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Comparison of machine learning methods for
crack localization

Helle Hein and Ljubov Jaanuska

Abstract. In this paper, the Haar wavelet discrete transform, the ar-
tificial neural networks (ANNs), and the random forests (RFs) are ap-
plied to predict the location and severity of a crack in an Euler–Bernoulli
cantilever subjected to the transverse free vibration. An extensive in-
vestigation into two data collection sets and machine learning methods
showed that the depth of a crack is more difficult to predict than its
location. The data set of eight natural frequency parameters produces
more accurate predictions on the crack depth; meanwhile, the data set of
eight Haar wavelet coefficients produces more precise predictions on the
crack location. Furthermore, the analysis of the results showed that the
ensemble of 50 ANN trained by Bayesian regularization and Levenberg–
Marquardt algorithms slightly outperforms RF.

1. Literature review

Cracks appear in structural elements mainly as a result of a manufac-
turing defect or severe exploitation. In consequence, cracks may present a
threat to the whole structure since they change behaviour of the construc-
tion. Therefore, the discovery and localization of cracks are essential issues
in engineering.

The effects of cracks on the global behaviour of a structure can be mod-
elled as a link element (see [7]). In 1957, Irwin came up with the idea that a
crack in an elastic element causes a local flexibility due to the strain energy
concentration. Irwin modelled the strain concentration using an equivalent
spring. This idea led Papaeconomou and Dimarogonas [16] to the develop-
ment of a more general factor called the stress intensity factor. This idea is
still widely used nowadays.
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The exact close form solution of the uniform Euler–Bernoulli column with
a presence of multiple concentrated cracks was proposed by Caddemi and
Cali [4] in 2008 and further developed by Caddemi and Morassi [5] in 2013.
Dirac’s delta function and a rotational spring were used to model the flexi-
bility due to a crack. Alternatively, an analytical approach using a transfer
matrix method was described by Attar [1].

Nandwana and Maiti [15] modelled the transverse vibration of a slender
beam in the presence of an inclined edge crack using a rotational spring and
the measurement of the natural frequencies. The characteristic equation
obtained from the vibration analysis of the beam was manipulated to give a
relationship between the stiffness of the spring and the location of the crack.
Plots of spring stiffness and crack locations were obtained for the three lowest
transverse modes. Through a large number of numerical examples on the
inclined edge crack, the beam modelling through the rotational spring was
feasible for at least small crack angles. The error in the calculations of the
crack location was less than 4.5 per cent.

In the last decades, the inverse problem of crack identification (location
and depth) using the changes in the measured frequencies of a cracked ele-
ment has been in focus. According to [12, 18, 9], vibration parameters are
still the best and one of the easily available indicators of the structure’s
overall technical condition since the natural frequencies can easily be mea-
sured, they are less distorted by noise, and a presence of a crack reduces
significantly the frequency domain.

By now, the frequencies have usually been measured by acceleration sen-
sors or laser vibrometers either obtained numerically using Galerkin method
or Rayleigh–Ritz method. Nonetheless, it is a challenging task to localize
cracks in an Euler–Bernoulli beam using some vibration data. In order to
obtain trustworthy results, a proper analytical model, a signal analysis, and
an efficient numerical technique have to be combined.

Several researchers have tackled the inverse problem using artificial neural
networks (ANN). This is due to the fact that ANNs are capable of pattern
recognition, classification, signal processing, and system identification. In
this paper, it is assumed that the ANNs can be a powerful tool in com-
plementing vibration-based damage detection methods since changes in the
dynamic parameters of a structure are attributed to certain parameters of a
damage.

In [13], Mahmoud and Kiefa investigated a steel cantilever beam with a
single edge crack. The authors used the general regression neural networks
(GRNN) and the first six natural frequencies in order to predict the crack
size and crack location. The natural frequencies were calculated using M-
matrix technique and Newton–Raphson method. Mahmoud and Kiefa drew
several important conclusions:
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• if the crack depth is smaller than a/h = 0.2, it is difficult to localize
the crack since the change in the natural frequencies are small;
• the first two natural frequencies (ω1, ω2) are not enough to predict

the depth a/h and location x/L of the crack since the natural fre-
quencies vary in a cyclic manner.

