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Natural vibrations of stepped nanobeams
with defects

Jaan Lellep and Artur Lenbaum

Abstract. Exact solutions for the transverse vibration of nanobeams
based on the nonlocal theory of elasticity are presented. The nanobeams
under consideration have piecewise constant dimensions of cross sections
and are weakened with crack-like defects. It is assumed that the station-
ary cracks occur at the re-entrant corners of steps and that the mechan-
ical behaviour of the nanomaterial can be modelled with the Eringen’s
nonlocal theory. The influence of cracks on the natural vibration is pre-
scribed with the aid of additional local compliance at the weakened cross
section. The local compliance is coupled with the stress intensity factor
at the crack tip. A general algorithm for determination of eigenfrequen-
cies is developed. It can be used in the case of an arbitrary finite number
of steps and cracks.

1. Introduction

Theoretical and experimental results have revealed significant size effects
in mechanical properties of structures and bodies when the dimensions of
these bodies become small. Classical theory of elasticity is unable to predict
the size effects. During the last decades, several versions of size dependent
theories have been developed. One of these developed by Eringen [11, 12] and
his co-workers was called non local continuum theory of elasticity and was
widely accepted by researchers. Originally Eringen [12] applied his concept
for modelling of screw dislocations and surface waves. Peddieson et al. [21]
studied the small-scale behaviour of nanobeams as actuators in the small-
scale systems and used a simplified version of the theory of Eringen [11].
Reddy [23] has extended various beam theories including Eringen–Bernoulli,
Timoshenko, Reddy and Levinson beam theories to the case when the consti-
tutive relations are prescribed with nonlocal theory of elasticity. Particular
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solutions of problems of vibration of nanobeams are obtained in the papers
by Lu et al. [20], Li et al. [19], and Thai [27] making use of the model of
nonlocal elasticity. A vibration theory accompanied with the nonlocal elas-
ticity was used in the investigation of vibrations of rotating non-uniform
nanocantilevers by Aranda-Ruiz et al. [3]. The equations of Eringen’s non-
local theory are solved by a pseudo-spectral collocation method based on
Chebyshev polynomials.

Challamel [7] developed a variational approach to the application of strain
gradient elasticity and Eringen’s nonlocal elasticity models to the beam
mechanics. This approach embraces the Euler–Bernoulli, Timoshenko and
higher order shear models.

Several authors including Ghannadpour et al. [13] have demonstrated the
applicability of the Ritz method in solving bending, buckling and vibration
problems in the case of nonlocal Euler beams. The governing equations are
derived with the aid of Hamilton’s principle. Other variational principles in-
cluding the total potential energy, the complementary energy and the mixed
Hu–Washizu principles are reported by Polizzotto [22] in connection with
nonlocal theories of elasticity. Analytical solutions are obtained for non-
linear vibration problems of nanobeams with different boundary conditions
by Bagdath [4]. Vibrations of the hanging tube of variable thickness are
treated as vibrations of a nanoscale Euler–Bernoulli beam by Roostai and
Haghpanahi [24]. The governing equations based on the nonlocal elasticity
are solved by the method of Rayleigh–Ritz. In the present paper natural
vibrations of nanobeams with stepped cross sections are investigated. An
attempt is made to account for the influence of cracks on the frequencies
of free vibrations of nanobeams. The cracks are treated as stationary flaws
located at the cross sections where the thickness changes abruptly.

2. Formulation of the problem

Let us consider a nanobeam of length l subjected to the axial tension N . It
is assumed that the origin of the system of coordinates is located at the centre
of the left-hand edge of the nanobeam and that at x = aj (j = 1, . . . , n) the
cross-sectional area changes rapidly. Let the cross sections of the nanobeam
be of rectangular shape with width b = const and height h = hj = const for
x ∈ (aj , aj+1), where j = 0, . . . , n.

The quantities aj , hj (j = 0, . . . , n) are expected to be given constants;
it is reasonable to denote a0 = 0, an+1 = l.

