have |K/H| = p and |H| = |G|/(xp).
By Lemma 2.3, |G/K| divides |Aut(K/H)|. Thus x | p − 1 and since, by
Lemma 2.7, (p − 1, q − 1) = 1, we have (q2 − 1/2, q2 + 1/2) = 1. Now,
since |G/K||(p− 1), we deduce that q2 + 1/2|H. The group H is nilpotent.
Therefore, Ht oK/H is a Frobenius group with kernel Ht and complement
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K/H, where t = q2 + 1/2. So |K/H| divides |Ht| − 1. It implies that
q2 + 1/2 ≤ (q2 + 1)/2− 1, but this is a contradiction. �

Lemma 3.3. The group G is isomorphic to the group C.

Proof. By Lemma 3.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and
G satisfies one of the cases of Lemma 2.4. Now, Lemma 3.2 implies that G
is neither a Frobenius group nor a 2-Frobenius group. Thus only the case
(c) of Lemma 2.4 occurs. So G has a normal series 1 E H E K E G such
that H and G/K are π1-groups, and K/H is a non-abelian simple group.
Since p is an isolated vertex of Γ(G), we have p | |K/H|. According to the
classification of the finite simple groups we know that the possibilities are:
alternating groups An, where n > 5; 26 sporadic finite simple groups; simple
groups of Lie type. We deal with the above cases separately.

Step 1. Let K/H ∼= An, where n ≥ 5, n = p′, p′ + 1, p′ + 2. For this
purpose, we consider (q2 + 1)/2 = p′. Then we deduce p′ + 1 = (q2 + 3)/2.

Now p′ + 1 | |An| | |G|, but we can see easily that q2+3
2 - |G|, which is a

contradiction. Now we consider (q2 + 1)/2 = p′−2, so p′ = (q2 + 4)/2. Since

p′ | |An | |G|, but we can see easily that q2+4
2 - |G|, we obtain a contradiction.

Step 2. If K/H is a sporadic group, then we consider (q2 + 1)/2 =
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 71, where this number is the or-
der of components of sporadic groups. If, for example, (q2 + 1)/2 = 5,
then we deduce q2 = 9, and hence q = 3. Now, since M11 - |G|, this is a
contradiction. For the other groups we have a contradiction, similarily.

Step 3. Here we suppose that K/H is isomorphic to a group of Lie type.
For this purpose, we consider the following cases.

Case 1. Let K/H ∼= Bn(q′), where n ≥ 2, or Cn(q′), where n ≥ 3. If
K/H ∼= Bn(q′), where n ≥ 2, then we consider (q2 + 1)/2 = (q′n + 1)/2 so
q2 = q′n. On the other hand,

|Bn(q′)| = 1

(2, q′ − 1)
q′n

2
n∏

i=1

(q′2i − 1) | q4(q4 − 1)(q2 − 1)

and also we know that each p-part of K/H divides p-part of G. Since
p = (q2 + 1)/2, we have q2 = 2p− 1. Now, since |Bn(q′)| | |G|, we conclude
that

4p(p− 1)(p− 2)(2p− 1)2 = q′n
2

n∏
i=1

(q′2i − 1).

Thus we have p | q′n2
or p |

∏n
i=1(q

′2i − 1). On the other hand, q′n
2 | p − 1

or p− 2 or (2p− 1). If p | q′n2
, then p - q′, and so p |

∏n
i=1(q

′2i− 1). In other

words, p | q′2t − 1, where 1 ≤ t ≤ n. From q′n
2 | p− 1 it follows that

q′n
2 ≤ p− 1 ≤ p ≤ q′2t − 1 ≤ q′2n − 1 ≤ q′2n.
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As a result q′n
2 ≤ q′2n, so n2 ≤ 2n, n ≤ 2, but this is a contradiction.

Similarily, there is a contradiction for other cases.

Case 2. Let K/H ∼= Dn(q′), where n ≥ 4 or 2Dn(q′) with n ≥ 4. Then
we consider (q2 + 1)/2 = (q′n − 1)/(q − 1). On the other hand,

|Dn(q′)| = 1

(4, q′n − 1)
q′n(n−1)(q′n − 1)

n−1∏
i=1

(q′2i − 1) | q4(q4 − 1)(q2 − 1)

and also we know that each p-part of K/H divides p-part of G. Since
|Dn(q′)| | |G|, it follows that

4p(p− 1)(p− 2)(2p− 1)2 =
1

(4, q′n − 1)
q′n(n−1)(q′n − 1)

n−1∏
i=1

(q′2i − 1).

Now we have

p | q′n(n−1) or p | q′n − 1 or p |
n−1∏
i=1

(q′2i − 1).

On the other hand, q′n(n−1) | p− 1 or p− 2 or (2p− 1). If p | q′n(n−1), then

p - q′, so p |
∏n−1

i=1 (q′2i− 1). In other words, p | q′2t− 1, where 1 ≤ t ≤ n− 1.