The calculations by GRNN in [13] showed that the network was capable
to identify cracks in the range 0.08 < a/h ≤ 0.82 quite accurately (R2 = 0.87
for the location and R2 = 0.97 for the depth).

He et al. [11] implemented the genetic algorithms for detecting a shaft
crack. In the research, the authors formulated the shaft crack detection as
an optimization problem by means of finite element method. The accuracy
of the crack location prediction was 98.46 per cent and in case of the crack
depth prediction – 88.22 per cent.

In 2015, Sutar et al. [21] tried to realize a neural network based controller
for the crack identification in an aluminium cantilever. The input parameters
to the controller were relative divergence of the first three natural frequen-
cies obtained experimentally and the output parameters were relative crack
depth and location. For the training, a three-layered feed-forward back prop-
agation ANN with nine neurons in the hidden layer was used. The results
showed that the mean absolute percentage error between the actual and the
predicted responses is less than 15 per cent.

Although the results look promising, there are some issues that need to
be discussed and resolved. In [23], Worden et al. state that “in engineering
problems, data are often the result of expensive experiments and will be
in short supply; in this case, the only way to ensure generalisation is to
restrict the number of weights in the network”. On the other hand, neither
of the above-mentioned researchers have used the random forest (RF) as a
predictive model nor applied Haar wavelet transform to the mode shape for
data generation.

The RF is a classifier defined by Breiman for the classification and regres-
sion problems. The statistical method is based on a large set of unpruned
decision trees, which are known as classifiers. The method is widely used
in economics and bioinformatics. A detailed description of the method can
be found in [3].

The Haar wavelet is the first known and yet the simplest wavelet intro-
duced in 1909 by Alfred Haar. The wavelet transforms have advantages
over traditional Fourier transforms for representing functions that have dis-
continuities and sharp peaks, and for accurately deconstructing and recon-
structing finite, non-periodic and/or non-stationary signals (see [8]). Due to
time-frequency localization, the wavelet transform can reveal some hidden
parts of data that other signal analysis techniques fail to detect (see [24]).
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The observation of the wavelet sensibility to non-linear structure changes
was supported experimentally by Rucka and Wilde in [19, 20].

In this paper, the Haar wavelet discrete transform, the ANN, and the RF
are applied to predict the location and severity of the crack in an Euler–
Bernoulli cantilever subjected to the transverse free vibration. It is assumed
that the first mode shape can be applied to the Haar wavelet transformation
with a small level of resolution in order to find appropriate predictors for
the machine learning methods. Next, a deep investigation into two data
collection sets (the natural frequency parameters based and the Haar wavelet
coefficients based) and the machine learning methods are carried out. No
related work has been found in literature.

2. Mathematical model of Euler–Bernoulli beam with an
open crack

According to Rizos et al. [17], a cracked uniform beam can be simulated
as two uniform beams joined together by a rotational spring at the crack due
to the localized crack effect. The continuity and compatibility conditions at
the crack (x = L1) take the form

W1 = W2,

d2W1

dx2
=
d2W2

dx2
,

d3W1

dx3
=
d3W2

dx3
,

dW1

dx
+ c

d2W1

dx2
=
dW2

dx
,

(2.1)

where W1 and W2 are the mode shapes on the left and right beam sections,
respectively. The bending constant of the massless spring c is presented in
[6] as

c = 5.346
h

EI
J(
a

h
), (2.2)

where h is the thickness of the beam, a is the depth of the crack, and J( ah)
is the dimensionless local compliance function proposed by Dimarogonas et
al. [6]:
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h
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(2.3)

This mathematical model is used to calculate the first eight natural fre-
quency parameters.
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3. Data sets

An essential prerequisite to train a machine learning model to predict a
given phenomenon is to identify a set of features that may serve as indi-
cators of the phenomenon. The literature review shows that most of the
studies consider only the first three natural frequencies (rarely the first five
natural frequencies) since the calculation of high frequency parameters is
complicated and time-consuming. The frequencies are usually calculated us-
ing FEM or power series technique and used as the input parameters of a
prediction model (see [7]). According to Mahmoud and Kiefa [13], the fewer
the number of the natural frequencies, the less accurate the ANN predictions
are.