It is assumed that the nanobeam is weakened with cracks or crack-like
defects located at x = aj (j = 1, . . . , n). The cracks are assumed to be
stable surface cracks with lengths cj , respectively.

The aim of the study is to determine the eigenfrequencies of stepped nano-
beams with cracks and to elucidate the sensitivity of these with respect to
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the location of the crack, dimensions of the nanobeam and other geometrical
and physical parameters.

3. Governing equations

It is well known that in the classical theory of elasticity the relationship
between stress components σcij and strains εkl is defined by the Hooke’s law
as

σcij = cijklεkl, (1)

where cijkl stands for a tensor of fourth order with coefficients of elasticity.
It is expected herein that the subscripts i, j, k, l take the values 1, 2 and 3.
However, it is accepted that the mechanical behaviour of nanomaterials can
be prescribed with non-local theories of elasticity (see Eringen [11], Reddy
[23], Alves and Ribeiro [1]). Within the framework of a non-local theory
of elasticity the stress state at a fixed point of the body depends on the
strain state at each point of the body. Eringen [11] suggested to present the
constitutive equations of the material at the point x as

σnij (x) =

∫
(V )

K (|x− y| , τ) cijklεkl dV, (2)

where y ∈ V is an arbitrary point of the body and τ stands for physical
constants. Here the kernel function K (|x| , τ) may have different forms; each
of these defines according to (2) the non-local stress components σnij at the
point x. Taking the kernel function K as the Green’s function for a linear
differential operator L(K) one has

L [K (|y − x|)] = δ (|y − x|) . (3)

Here δ stands for the Dirac’s δ-function. Making use of a two-phase integral
model of Eringen [11], Polizzotto [22] introduced an attenuation function
which can be expressed in the one-dimensional case as

A (|x− y| , τ) = ξ1δ (|x− y|) + ξ2K (|x− y| , τ) ,

where ξ1, ξ2 are real numbers satisfying the requirements ξ1+ξ2 = 1, ξ1 ≥ 0,
ξ2 ≥ 0. The kernel K in this two-phase model was taken in the exponential
form as

K =
1

2e0a
exp

(
− (x− y)

e0a

)
. (4)

The constants e0 and a in (4) are material constants (a is the dimension of
the lattice of the material). It is reasonable to introduce the notation

e0a =
√
η.

It was pointed out by several authors (among others Eringen [11], Lu et
al. [20], and Eptaimeros et al. [10]) that a simple two-dimensional kernel
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function is obtained by taking the differential operator L as shown by (3)
and

L [K] = K− η∇2K, (5)

where ∇ is the Laplacian operator.
In the present paper the governing equations presented by (1) – (3) and (5)

will be used. The aforementioned relations yield the constitutive equations

σnij − η∇2σnij = σcij , (6)

where σcij and σnij are defined by (1) and (2), respectively. According to (6)
the relationship between bending moments can be presented as

M − η∂
2M

∂x2
−Mc = 0. (7)

In (7), M is the bending moment engendered by the nonlocal elasticity stress
tensor and Mc is the classical bending moment in the Euler–Bernoulli beam
theory. It is well known that (see Soedel [25], Wang et al. [28])

Mc = −EIw′′. (8)

In (8), w is the transverse deflection, E stands for the Young modulus and
I is the moment of inertia of the cross section. The primes in (8) denote the
differentiation with respect to the axial coordinate x. In the case of a beam
with stepped cross section

I = Ij (9)

for x ∈ (aj , aj+1) , j = 0, . . . , n, while Ij = bh3j/12 for a rectangular cross
section with width b and height hj .

4. The equation of motion and its solution

Denoting by N the axial force and by Q the shear force one can present
the equilibrium equations for a beam element as (see Soedel [25])

M ′ = Q, Q′ = µẅ −Nw′′, (10)

where µ stands for the mass of the element per its unit length. Here dots
denote the differentiation with respect to time t and primes – with respect
to the coordinate. In other words,

ẅ =
∂2w

∂t2
, w′′ =

∂2w

∂x2
.