Since q′n(n−1) | p− 1, we have

q′n(n−1) ≤ p− 1 ≤ p ≤ q′2t − 1 ≤ q′2n − 1 ≤ q′2n.
As a result q′n(n−1) ≤ q′2n, so n(n−1) ≤ 2n , n ≤ 3, but this is a contradiction
(n ≥ 4). There is a contradiction for other cases. Similarily, K/H 6∼=2 Dn(q).

Case 3. Let K/H ∼=2 An(q′), where n ≥ 2. Then we consider

q2 + 1

2
=

q′n+1 + 1

(q′ + 1)(q + 1, n+ 1)
,

and so

q2 + 1 =
q′n+1 + 1

(q′ + 1)(q + 1, n+ 1)
< q′n+1 + 1, q2 < q′n+1.

Since n ≥ 2, we get

q′n(n+1)/2 > q′4n/2 ≥ q′2n > q′n > 24n.

But, on the other hand, we have

q′n(n+1)/2 = |K/H|r ≤ |G|r ≤ 23n,

which is a contradiction.

Case 4. Let K/H ∼= E6(q), E7(q), E8(q), where n ≥ 2, or let K/H ∼=
F4(q). If K/H ∼= E8(q

′), then we consider (q2 + 1)/2 = q′8− q′4 + 1. On the
other hand,

|E8(q
′)| = q′120(q′30 − 1)(q′24 − 1)(q′20 − 1)(q′18 − 1)(q′14 − 1)



A NEW CHARACTERIZATION OF SYMPLECTIC GROUPS 123

× (q′12 − 1)(q′8 − 1)(q′2 − 1) | q4(q4 − 1)(q2 − 1).

Since |E8(q
′)| - |G|, this is a contradiction. For other cases we have similarily

a contradiction.

Case 5. Let K/H ∼= G2(q
′), where q′ ≡ ±2 (mod 5). Then we consider

(q2 + 1)/2 = q′(q′ ∓ 1). Since (q′, q′ ∓ 1) = 1, we obtain q2 − 1 = 2q′(q′ ± 1),
Now |G2(q

′)| - |G|, which is a contradiction.

Case 6. Let K/H ∼=2 B2(q
′), where q′ = 22r+1, r ≥ 1. Then we consider

(q2 + 1)/2 = q′ ±
√

2q′ + 1. As a result q2 − 1 = 2m+1(2m ± 1). Since
(2m+1, 2m ± 1) = 1, we deduce that

(q − 1)(q + 1) = 2m+1(2m ± 1).

In other words,

(3n − 1)(3n + 1) = 2m+1(2m ± 1).

Consequently, 3n− 1 = 2m± 1 and 3n + 1 = 2m+1, which is a contradiction.

Case 7. Let K/H ∼=2 F4(q
′), where q′ = 22s+1, s ≥ 1. Then we consider

q2 + 1

2
= q′2 ±

√
2q′3 + q′ ±

√
2q′ + 1.

As a result q2 − 1 = q′2 ±
√

2q′3 + q′ ±
√

2q′, so we deduce

(q − 1)(q + 1) = 2s+1(23s+1 ± 22s+1 + 2s + 1).

It follows that 3n − 1 = 2s+1 and 3n + 1 = (23s+1 ± 22s+1 + 2s + 1), where
we can see easily a contradiction.

Case 8. Let K/H ∼=2 E6(q), where q = 22t+1, t ≥ 1. Then we consider

q2 + 1

2
=
q′6 − q′3 + 1

(3, q′ + 1)
,

so q2 < q′6 − q′3 + 1 < q′6. Hence q′36 > 312n.
On the other hand,

|2E6(q
′)| = 1

(3, q′ + 1)
q′36(q′12 − 1)(q′9 + 1)

× (q′8 − 1)(q′6 − 1)(q′5 + 1)(q′2 − 1).

Now, we obtain q = rs. Therefore, by Lemma 2.4,

q36 = r36s = |K/H|r ≤ |G|r ≤ 23m,

which is a contradiction.

Case 9. Let K/H ∼=3 D4(q
′). Then we consider (q2 + 1)/2 = q′4− q′2 + 1,

as a result

(3n − 1)(3n + 1) = 2q′2(q′2 − 1).

Hence 2q′2 = 3n + 1 and q′2 − 1 = 3n − 1, which is a contradiction.
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Case 10. Let K/H ∼= Ln+1(q
′). Then we consider

q2 + 1

2
=

q′n+1 − 1

(q′ − 1)(q′ − 1, n+ 1)
so

q′n+1 − 1 >
q′n+1 − 1

(q − 1)(q − 1, n+ 1)
= q2 + 1.

As a result q2 < q′n+1, so

q′n(n+1)/2 > q4(n+1)/2 > q2n > 38n.

On the other hand, by Lemma 2.4 we have

qn(n+1)/2 = |K/H|r ≤ |G|r ≤ 23n,

which is a contradiction.
Hence K/H ∼= C2(3

m), in conclusion |K/H| = |C2(3
m)|. We know that

HEKEG. Since p is an isolated vertex of Γ(G), we deduce that p | |K/H|.
Hence (q2 + 1)/2 = (q′2 + 1)/2. As a result q = q′, so n = m. Now, since
|K/H| = |C| and 1EHEKEG, we conclude thatH = 1 andG = K ∼= C. �
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