In the present paper, a more rigorous and exhaustive approach has been
adopted by inspecting two independent data sets extracted or derived from
the modal analysis: the first eight natural frequency parameters and up to
64 Haar wavelet coefficients derived from the first mode shape. It has been
assumed that due to the Haar wavelet transform, the prediction model can
be built easier and faster than the frequency based model.

In order to evaluate the hypotheses, two sets of data have been calculated
numerically and compared to the ones available in literature (see [18]). In the
first set, each pattern contains scaled values of the crack depth and location,
and the first eight frequency parameters of vibration. In the second set of
data, each pattern contains scaled values of the crack depth and location,
and 64 Haar wavelet coefficients. The coefficients have been calculated and
normalized as following:

• calculate the first natural frequency parameter k1 of the cracked
cantilever and obtain the Haar transform of the first mode shape yc;
• calculate the first natural frequency parameter k1 of the intact can-

tilever and obtain the Haar transform of the first mode shape yi;
• calculate the difference yc − yi;
• normalize the results.

In general, the calculation of the first eight frequency parameters is more
time consuming than the calculation of the 64 Haar wavelet coefficients, but
it depends on the mesh used and accuracy required. The computing time for
calculating frequency parameters can be reduced substantially by applying
higher order methods which allow to achieve higher accuracy with a smaller
mesh (see [14]).

In total, each dataset contained 800 patterns. The location and depth of
the cracks were selected randomly and the parameters were calculated. The
minimum and maximum values of crack depth were set between 0.01 and
0.5. The location values of the cracks were set in the range from 0.001 to
0.99. The beam length was scaled to 1. The crack characteristics in the data
sets covered the whole range of the beam.
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Before building the prediction models, the correlation between metrics
and the observed crack characteristic were calculated (Figure 1).
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Figure 1. Correlation between the crack characteristics and
the natural frequency parameters or the Haar wavelet coeffi-
cients.

The correlation analysis showed that a few individual metrics from the
Haar wavelet data set had a strong positive or negative correlation (R >
|0.7|) with the crack location. A moderate negative correlation was observed
between a few individual metrics from the frequency parameter data set and
the crack depth. The latter was comfirmed by Hakim et al. [10] that the
natural frequencies of the first five modes have more influence in predicting
the damage identification. In this reseach, there were no individual metrics
which strongly correlated with both characteristics of the crack at the same
time (Tables 1 and 2). This was in line with findings from other studies ([13]).
Thus, it was decided to construct prediction models based on a combination
of the variables.

Table 1. Correlation between the natural frequency param-
eters and the crack characteristics (L - location, d - depth).

Crack f1 f2 f3 f4 f5 f6 f7 f8
L 0.621 0.055 -0.178 -0.210 -0.190 -0.191 -0.167 -0.181
d -0.488 -0.631 -0.597 -0.618 -0.632 -0.632 -0.574 -0.586

4. Feed-forward neural networks with back propagation

Prediction model building in ANNs refers to selecting the “optimal” net-
work architecture, network topology, data representation, training algorithm,
training parameters, and terminating criteria such that some desired level
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Table 2. Correlation between the Haar wavelet coeffcients
and the crack characteristics (L - location, d - depth).

Crack h1 h5 h8 h9 h16 h32 h62 h63 h64
L 0.868 -0.806 0.727 -0.781 0.846 0.835 0.713 -0.776 0.725
d 0.007 -0.065 0.013 -0.048 0.052 0.058 0.046 0.054 0.047

of performance is achieved [22]. Therefore, various networks were exam-
ined in this research. Each ANN was constructed by fitnet function in the
MATLAB environment.

The following five training functions were assessed: Levenberg–Marquardt
back propagation (LM), scaled conjugate gradient back propagation (SCG),
resilient back propagation algorithm (RP), Broyden–Fletcher–Goldfarb–
Shanno back propagation (BFGS), and Bayesian regularization back propa-
gation (BR). In the RP, the learning rate was set to 0.01.