While the dimensions of the cross section of the nanobeam are piecewise
constant, one has

µ = µj

for x ∈ (aj , aj+1) , j = 0, . . . , n.
Evidently, the system (10) can be presented as
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M ′′ = −Nw′′ + µjẅ (11)

for x ∈ (aj , aj+1) , j = 0, . . . , n.
On the other hand, according to (7) – (9) one has

M = ηM ′′ − EIjw′′ (12)

for x ∈ (aj , aj+1). Substituting M ′′ according to (11) in (12) gives

M = − (ηN + EIj)w
′′ + ηµjẅ. (13)

Eliminating the bending moment from the system (11), (13) leads to the
equation

(ηN + EIj)w
IV + µj

(
ẅ − ηẅ′′

)
−Nw′′ = 0, (14)

which is valid in the intervals (aj , aj+1) for each j = 0, . . . , n. The equation
of motion (14) is integrated together with appropriate boundary conditions.
If the nanobeam is simply supported at both ends, then

w (0, t) = w (l, t) = 0 (15)

M (0, t) = M (l, t) = 0. (16)

The boundary conditions (15) remain valid for a nanobeam clamped at both
ends. However, the conditions (16) must be replaced by

w′ (0, t) = w′ (l, t) = 0. (17)

In the case of a cantilever one has

w (0, t) = w′ (0, t) = 0 (18)

M (l, t) = Q (l, t) = 0, (19)

provided the edge at x = 0 is clamped and the one at x = l is completely free.
Although the free vibrations will be studied underneath, it can be assumed
that at the initial instant

w (x, 0) = 0, ẇ

(
l

2
, 0

)
= v0, (20)

v0 being a given constant.
For the solution of (14) with (15) – (20) the method of separation of

variables will be employed. Thus, one can assume that

w (x, t) = Wj (x)T (t) , x ∈ (aj , aj+1), j = 0, . . . , n, (21)

where the functions Wj(x) and T (t) depend upon the single variable. Making
use of (20) and (21), one can state the initial conditions as

T (0) = 0, Ṫ (0) =
v0

Wr

(
l
2

) , (22)
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where r is an integer such that l/2 ∈ [ar, ar+1]. Calculating the necessary
partial derivatives from (21) and substituting in (14) leads to the ordinary
differential equations

(ηN + EIj)W
IV
j −NW ′′j = −ω2µj

(
ηW ′′j −Wj

)
, (23)

for x ∈ (aj , aj+1), and

T̈ + ω2T = 0, (24)

where ω is the frequency of natural vibrations. Thus, the solution of (22),
(24) is

T =
v0

ωWr

(
l
2

)sin (ωt).

In order to solve the linear fourth order equation (23), one has to solve
the characteristic equations

(ηN + EIj)λ
4
j + λ2j

(
ηµjω

2 −N
)
− µjω2 = 0 (25)

with respect to λj .
The roots of the fourth order algebraic equation (25) can be presented as

(λj)1,2 = ±iβj , (26)

where i is the imaginary unit and

(λj)3,4 = ±δj . (27)

In (26) and (27) the notation

βj =

√
µjηω2 −N+Aj

2 (ηN + EIj)
, δj =

√
N − µjηω2 +Aj

2 (ηN + EIj)
(28)

is used, where

Aj =

√
(N − µjηω2)2 + 4µjω2 (ηN + EIj). (29)

The notation (26) – (29) admits to present the general solution of (23) as

Wj (x) = Ajcoshδjx+Bjsinhδjx+ Cjcosβjx+Djsinβjx. (30)

It is worthwhile to mention that in (30) it is assumed that x ∈ (aj , aj+1) ,
j = 0, . . . , n. Arbitrary constants Aj , Bj , Cj , Dj in (30) are to be deter-
mined according to the boundary conditions and corresponding continuity
and jump conditions imposed at x = aj , j = 1, . . . , n.
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5. The continuity and jump conditions

It is reasonable to introduce the following notation. Let y = y(x, t) be
a continuous function with piecewise continuous partial derivatives and let
y′(x, t) be discontinuous at x = a. However, the unilateral limits

y′ (a± 0, t) = lim
x→a±0

y′ (x, t)

are assumed to be finite. In this case it is useful to denote[
y′ (a, t)

]
= y′ (a+ 0, t)− y′ (a− 0, t) .