In order to avoid the construction of an unreasonably large networks, the
number of hidden layers was set to one. According to [2], a network of
two layers, where the first layer is sigmoid and the second layer is linear,
can be trained to approximate any function arbitrarily well. Following this
recommendation, the Elliot sigmoid function was chosen for the hidden layer
and the linear transfer function – for the output layer. The Elliot sigmoid
function is approximately four times faster than the symmetric sigmoid [2]
since it does not use exponents.

The number of neurons on the hidden layer was initially set to ten and
gradually increased to 150 with step 20 in order to find a reasonable solution.

The number of training patterns was initially set to 100 and gradually
increased to 700 with step 100. Each network was trained 50 times starting
at randomly chosen initial conditions in the weight space in the range of −1
to 1 and a random division of the initial data set into training and validation:

• 70% of the training set has been used for training: computing the
gradient and updating the network weights and biases;
• 30% of the training set has been used for validation to tune the

model.

The test set contained 50 patterns which were shown to the networks
during the training. The networks assessment was based on this set.

To speed up the learning process [2], the training was performed in the
batch mode. The network training was stopped at one of conditions:

(1) the magnitude of the gradient was less than 1e− 7,
(2) the number of validation checks reached 6,
(3) the number of epochs reached 1000,
(4) the performance value became 0.00.

The training time was not limited.
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Table 3 shows the average result of training and testing on the natural
frequency parameters for each algorithm. In Table 4, the best result (based
on the mean square error of 50 test crack predictions) and the respective
network configuration for each algorithm are tabulated. Both tables contain
the average training and testing mean square errors, the correlation param-
eter for the predicted location and depth of the test cracks, the average
learning time per network training, the number of neurons on the hidden
layer, the number of patterns in the training set, and the reason of training
stop according to the list above.

In case of training on the natural frequency parameters, the best average
mean square error of 50 trainings to localize 50 cracks was 0.0033. The
average correlation parameter for the location prediction was 0.9765; the
average correlation parameter for the depth prediction was 0.9713. The
result was obtained by the networks with ten neurons on the hidden layer
trained by Levenberg–Marquardt algorithm using 700 training patterns with
eight natural frequency parameters in each.

The results of the scaled conjugate gradient, resilient propagation, and
BFGS Quasi–Newton back propagation algorithms were mutilated by over–
fitting: the mean square error was higher on the testing set than on the
training set.

According to Table 3, the Bayesian regularization showed the second ac-
curate result reaching the maximum number of epochs. An additional test
with up to 6000 epochs resulted in significant improvement in prediction
accuracy: training mse = 0.0022, testing mse = 0.0022, crack location
correlation parameter = 0.9745, and crack depth correlation parameter =
0.9620. The average time per training increased more than six times.

In case of training on Haar wavelet coefficients, the best average mean
square error of 50 trainings was 0.0031. The average correlation parameter
for the location prediction was 0.9998; the average correlation parameter
for the depth prediction was 0.8389. The average result was obtained by
the network with 10 neurons on the hidden layer. The network was trained
by Bayesian regularization algorithm using 300 training patterns and 1000
epochs. In each pattern, there were eight Haar coefficients. An increase of
the iteration number to 4500 and 6000 epochs did not show any satisfactory
improvement in prediction accuracy.

For the discussed approaches, the influence of the number of neurons and
training patterns on the mean square error of 50 crack localization was stud-
ied. According to the analysis, the approach based on the natural frequency
parameter data set required at least 700 training patterns in order to learn
relationship between inputs and outputs. In case of the Haar coefficient data
set, 300 training patterns were sufficient.
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Next, an ensemble of 50 neural networks of the same architecture was pro-
posed to calculate an averaged crack parameters. The idea originated from
the articles [10] and [2]. Figure 2a shows the results of 50 networks with ten
neurons on the hidden layer trained by the Levenberg–Marquardt algorithm
and 700 training patterns containing eight frequency parameters. The test-
ing mse reduced from 0.0033 to 0.0013. Figure 2b shows the results of 50
networks with 10 neurons on the hidden layer trained using the Bayesian
regularization and 300 training patterns containing eight Haar coefficients.
The testing mse reduced from 0.0031 to 0.0023.

In Figure 2, it is seen that large errors occur at crack depth identification.
The observation is confirmed by the correlation analysis. The regression
plots for both characteristics and approaches are shown in Figure 3. In
both cases, the correlation parameter (R–value) between the outputs and
the crack location targets are very close to 1, which indicates a good fit and
high precision of the networks in crack localization. However, the ensemble
of networks trained on Haar wavelets predicts crack location slightly better
than the ensemble of networks trained on frequency parameters (R = 0.9999
and R = 0.9908, respectively). In case of depth prediction, the results are
vice versa. The ensemble of networks trained on frequency parameters pre-
dicts crack depth better than the ensemble of networks trained on Haar
wavelet coefficients (R = 0.9772 and R = 0.8871, respectively). The obser-
vation is in line with the correlation coefficients shown in Tables 1, 2.

The error distributions for both approaches are shown in Figure 4. It
shows that in 98 per cent cases, the crack location can be predicted with
99 per cent accuracy using the Haar coefficients as inputs; in case of crack
depth, the error is nearly 1.5 per cent in 80 per cent cases using the natural
frequency parameters as inputs.

In order to improve the previous results, it was decided to combine both
methods: an ensemble of 50 networks trained on the natural frequency
parameters to predict the crack depths, and an ensemble of 50 networks
trained on the Haar coefficients to predict the location of the cracks. In
this case, mse = 0.0002, location correlation parameter = 1, and depth
correlation parameter = 0.9868. The results are shown in Figure 5.

5. Random forest

Next, the crack parameter identification was examined with the aid of the
RF. The following configurations of the RFs were examined:

• number of predictors in samples (η): eight natural frequencies, or
eight, 16, 32, 48 or 64 Haar coefficients;
• number of predictors without replacement in samples (p): 1/6, 1/2

and 2/3 of the predictors in the pattern;
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(a) Location prediction. (b) Depth prediction.

(c) Location prediction. (d) Depth prediction.

Figure 3. Regression plots for the predicted characteristics
of 50 cracks. (a), (b) predictions are based on eight frequency
parameters; (c), (d) predictions are based on eight Haar co-
efficients.

• number of trees: 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400,
500, 750, 1000;
• number of training patterns: 100, 200, . . . , 700.

The best five average results of 50 runs are shown in Table 5 and Table 6.
In case of training on the natural frequency parameters, the best average

mean square error of 50 trainings to localize and estimate the severity of 50
cracks were 0.0020 and 0.0008, respectively. An average correlation parame-
ter for the location prediction was 0.9896; an average correlation parameter
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Table 5. The most accurate results of the prediction of 50
crack locations by the RF using different topologies and a
data set of the natural frequency parameters (L - location, D
- depth of the crack).

Nr of η p Nr of Avr. Avg. Avg.

training trees test Rlocat training

patterns MSE time

L

500 8 4 20 0.0020 0.9896 0.1108

500 8 6 10 0.0021 0.9885 0.0674

600 8 4 10 0.0021 0.9880 0.0619

500 8 4 40 0.0022 0.9888 0.2112

600 8 4 400 0.0023 0.9881 2.1502

D

700 8 6 50 0.0008 0.9841 0.3847

700 8 4 100 0.0008 0.9821 0.6683

600 8 6 300 0.0008 0.9826 2.0682

700 8 6 750 0.0008 0.9820 5.7232

700 8 4 40 0.0009 0.9812 0.2739

Table 6. The most accurate results of prediction of 50 crack
locations by the RF using different topologies and a data set
of the Haar wavelet (L - location, D - depth of the crack).