In the case of natural vibrations of a nanobeam according to physical con-
siderations it is evident that

[w (x, t)] = 0

for each x ∈ (0, l), and in particular case for x = aj (j = 1, . . . , n).
As regards the slope of the deflection w′(x, t) it is assumed that w′ is

continuous everywhere except x = aj (j = 1, . . . , n). Following [8, 9], it is
assumed that [

w′ (aj , t)
]

= C0jM (aj , t) , (31)

where C0j stands for the additional compliance due to the crack at x = aj . In
the elastic fracture mechanics it is recognized that there exists a relationship
between the compliance C0j caused by the crack and the stress intensity
factor Kj .

As a matter of fact the energy release rate Gj , compliance C0j , and the
stress intensity factor Kj are related as (see Anderson [2], Broek [5])

Gj =
M2

j

2b

dC0j

dcj
, (32)

where cj stands for the length of the crack engendered at the cross section
x = aj , and Mj = M(aj , t). On the other hand (see Broek [5]),

Gj =
K2

j

E′
. (33)

Here E′ = E in the case of plane stress state, and E′ = E/1− ν2 in the case
of plane strain state. The stress intensity factor corresponding to a surface
crack in a beam element can be calculated as (see [5, 8, 15])

Kj = σj
√
πcjF (sj) , sj = cj/h0j , h0j = min(hj−1, hj) . (34)

Here

σj =
6Mj

bh20j
(35)



150 JAAN LELLEP AND ARTUR LENBAUM

and F (sj) stands for the shape factor determined experimentally and nu-
merically by many researchers. It can be easily inferred from (32) – (35)
that

dC0j

dsj
=

72π
(
1− ν2

)
Ebh20j

sjF
2 (sj) .

It is reasonable to assume that in the case of no cracks C0j = 0.
Thus, the finite discontinuity (jump) of the slope of deflection at x = aj

is expressed by (31) and the bending moment by (13). Substituting (13) in
(31) leads to the jump conditions[

w′ (aj , t)
]

= C0j

{
ηµjẅ (aj + 0, t)− (ηN + EIj)w

′′ (aj + 0, t)
}

(36)

for every j = 1, . . . , n. Taking (21) into account, one can present (36) as

W ′j (aj + 0) = W ′j−1 (aj − 0)− C0j

{
ηµjω

2Wj (aj + 0)

+ (ηN + EIj)W
′′
j (aj + 0)

}
, j = 1, . . . , n.

(37)

According to the present model of the nanobeam the finite jumps of the slope
are accepted. However, the deflection itself must be continuous at x = aj .
Thus

Wj (aj + 0) = Wj−1 (aj − 0) , j = 1, . . . , n. (38)

The bending moment M and shear force Q = M ′ are continuous, as well.
Making use of (13) and (21), one can present these requirements, for

j = 1, . . . , n, as

ηµjω
2Wj (aj + 0) + (ηN + EIj)W

′′
j (aj + 0)

= ηµj−1ω
2Wj−1 (aj − 0) + (ηN + EIj−1)W

′′
j−1 (aj − 0)

(39)

and
ηµjω

2W ′j (aj + 0) + (ηN + EIj)W
′′′
j (aj + 0)

= ηµj−1ω
2W ′j−1 (aj − 0) + (ηN + EIj−1)W

′′′
j−1 (aj − 0) .

(40)

The system (37) – (40) complemented with corresponding boundary condi-
tions serves for determination of unknown constants Aj , Bj , Cj , Dj in (30),
where j = 0, . . . , n. The total number of equations equals 4n+ 4. However,
first of all one has to specify the functions F (sj) and f (sj). Various approx-
imations of these functions are presented in the handbook by Tada et al. [26].
A comparison of different approximations was undertaken by Caddemi and
Calio [6]. In the present paper the version suggested by Dimarogonas [9] will
be used.

6. Natural frequencies of a nanobeam simply supported at
both edges

The transverse deflection of the vibrating nanobeam is given by (21),
where the wave modes are defined by (30). In the case of a simply supported
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nanobeam boundary conditions (15) and (16) must be taken into account
during the solution procedure. Making use of (13) and (21), one can present
these requirements as

W0 (0) = 0, Wn (l) = 0,

W ′′0 (0) = 0 , W ′′n (l) = 0.
(41)

The conditions (41) together with (30) lead us to the equalities A0 = C0 = 0
and

An +Bnthδnl = 0, Cn +Dntanβnl = 0. (42)

Making use of (30), one can put the jump conditions (37) into the form
of recurrent equations

Aj

{
δjsinhδjaj + C0j

(
ηµjω

2+δ2j (ηN + EIj) coshδjaj
)}

+Bj

{
δjcoshδjaj + C0j

(
ηµjω

2+δ2j (ηN + EIj) sinhδjaj
)}

+ Cj

{
−βjsinβjaj + C0j

(
ηµjω

2−β2j (ηN + EIj) cosβjaj
)}

+Dj

{
βjcosβjaj + C0j

(
ηµjω

2−β2j (ηN + EIj) sinβjaj
)}

= (Aj−1sinhδj−1aj +Bj−1coshδj−1aj) δj−1

+ (−Cj−1sinβj−1aj +Dj−1cosβj−1aj)βj−1, j = 1, . . . , n.

(43)

The equation (38) can be presented, for j = 1, . . . , n, as

Ajcoshδjaj +Bjsinhδjaj + Cjcosβjaj +Djsinβjaj

= Aj−1coshδj−1aj +Bj−1sinhδj−1aj

+ Cj−1cosβj−1aj +Dj−1sinβj−1aj .

(44)

In a similar way, the equations (39) and (40) can be put, respectively, into
the form(

ηµjω
2+δ2j (ηN + EIj)

)
(Ajcoshδjaj +Bjsinhδjaj)

+
(
ηµjω

2−β2j (ηN + EIj)
)

(Cjcosβjaj +Djsinβjaj)

=
(
ηµj−1ω

2+δ2j−1 (ηN + EIj−1)
)

(Aj−1coshδj−1aj +Bj−1sinhδj−1aj)(
ηµj−1ω

2−β2j−1 (ηN + EIj−1)
)

(Cj−1cosβj−1aj +Dj−1sinβj−1aj)
(45)

and(
δjηµjω

2+δ3j (ηN + EIj)
)

(Ajsinhδjaj +Bjcoshδjaj)

+
(
−βjηµjω2+β3j (ηN + EIj)

)
(Cjsinβjaj −Djcosβjaj)

=
(
δj−1ηµj−1ω

2+δ3j−1 (ηN + EIj−1)
)

(Aj−1sinhδj−1aj +Bj−1coshδj−1aj)

+
(
−βj−1ηµj−1ω2+β3j−1(ηN+EIj−1)

)
(Cj−1sinβj−1aj+Dj−1cosβj−1aj) ,

(46)
where j = 1, . . . , n. Thus, the total number of equations in (42) – (46) is
equal to 4n+ 4, and the number of unknowns is also 4n+ 4.
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7. Eigenfrequencies for a clamped nanobeam

In the case of a clamped nanobeam the boundary conditions are presented
by (15) and (17), which can be converted into the form