Nr of η p Nr of Avr. Avg. Avg.

training trees test Rlocat training

patterns MSE time

L

700 8 6 10 0.0000 0.9999 0.0653

700 8 6 20 0.0000 0.9999 0.1201

700 8 6 100 0.0000 0.9999 0.5646

500 8 6 10 0.0000 0.9999 0.0587

500 8 6 100 0.0000 0.9999 0.4883

D

700 16 11 10 0.0061 0.8491 0.1365

700 64 43 100 0.0063 0.8395 2.9505

700 64 43 150 0.0064 0.8361 4.4674

700 64 32 75 0.0064 0.8374 1.7222

700 64 32 150 0.0064 0.8378 3.4962
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(a) Errors in location prediction.
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(b) Errors in depth prediction.
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(c) Errors in location prediction.
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(d) Errors in depth prediction.

Figure 4. Error distribution for the predicted characteris-
tics of 50 cracks. (a), (b) predictions are based on eight fre-
quency parameters; (c), (d) predictions are based on eight
Haar coefficients.

for the depth prediction was 0.9841. The results were obtained by the RF
with 20 trees, 500 training patterns, and four predictors without replace-
ment and by the RF with 50 trees, 700 training patterns, and six predictors
without replacement, respectively.

In case of training on the Haar wavelet coefficients, the best average mean
square error of 50 trainings to localize and estimate the severity of the cracks
were 0.0000 and 0.0061, respectively. An average correlation parameter for
the location prediction was 0.9999; an average correlation parameter for the
depth prediction was 0.8491. The average result was obtained by the RF
with 10 trees using 700 training patterns and six or eleven predictors without
replacement.

The error distribution and correlation parameter of a combination of RFs
are shown in Figure 6. The mean square error for the combination is 0.0004.
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(a) Location prediction. (b) Depth prediction.
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(c) Error distribution in location pre-
diction.
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(d) Error destribution in depth pre-
diction.
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Figure 5. 50 ANNs trained on frequency parameters and
Levenberg–Marquardt method to predict depth of the crack;
50 ANNs trained on the Haar coefficients and Bayesian reg-
ularization to predict location of the crack.
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(a) Location prediction. (b) Depth prediction.

0

5

10

15

20

Error Histogram with 10 Bins

In
s

ta
n

c
e

s

Errors 

 

 

−
0

.0
0

4
3

9

−
0

.0
0

2
1

7

5
e

−
0

5

0
.0

0
2

2
7

0
.0

0
4

4
9

0
.0

0
6

7
1

0
.0

0
8

9
3

0
.0

1
1

1
5

0
.0

1
3

3
7

0
.0

1
5

5
9

Zero Error

(c) Error distribution in location pre-
diction.
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(d) Error destribution in depth pre-
diction.
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Figure 6. 50 RFs trained on the frequency parameters to
predict the depth of the cracks; 50 RFs trained on the Haar
coefficients to predict location of the crack.
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As in the case with the ANN, the data set of the natural frequency coef-
ficients produced better predictions on the depth of the cracks; meanwhile,
the data set of eight Haar wavelet coefficients produced precise predictions
on the crack location.

6. Discussion and conclusion

The major aim of the present paper was to find an efficient model for
crack localization. A feed-forward back propagation ANN and RF were
incorporated for developing a prediction model of the formulations. Five
different training algorithms were used to train ANNs. The second objective
of the paper was to compare the performance of aforementioned algorithms
with regard to prediction accuracy. The third objective of the paper was
connected to the nature of the training sets and their size. Two data sets
were calculated numerically. The first one contained the first eight natural
frequency parameters; the other one – up to 64 Haar wavelet coefficients
derived from the first mode shape. The hypotheses were evaluated on the
testing set on the bases of the MSE between the output and target values.

The analysis showed that an ensemble of 50 ANN slightly outperformed
the RF. In other words, Bayesian regularization and Levenberg–Marquardt
algorithm appeared to be less biased and more precise, as compared with
the RF.

Analyzing the results of the prediction, it was found out that the depth of
cracks was more difficult to predict accurately than its location. The data set
of eight natural frequency parameters produced more accurate predictions
on the crack depth; meanwhile, the data set of eight Haar wavelet coefficients
produced more precise predictions on the crack locations.
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