W0 (0) = 0, W ′0 (0) = 0, Wn (l) = 0, W ′n (l) = 0, (47)

where (21) is taken into account.
From (30) and (47) it follows immediately that

A0 = −C0, B0 = −β0
δ0
D0, (48)

and
Ancoshδnl +Bnsinhδnl + Cncosβnl +Dnsinβnl = 0,

δn (Ansinhδnl +Bncoshδnl) + βn (−Cnsinβnl +Dncosβnl) = 0.
(49)

Evidently, the jump condition for the slope w′ and continuity requirements
for w, M , and Q presented in the form (37) – (40) for a simply supported
beam remain valid in the present case, as well. These conditions, together
with (48) and (49) present a linear system of equations with 4n + 4 un-
known constants and 4n+ 4 equations, as in the previous case. It should be
mentioned that similar systems of equations can be compiled for nanobeams
with arbitrary boundary conditions.

8. Numerical results

Numerical results are obtained for nanobeams with one step and with
cracks at the re-entrant corners of the steps. In this paper the case of a
clamped at both ends nanobeam is considered. The results of calculations
are presented in Figures 1 – 5 for a clamped nanobeam of length l = 1000 nm
with the cross-section dimensions ho = 200 nm, b = 50 nm. The material
constants are (except Figure 5) E = 117 GPa, ν = 0.36, ρ = 8960 kg/m3,
and e0a = 0.15 nm.

In Figures 1 and 2 the influence of the axial force N on the natural fre-
quencies of nanobeams is illustrated in the case of stepped nanobeams with
a crack located in the middle of the beam. In Figure 1 the ratio of thickness
h1/h0 = 1.25 (denoted by Υ) and different curves correspond to the depth of
the crack c1 = 0.2 h0, c2 = 0.3 h0, c3 = 0.4 h0 (denoted by s), respectively.
It can be seen from Figure 1 that the smaller is the crack the higher is the
natural frequency. The curves presented in Figures 1 and 2 demonstrate
the matter that when the tension increases, then the natural frequency also
increases, as might be expected.

The influence of the step location on the natural frequency of the nanobeam
is portrayed in Figures 3 – 5. Figure 4 corresponds to the crack depth
c = 0.3 h0. Different curves presented in Figure 4 are obtained for nanobeams
with thicknesses h1 = 1.25 h0, h1 = 1.5 h0, h1 = 2 h0, respectively.
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Figure 1. Eigenfrequencies depending on axial tension for
different crack depths.
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Figure 3. Eigenfrequencies depending on the crack location
for different crack depths.
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Figure 4. Eigenfrequencies depending on the crack location
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Figure 5. Eigenfrequencies depending on the crack location
for different materials.
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pending on the length of the beam L.
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In Figure 5 the dependence of the natural frequency on the step location is
depicted for nanobeams made of different materials. It can be seen from Fig-
ure 5 that the lowest values of the eigenfrequency correspond to nanobeam
made of copper and the highest ones correspond to the nanobeam made of
titanium.

Additionally, a comparison with the works of Li et al. [19] for simply
supported uniform beams was done using the same dimensional and physical
parameters. The results for the value of eigenfrequency of the first two modes
Ω1, Ω2 were found to be similar as can be seen from Figure 6. Here Ω∗1, Ω∗2
denote the results found by Li et al. [19], and Ω1, Ω2 denote the results of
the current paper.

9. Concluding remarks

A method of vibration analysis of nanobeams with various end conditions
was developed in the frameworks of Eringen’s nonlocal theory of elasticity.

The nanobeams under consideration have stepped cross sections and are
weakened by stable cracks or crack-like defects. It is assumed that the cracks
are located at the re-entrant corners of steps. These are the positions where
the occurrence of stress concentration is most probable.

The additional compliance produced by the defect is calculated according
to the method of Dimarogonas. Calculations carried out revealed the matter
that defects affect the eigenfrequencies of nanobeams. It was shown that the
maximal values of eigenfrequencies have the nanobeams without defects.
The matter that cracks reduce natural frequencies of beams are recognized
at the macro-level, as well.

Similarly, it was shown that when the axial tension of the nanobeam
increases then the natural frequency also increases, as might be expected.
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